
Protogate, Inc
12225 World T
San Diego, CA
January 2002
.
rade Drive, Suite R
 92128

Protocol Software Toolkit
Programmer Guide

DC 900-1338I

oss References:
eep this hidden)

S
s
ynchronous Wire
rvice
Protogate, Inc.
12225 World Trade Drive, Suite R
San Diego, CA 92128
(858) 451-0865

Protocol Software Toolkit Programmer Guide
© 2001 Protogate, Inc. All rights reserved
Printed in the United States of America

This document can change without notice. Protogate, Inc. accepts no liability for any errors this
document might contain.

Freeway is a registered trademark of Simpact, Inc.
All other trademarks and trade names are the properties of their respective holders.

Cr
(k

AW
aw
As
Se

Contents
List of Figures 9

List of Tables 11

Preface 13

1 Introduction 21

1.1 Product Overview . 21

1.1.1 Freeway Server . 21

1.1.2 Embedded ICP . 23

1.2 Freeway Client-Server Environment . 25

1.2.1 Establishing Freeway Server Internet Addresses 26

1.3 Embedded ICP Environment . 26

1.4 Client Operations . 26

1.4.1 Defining the DLI and TSI Configuration 26

1.4.2 Opening a Session . 27

1.4.3 Exchanging Data with the Remote Application. 27

1.4.4 Closing a Session . 27

1.5 Protocol Toolkit Overview. 28

1.5.1 Toolkit Software Components . 31

2 Software Development for the ICP 33

2.1 Board-level Protocol-executable Modules . 33

2.2 Development Tools . 35

2.2.1 SDS Compiler/Assembler/Linker . 35

2.3 Interfacing to the Operating System . 36

2.4 Motorola 68xxx Programming Environment. 37
DC 900-1338I 3

Protocol Software Toolkit Programmer Guide
2.4.1 Processor Privilege States . 37

2.4.2 Stack Pointers . 37

2.4.3 Exception Vector Table . 39

2.4.4 Interrupt Priority Levels . 41

2.5 ICP2424 and ICP2432 Hardware Device Programming 42

2.5.1 Programming the 68340/68349 . 43

2.5.2 Programming the Integrated Universal Serial Controllers 44

2.5.3 Programming Sipex’s Multi-Mode Serial Transceivers 44

2.5.4 Programming the Test Mode Register . 45

2.5.5 Programming the LED Register (ICP2424 only) 45

2.6 ICP6000 Hardware Device Programming. 45

2.6.1 Programming the Multi-function Peripheral 46

2.6.2 Programming the Serial Communications Controllers 48

2.6.3 Programming the DMA Controller . 49

3 Memory Organization 51

3.1 ICP2424 . 51

3.2 ICP2432 . 53

3.3 ICP6000 . 54

4 ICP Download, Configuration, and Initialization 57

4.1 Download Procedures . 57

4.1.1 Freeway Server Download Procedure . 57

4.1.1.1 Downloading Without the Debug Monitor 59

4.1.1.2 Downloading With the Debug Monitor 63

4.1.2 Embedded ICP Download Procedure . 64

4.1.3 ICP Buffer Size . 64

4.2 OS/Impact Configuration and Initialization 65

4.2.1 Configuration Table . 72

4.2.2 Task Initialization Structures . 72

4.2.3 Task Initialization Routine . 74

4.2.4 OS/Impact Initialization . 74

4.3 Determining Configuration Parameters. 75

4.3.1 OS/Impact Memory Requirements . 75

4.3.2 Configuration and System Performance. 77

4.3.2.1 Number of Configured Task Control Structures 78
4 DC 900-1338I

Contents
4.3.2.2 Number of Configured Priorities . 78

4.3.2.3 Tick and Time Slice Lengths . 80

5 Debugging 81

5.1 PEEKER Debugging Tool . 81

5.2 PTBUG Debugging Tool. 84

5.3 SingleStep Debugging Tool . 84

5.4 System Panic Codes . 86

6 ICP Software 89

6.1 ICP-resident Modules . 89

6.1.1 System Initialization . 89

6.1.2 Protocol Task . 95

6.1.3 Utility Task (spshio) . 96

6.1.3.1 Read Request Processing . 99

6.1.3.2 Write Request Processing . 101

6.2 Control of Transmit and Receive Operations. 103

6.2.1 Link Control Tables . 104

6.2.2 SPS/ISR Interface for Transmit Messages 107

6.2.3 SPS/ISR Interface for Received Messages 107

6.3 Interrupt Service . 109

6.3.1 ISR Operation in HDLC/SDLC Mode . 109

6.3.2 ISR Operation in Asynchronous Mode . 111

6.3.3 ISR Operation in BSC Mode. 112

7 Host/ICP Interface 115

7.1 ICP’s Host Interface Protocol . 115

7.2 Queue Elements . 118

7.2.1 System Buffer Header . 121

7.2.2 Queue Element Initialization . 123

7.2.3 Node Declaration Queue Element . 124

7.2.3.1 System Buffer Header Initialization 126

7.2.3.2 Completion Status . 127

7.2.4 Host Request Queue Element . 127

7.2.4.1 System Buffer Header Initialization 131

7.2.4.2 Host Request Header Initialization 133
DC 900-1338I 5

Protocol Software Toolkit Programmer Guide
7.2.4.3 Completion Status . 134

7.3 Reserved System Resources: XIO Interface . 135

7.4 Executive Input/Output . 135

7.4.1 Initialize Executive Input/Output (s_initxio) 136

7.4.2 Node Declaration (s_nodec) . 136

7.4.3 XIO Read/Write (s_xio) . 137

7.5 Diagnostics . 137

8 Client Applications — DLI Overview 141

8.1 Summary of DLI Concepts. 142

8.1.1 Configuration in the Freeway Server or Embedded ICP Environment . . 142

8.1.1.1 DLI Configuration for Raw Operation. 143

8.1.1.2 DLI and TSI Configuration Process 147

8.1.2 Blocking versus Non-blocking I/O. 151

8.1.3 Buffer Management. 152

8.2 Example Call Sequences . 153

8.3 Overview of DLI Functions . 155

9 Client Applications — Commands and Responses 157

9.1 Client and ICP Interface Data Structures . 157

9.2 Client and ICP Communication . 161

9.2.1 Sequence of Client Events to Communicate to the ICP. 162

9.2.2 Initiating a Session with the ICP (dlOpen) 163

9.2.3 Initiating a Session with an ICP Link (Attach) 164

9.2.4 Terminating a Session with an ICP Link (Detach) 167

9.2.5 Activating an ICP Link (Bind) . 169

9.2.5.1 X21bis Line Status Reports (Optional) 171

9.2.6 Deactivating an ICP Link (Unbind) . 172

9.2.7 Writing to an ICP Link . 174

9.2.7.1 Configuring the ICP Link. 175

9.2.7.2 Requesting Link Statistics From the ICP. 179

9.2.7.3 Writing Data to an ICP Link . 182

9.2.8 Reading from the ICP Link. 185

9.2.8.1 Reading Normal Data. 185

9.3 Additional Command Types Supported by the SPS 187

9.3.1 Internal Termination Message . 187
6 DC 900-1338I

Contents
9.3.2 Internal Test Message . 188

9.3.3 Internal Ping . 188

A Application Notes 189

B Data Rate Time Constants for SCC/IUSC Programming 191

C Error Codes 195

C.1 DLI Error Codes . 195

C.2 ICP Global Error Codes . 195

C.3 ICP Error Status Codes . 195

Index 197
DC 900-1338I 7

Protocol Software Toolkit Programmer Guide
8 DC 900-1338I

List of Figures
Figure 1–1: Freeway Configuration. 22

Figure 1–2: Embedded ICP Configuration. 23

Figure 1–3: A Typical Freeway Server Environment . 25

Figure 1–4: ICP PROM and Toolkit Software Components — Freeway Server 29

Figure 1–5: ICP PROM and Toolkit Software Components — Embedded ICP 30

Figure 2–1: Assembly Language Shell . 41

Figure 2–2: Test Mode Register, ICP2424 . 45

Figure 2–3: Test Mode Register, ICP2432 . 45

Figure 4–1: Protocol Toolkit Download Script File (spsload) 60

Figure 4–2: ICP2424 Memory Layout with Application Only 66

Figure 4–3: ICP2424 Memory Layout with Application and SDS Debug Monitor . . . 67

Figure 4–4: ICP2432 Memory Layout with Application Only 68

Figure 4–5: ICP2432 Memory Layout with Application and SDS Debug Monitor . . . 69

Figure 4–6: ICP6000 Memory Layout with Application Only 70

Figure 4–7: ICP6000 Memory Layout with Application and SDS Debug Monitor . . . 71

Figure 4–8: Sample Configuration Table . 72

Figure 4–9: Sample Configuration Table with Task Initialization Structures. 73

Figure 4–10: Sample Task Initialization Routine . 74

Figure 6–1: Sample ICP2424 Protocol Software Memory Layout. 90

Figure 6–2: Sample ICP2432 Protocol Software Memory Layout. 91

Figure 6–3: Sample ICP6000 Protocol Software Memory Layout. 92

Figure 6–4: Block Diagram of the Sample Protocol Software — Freeway Server 93

Figure 6–5: Block Diagram of the Sample Protocol Software — Embedded ICP 94

Figure 6–6: Sample Protocol Software Message Format 98

Figure 6–7: ICP Read Request (Transmit Data) Processing 100
DC 900-1338I 9

Protocol Software Toolkit Programmer Guide
Figure 6–8: ICP Write Request (Receive Data) Processing 102

Figure 6–9: Sample Link-to-Board Queue . 108

Figure 7–1: Sample Singly-linked Queue with Three Elements 119

Figure 7–2: Sample Doubly-linked Queue with Three Elements 120

Figure 7–3: Node Declaration Queue Element . 125

Figure 7–4: Host Request Queue Element with Data Area. 128

Figure 8–1: DLI Configuration File for Two Links (Freeway Server) 145

Figure 8–2: DLI Configuration File for Two Embedded ICP Links (DLITE Interface) . 146

Figure 8–3: DLI and TSI Configuration Process . 150

Figure 9–1: “C” Definition of DLI Optional Arguments Structure 158

Figure 9–2: “C” Definition of api_msg Data Structure 159

Figure 9–3: “C” Definition of icp_hdr and prot_hdr Data Structures. 159

Figure 9–4: Attach Command Format . 164

Figure 9–5: Attach Response Format . 166

Figure 9–6: Detach Command Format . 167

Figure 9–7: Detach Response Format . 168

Figure 9–8: Bind Command Format . 169

Figure 9–9: Bind Response Format . 170

Figure 9–10: Unbind Command Format. 172

Figure 9–11: Unbind Response Format . 173

Figure 9–12: Link Configuration “C” Structure . 175

Figure 9–13: Configure Link Command Format . 177

Figure 9–14: Configure Link Response Format . 178

Figure 9–15: Request Link Statistics Command Format 179

Figure 9–16: Statistics Report Response Format . 181

Figure 9–17: Statistics Report “C” Structure . 181

Figure 9–18: Send Data Command Format . 182

Figure 9–19: Data Acknowledgment Response . 184

Figure 9–20: Receive Data from ICP Response . 186
10 DC 900-1338I

List of Tables
Table 2–1: Vectors Reserved for System Software . 40

Table 2–2: ICP Interrupt Priority Assignments . 42

Table 2–3: LED Control Information . 43

Table 2–4: SP502 or SP504 Electrical Interface Values 44

Table 2–5: Setup for MFP Initialization . 47

Table 2–7: SCC Access Registers . 48

Table 2–6: Vector Numbers for SCC Interrupts . 48

Table 3–1: ICP2424 Memory Address Registers Base Address 52

Table 3–2: ICP2424 Device and Register Addresses . 52

Table 3–3: ICP2432 Device and Register Addresses . 53

Table 3–4: ICP6000 Device and Register Addresses . 55

Table 3–5: ICP6000 VME Slave Address Registers Base Address 56

Table 4–1: System Data Requirements . 76

Table 4–2: Sample Calculation of System Data Requirements 76

Table 6–1: Summary of Communication Modes . 109

Table 8–1: Include Files. 142

Table 8–2: Configuration File Names . 147

Table 8–3: DLI Call Sequence for Blocking I/O . 153

Table 8–4: DLI Call Sequence for Non-blocking I/O 154

Table 8–5: DLI Functions: Syntax and Parameters (Listed in Typical Call Order) 156

Table 9–1: Comparison of DLI_OPT_ARGS and ICP_HDR/PROT_HDR Fields 160

Table 9–2: Command/Response Code Summary . 161

Table B–1: SCC Time Constants for 1X Clock Rate for ICP6000 192

Table B–2: SCC Time Constants for 16X Clock Rate for ICP6000 192

Table B–3: IUSC Time Constants for 1X Clock Rate for ICP2424 and ICP2432. 193
DC 900-1338I 11

Protocol Software Toolkit Programmer Guide
Table B–4: IUSC Time Constants for 16X Clock Rate for ICP2424 and ICP2432 . . . 193

Table C–1: ICP Error Status Codes used by the ICP 196
12 DC 900-1338I

Preface
Purpose of Document

This document describes the protocol software toolkit for the Freeway server and

embedded intelligent communications processor (ICP) environments, and discusses

the issues involved in developing software that executes in either of these environments.

It also provides information on client application programs and the host/ICP interface.

Note
The Protocol Toolkit is designed to be used either with a Freeway

server or an embedded ICP using DLITE. For the embedded ICP,

also refer to the user guide for your ICP and operating system (for

example, the ICP2432 User Guide for Windows NT).

Intended Audience

This document should be read by programmers who are developing code to be down-

loaded to the ICP2424, ICP2432, or ICP6000. You should be familiar with your client

system’s operating system and with program development in a real-time environment.

Familiarity with the C programming language and Motorola 68xxx assembly language

is helpful.

 Required Equipment

You must have the following equipment to use the protocol software toolkit to develop

and test communications applications:
DC 900-1338I 13

Protocol Software Toolkit Programmer Guide
• a client computer that runs the following:

• TCP/IP (for a Freeway server)

• Freeway data link interface (DLI) or embedded DLITE interface

• An ICP2424, ICP2432, or ICP6000 installed in the Freeway server’s backplane or

embedded in your client computer system

• A console cable and an ASCII terminal or terminal emulator (running at 9600

b/s) for access to the ICP console port

• A programmer’s module for the ICP2432 or ICP6000

• A set of software development tools for the Motorola 68xxx processor

• If you plan to use the sample protocol software (SPS) test program as a basis for

your client application code, you will need a C compiler for your client system

 Organization of Document

Chapter 1 is an overview of the Freeway server and embedded products and the proto-

col software toolkit.

Chapter 2 describes the issues involved in ICP software development, including soft-

ware-development tools, the various interfaces, and how to program the hardware

devices.

Chapter 3 describes local memory address allocation on the ICPs.

Chapter 4 describes system download, configuration, and initialization.

Chapter 5 describes the ICP debugging tools and techniques.

Chapter 6 describes the ICP software.
14 DC 900-1338I

Preface

Techpubs:
Don’t delete
the “Other
Helpful
Documents”
(separate
table at end o
References).
Also set “space
below” on firs
table = 0 pt.

11/16/99
Leslie: Add
1567 to the
“Specials”
table.
Chapter 7 gives an overview of the interface between the ICP’s host processor and an

ICP. It also describes the interface between the ICP’s driver, XIO, and OS/Impact appli-

cation tasks.

Chapter 8 gives an overview of DLI concepts relating to client applications.

Chapter 9 describes the messages exchanged between the client and the ICP.

Appendix A clarifies some points made in the technical manuals and describes some

peculiarities of the devices and the ICP6000 hardware.

Appendix B provides some commonly used data rate time constants for SCC program-

ming on the ICP6000.

Appendix C describes error codes.

Protogate References

The following general product documentation list is to familiarize you with the avail-

able Protogate Freeway and embedded ICP products. The applicable product-specific

reference documents are mentioned throughout each document (also refer to the

“readme” file shipped with each product). Most documents are available on-line at Pro-

togate’s web site, www.protogate.com.

General Product Overviews

• Freeway 1100 Technical Overview 25-000-0419

• Freeway 2000/4000/8800 Technical Overview 25-000-0374

• ICP2432 Technical Overview 25-000-0420

• ICP6000X Technical Overview 25-000-0522

Hardware Support

• Freeway 1100/1150 Hardware Installation Guide DC-900-1370

• Freeway 1200/1300 Hardware Installation Guide DC-900-1537

• Freeway 2000/4000 Hardware Installation Guide DC-900-1331

f

t
DC 900-1338I 15

Protocol Software Toolkit Programmer Guide
• Freeway 8800 Hardware Installation Guide DC-900-1553

• Freeway ICP6000R/ICP6000X Hardware Description DC-900-1020

• ICP6000(X)/ICP9000(X) Hardware Description and Theory of
Operation

DC-900-0408

• ICP2424 Hardware Description and Theory of Operation DC-900-1328

• ICP2432 Hardware Description and Theory of Operation DC-900-1501

• ICP2432 Electrical Interfaces (Addendum to DC-900-1501) DC-900-1566

• ICP2432 Hardware Installation Guide DC-900-1502

Freeway Software Installation and Configuration Support

• Freeway Message Switch User Guide DC-900-1588

• Freeway Release Addendum: Client Platforms DC-900-1555

• Freeway User Guide DC-900-1333

• Freeway Loopback Test Procedures DC-900-1533

Embedded ICP Software Installation and Programming Support

• ICP2432 User Guide for Digital UNIX DC-900-1513

• ICP2432 User Guide for OpenVMS Alpha DC-900-1511

• ICP2432 User Guide for OpenVMS Alpha (DLITE Interface) DC-900-1516

• ICP2432 User Guide for Solaris STREAMS DC-900-1512

• ICP2432 User Guide for Windows NT DC-900-1510

• ICP2432 User Guide for Windows NT (DLITE Interface) DC-900-1514

Application Program Interface (API) Programming Support

• Freeway Data Link Interface Reference Guide DC-900-1385

• Freeway Transport Subsystem Interface Reference Guide DC-900-1386

• QIO/SQIO API Reference Guide DC-900-1355

Socket Interface Programming Support

• Freeway Client-Server Interface Control Document DC-900-1303

Toolkit Programming Support

• Freeway Server-Resident Application and Server Toolkit
Programmer Guide

DC-900-1325
16 DC 900-1338I

Preface

,
• OS/Impact Programmer Guide DC-900-1030

• Protocol Software Toolkit Programmer Guide DC-900-1338

Protocol Support

• ADCCP NRM Programmer Guide DC-900-1317

• Asynchronous Wire Service (AWS) Programmer Guide DC-900-1324

• AUTODIN Programmer Guide DC-908-1558

• Bit-Stream Protocol Programmer Guide DC-900-1574

• BSC Programmer Guide DC-900-1340

• BSCDEMO User Guide DC-900-1349

• BSCTRAN Programmer Guide DC-900-1406

• DDCMP Programmer Guide DC-900-1343

• FMP Programmer Guide DC-900-1339

• Military/Government Protocols Programmer Guide DC-900-1602

• N/SP-STD-1200B Programmer Guide DC-908-1359

• SIO STD-1300 Programmer Guide DC-908-1559

• X.25 Call Service API Guide DC-900-1392

• X.25/HDLC Configuration Guide DC-900-1345

• X.25 Low-Level Interface DC-900-1307

Other Documents (Available from Protogate) Protogate Order #

• MC68000 Family Reference Manual (Motorola) DC 900-0698

• MC68901 Multi-function Peripheral (Motorola) DC MC68901/D

• PTBUG Debug and Utility Program Reference Manual (PTI) DC 900-0424

• Serial Communications Controller User’s Manual (Zilog) DC 00-2057-05

Other Documents (Available from Vendor) Vendor

• MC68340 Integrated Processor with DMA User’s Manual Motorola,
MC 68340UM/AD

• MC68349 High Performance Integrated Processor User’s Manual Motorola,
MC 68349UM/AD

• User’s Manual, PT-VME340, High Speed Synchronous Communi-
cations Controller

Performance Tech-
nologies, Inc. (PTI)
126A0137
DC 900-1338I 17

Protocol Software Toolkit Programmer Guide
Document Conventions

This document follows the most significant byte first (MSB) and most significant word

first (MSW) conventions for bit-numbering and byte-ordering. In all packet transfers

between the client applications and the ICPs, the ordering of the byte stream is pre-

served.

The term “Freeway” refers to any of the Freeway server models (for example, Freeway

500/3100/3200/3400 PCI-bus servers, Freeway 1000 ISA-bus servers, or Freeway

2000/4000/8800 VME-bus servers). References to “Freeway” also may apply to an

embedded ICP product using DLITE (for example, the embedded ICP2432 using

DLITE on a Windows NT system).

Physical “ports” on the ICPs are logically referred to as “links.” However, since port and

link numbers are usually identical (that is, port 0 is the same as link 0), this document

uses the term “link.”

Program code samples are written in the “C” programming language.

Revision History

The revision history of the Protocol Software Toolkit Programmer Guide, Protogate doc-

ument DC 900-1338I, is recorded below:

• Z16C32 IUSC Integrated Universal Serial Controller Technical
Manual

Zilog,
DC8292-01

Other Documents (Development Tools and Environment) Vendor

• CrossCodeC for the 68000 Microprocessor Family Wind River

• M68000 Family Resident Structured Assembler Reference Manual Motorola

• PTBUG Debug and Utility Program, Model PT-VME800-10393,
Reference Manual for VME 340

PTI,
811A017910

• SingleStep Debugger for the 68000 Microprocessor Family Wind River
18 DC 900-1338I

Preface
Customer Support

If you are having trouble with any Protogate product, call us at (858) 451-0865 Monday

through Friday between 8 a.m. and 5 p.m. Pacific time.

You can also fax your questions to us at (877) 473-0190 any time. Please include a cover

sheet addressed to “Customer Service.”

 Revision Release Date Description

DC 900-1338A November 4, 1994 Original release

DC 900-1338B November 22, 1994 Update file names for Release 2.1
Add “Loopback Test Program” appendix

DC 900-1338C July 1995 Update file names
Add ICP2424 information

DC 900-1338D February 1996 Minor modifications throughout
Add ICP6030 information
Add new dlControl function to Table 8–5 on page 156
Add Windows NT to Loopback Test Program appendix
Delete HIO task information

DC 900-1338E November 1997 Add embedded ICP product information
Add ICP2432 information
Document changes in directory structure

DC 900-1338F December 1998 Minor modifications throughout.
Chapter 8 is now a programming overview, and Chapter 9

contains all the command and response formats.
Add command/response summary (Table 9–2 on page 161)
Add electrical interface values (Section 9.2.7.1 on page 175)

DC 900-1338G April 1999 Minor modifications throughout for embedded ICP users
Update electrical interface information (Table 2–4 on page 44)
Remove appendix for the loopback test. This information is

included in the Freeway Loopback Test Procedures document
(for a Freeway server) or the user guide for your embedded
ICP and operating system (for example, the ICP2432 User
Guide for Windows NT).

DC 900-1338H December 1999 Protocol Toolkit no longer supports the ICP6030
Modify Section 4.1.1.1 on page 59
Add Section 4.1.3 on page 64, “ICP Buffer Size”
Add Section 9.2.5.1 on page 171, “X21bis Line Status Reports”
Modify Section 9.2.7.1 on page 175 & Section 9.2.7.3 on page 182
Add new error codes to Table C–1 on page 196

DC 900-1338I January 2002 Update Document for Protogate, Inc.
Add new Freeway model numbers
DC 900-1338I 19

Protocol Software Toolkit Programmer Guide
We are always interested in suggestions for improving our products. You can use the

report form in the back of this manual to send us your recommendations.
20 DC 900-1338I

Chapter

Most recent
modification
date:
6/1/99 Ginni
Added
1200/1300 to
FW list
1 Introduction
1.1 Product Overview

Protogate provides a variety of wide-area network (WAN) connectivity solutions for

real-time financial, defense, telecommunications, and process-control applications.

Protogate’s Freeway server offers flexibility and ease of programming using a variety of

LAN-based server hardware platforms. Now a consistent and compatible embedded

intelligent communications processor (ICP) product offers the same functionality as

the Freeway server, allowing individual client computers to connect directly to the

WAN.

Both Freeway and the embedded ICP use the same data link interface (DLI for Freeway,

DLITE for embedded ICP). Therefore, migration between the two environments sim-

ply requires linking your client application with the proper library. The DLI library is

supported on various client operating systems (for example, UNIX, VMS, and Win-

dows NT). The DLITE library requires a compatible ICP device driver to operate and is

currently available on Windows NT/2000 and VMS (AXP systems only).

Protogate protocols that run on the ICPs are independent of the client operating system

and the hardware platform (Freeway or embedded ICP).

1.1.1 Freeway Server

Protogate’s Freeway communications servers enable client applications on a local-area

network (LAN) to access specialized WANs through the DLI. The Freeway server can be

any of several models that use the ICP2432, ICP2424, or ICP6000 products. The

Freeway server is user programmable and communicates in real time. It provides mul-

:

DC 900-1338I 21

Protocol Software Toolkit Programmer Guide
tiple data links and a variety of network services to LAN-based clients. Figure 1–1 shows

the Freeway configuration.

To maintain high data throughput, Freeway uses a multi-processor architecture to sup-

port the LAN and WAN services. The LAN interface is managed by a single-board com-

puter, called the server processor. It uses commercially available operating systems such

as VxWorks or BSD Unix to provide a full-featured base for the LAN interface and lay-

ered services needed by Freeway.

Freeway can be configured with multiple WAN interface processor boards, each of

which is a Protogate ICP. Each ICP runs the communication protocol software using

OS/Impact, Protogate’s real-time operating system.

Figure 1–1: Freeway Configuration

AA
AA
AA
AA
AA
AA
AA
AA

WAN
Interface

Processors

Freeway

Ethernet LAN

● ● ●

ICP

ICP

34
13

Client n

Application

WAN Protocol
Options

Defense

Commercial
 X.25
 Bisync
 HDLC . . .

SCADA

Financial
 SWIFT
 CHIPS
 Telerate
 Telekurs
 Reuters
 40+ Market
 Feeds . . .

●

 ●

 ●

In
du

str
y S

tan
da

rd
 B

us

Client 2

Application

Freeway
API

Freeway
API

AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA

Server Processor

Client 1

Application

Freeway
API
22 DC 900-1338I

1: Introduction
1.1.2 Embedded ICP

The embedded ICP connects your client computer directly to the WAN (for example,

using Protogate’s ICP2432 PCIbus board). The embedded ICP provides client applica-

tions with the same WAN connectivity as the Freeway server, using the same data link

interface (via the DLITE embedded interface). The ICP runs the communication pro-

tocol software using Protogate’s real-time operating system. Figure 1–2 shows the

embedded ICP configuration.

Figure 1–2: Embedded ICP Configuration

Client Computer

34
14

WAN Protocol
Options

Defense

Commercial
 X.25
 Bisync
 HDLC . . .

SCADA

Financial
 SWIFT
 CHIPS
 Telerate
 Telekurs
 Reuters
 40+ Market
 Feeds . . .

●

 ●

 ●

AA
AA
AA
AA
AA
AA
AA
AA
AA

In
du

st
ry

 S
ta

n
da

rd
 B

u
s

Client
Appl 1

Freeway
API

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

Si
m

pa
ct

 D
ri

ve
r

Freeway
Embedded ICP

Simpact
WAN Protocol

Software

Client
Appl 1

Freeway
API

Client
Appl 1

Freeway
API
DC 900-1338I 23

Protocol Software Toolkit Programmer Guide
Summary of product features:

• Provision of WAN connectivity either through a LAN-based Freeway server or

directly using an embedded ICP

• Elimination of difficult LAN and WAN programming and systems integration by

providing a powerful and consistent data link interface

• Variety of off-the-shelf communication protocols available from Protogate which

are independent of the client operating system and hardware platform

• Support for multiple WAN communication protocols simultaneously

• Support for multiple ICPs (two, four, eight, or sixteen communication lines per

ICP)

• Wide selection of electrical interfaces including EIA-232, EIA-449, EIA-530, and

V.35

• Creation of customized server-resident and ICP-resident software, using Proto-

gate’s software development toolkits

• Freeway server standard support for Ethernet and Fast Ethernet LANs running

the transmission control protocol/internet protocol (TCP/IP)

• Freeway server standard support for FDDI LANs running the transmission con-

trol protocol/ internet protocol (TCP/IP)

• Freeway server management and performance monitoring with the simple net-

work management protocol (SNMP), as well as interactive menus available

through a local console, telnet, or rlogin
24 DC 900-1338I

1: Introduction
1.2 Freeway Client-Server Environment

The Freeway server acts as a gateway that connects a client on a local-area network to a

wide-area network. Through Freeway, a client application can exchange data with a

remote data link application. Your client application must interact with the Freeway

server and its resident ICPs before exchanging data with the remote data link applica-

tion.

One of the major Freeway server components is the message multiplexor (MsgMux)

that manages the data traffic between the LAN and the WAN environments. The client

application typically interacts with the Freeway MsgMux through a TCP/IP BSD-style

socket interface (or a shared-memory interface if it is a server-resident application

(SRA)). The ICPs interact with the MsgMux through the DMA and/or shared-memory

interface of the industry-standard bus to exchange WAN data. From the client applica-

tion’s point of view, these complexities are handled through a simple and consistent

data link interface (DLI), which provides dlOpen, dlWrite, dlRead, and dlClose functions.

Figure 1–3 shows a typical Freeway connected to a locally attached client by a TCP/IP

network across an Ethernet LAN interface. Running a client application in the Freeway

client-server environment requires the basic steps described in Section 1.2.1 and

Section 1.4.

Figure 1–3: A Typical Freeway Server Environment

Freeway

ICP0

ICP1

ICP2

ICP3

TCP/IP

client1
192.52.107.99

freeway2
192.52.107.100

DLI
Client

Application TSI
TSI

Msg
Mux

Ethernet

WAN
Protocols

TCP/IP
Socket Interface

Client

31
25

St
an

da
rd

 B
u

s
In

du
st

ry

SRA

Shared Memory
Interface
DC 900-1338I 25

Protocol Software Toolkit Programmer Guide
1.2.1 Establishing Freeway Server Internet Addresses

The Freeway server must be addressable in order for a client application to communi-

cate with it. In the Figure 1–3 example, the TCP/IP Freeway server name is freeway2,

and its unique Internet address is 192.52.107.100. The client machine where the client

application resides is client1, and its unique Internet address is 192.52.107.99. Refer to

the Freeway Server User’s Guide to initially set up your Freeway and download the oper-

ating system, server, and protocol software.

1.3 Embedded ICP Environment

Refer to the user guide for your embedded ICP and operating system (for example, the

Freeway Embedded ICP2432 User’s Guide for Windows NT) for software installation and

setup instructions. The user guide also gives additional information regarding the data

link interface (DLI) and embedded programming interface descriptions for your spe-

cific embedded environment. Refer back to Figure 1–2 on page 23 for a diagram of the

embedded ICP environment. Running a client application in the embedded ICP envi-

ronment requires the basic steps described in Section 1.4

1.4 Client Operations

1.4.1 Defining the DLI and TSI Configuration

In order for your client application to communicate with the ICP’s protocol software,

you must define the DLI sessions and the transport subsystem interface (TSI) connec-

tions. You have the option of also defining the protocol-specific ICP link parameters.

To accomplish this, you first define the configuration parameters in DLI and TSI ASCII

configuration files, and then you run two preprocessor programs, dlicfg and tsicfg, to

create binary configuration files. The dlInit function uses the binary configuration files

to initialize the DLI environment.
26 DC 900-1338I

1: Introduction
1.4.2 Opening a Session

After the DLI and TSI configurations are properly defined, your client application uses

the dlOpen function to establish a DLI session with an ICP link. As part of the session

establishment process, the DLI establishes a TSI connection with the Freeway MsgMux

through the TCP/IP BSD-style socket interface for the Freeway server, or directly to the

ICP driver for the embedded ICP environment.

1.4.3 Exchanging Data with the Remote Application

After the link is enabled, the client application can exchange data with the remote appli-

cation using the dlWrite and dlRead functions.

1.4.4 Closing a Session

When your application finishes exchanging data with the remote application, it calls the

dlClose function to disable the ICP link, close the session with the ICP, and disconnect

from the Freeway server or the embedded ICP driver.
DC 900-1338I 27

Protocol Software Toolkit Programmer Guide
1.5 Protocol Toolkit Overview

The protocol software toolkit helps you develop serial protocol applications for execu-

tion on Protogate’s intelligent communications processors. Many of the software mod-

ules required to build a complete system are provided with the toolkit or reside in the

ICP’s PROM, including download facilities, operating system, and the PTBUG

(ICP6000) or Peeker (ICP2424 and ICP2432) debugging tool. The toolkit also includes

a debug monitor program for use with Software Development Systems’ SingleStep

debugger. (The SingleStep debugger must be purchased directly from Software Devel-

opment Systems.) All you have to provide is your application code, which you can build

using the toolkit’s sample protocol software as a model. Chapter 2, Chapter 4, and

Chapter 5 give more information on software development, configuration, and debug-

ging.

The toolkit includes software, provided on the distribution media, and complete docu-

mentation (see the document “References” section in the Preface). Some of the toolkit’s

software components, such as the SingleStep monitor, are provided only in executable

object format. All other components are provided in both source and executable form

so that they can be modified, used as coding examples, or linked with user applications.

Figure 1–4 shows a block diagram of the ICP’s PROM and the toolkit’s software com-

ponents for the Freeway server. Figure 1–5 shows the same information for the embed-

ded ICP products.
28 DC 900-1338I

1: Introduction

aled 76%
Figure 1–4: ICP PROM and Toolkit Software Components — Freeway Server

ICP

XIO

Server Processor

SPS Test
Program

Application
Program
Interface

Boot
Loader

Low-level
Debugger

Power-up/
Reset

Diagnostics

PROM

SDS
Debug

Monitor

ISAbus,
PCIbus, or
VMEbus

VxWorks

Server-
resident

Applications

Server/ICP
Driver

Utility
Task

. . .
Serial Ports

Protocol
Task

Receive
Post-processor

Device-specific Procedures

Start Transmit Start ReceiveInitialization

Specific Conditions

Device-specific ISRs

Transmit Receive

Transmit
Pre-processor

34
15

Sc
DC 900-1338I 29

Protocol Software Toolkit Programmer Guide

Scaled 76%
 Figure 1–5: ICP PROM and Toolkit Software Components — Embedded ICP

ICP

XIO

Host Processor

SPS Test
Program

Application
Program
Interface

Boot
Loader

Low-level
Debugger

Power-up/
Reset

Diagnostics

PROM

SDS
Debug

Monitor

ISAbus,
PCIbus, or
VMEbus

ICP Driver

Utility
Task

. . .
Serial Ports

Protocol
Task

Receive
Post-processor

Device-specific Procedures

Start Transmit Start ReceiveInitialization

Specific Conditions

Device-specific ISRs

Transmit Receive

Transmit
Pre-processor

34
16

Host OS
30 DC 900-1338I

1: Introduction
1.5.1 Toolkit Software Components

The toolkit loopback test program (spsalp.c) is provided in source form and, when com-

piled, executes in the client application program’s system environment. For the test

procedures, see the “Protocol Toolkit Test Procedure” section in the Freeway Loopback

Test Procedures document or the appropriate embedded ICP user guide.

The following programs execute on the ICP:

• System-services module containing the OS/Impact operating system and the XIO

ICP-side driver (sources provided)

• Sample protocol software (source provided)

• Sample host interface I/O utility (source provided)

• Debug monitor; must be used with the Software Development Systems’

SingleStep monitor package (executable code only)

The following source files aid in ICP software development:

• Subroutine library for C interface to OS/Impact

• Macro library for assembly interface to OS/Impact

• Header files with OS/Impact and XIO definitions and equates

• Make files for supplied source files

• *.spc files for linking and address resolution of the executable images
DC 900-1338I 31

Protocol Software Toolkit Programmer Guide
32 DC 900-1338I

Chapter
2 Software Development
for the ICP
This chapter describes the issues involved in developing software for the Protogate

ICPs, including software-development tools, the client application program interfaces,

and the hardware devices. The application program interface between the client and

ICP protocol tasks are described in the Freeway Transport Subsystem Interface Reference

Guide and Freeway Data Link Interface Reference Guide. The interface between the ICP

and the server (for Freeway server systems) or remote (for embedded ICP systems) is

described in Chapter 7 of this manual.

2.1 Board-level Protocol-executable Modules

An ICP board-level protocol-executable module is an absolute image file containing

Motorola 68xxx code and data developed on a CrossCodeC development system and

subsequently downloaded to the ICP. Any division of code and data among modules is

entirely arbitrary. For example, Protogate’s protocol software toolkit includes the fol-

lowing modules:

• A system-services module containing the OS/Impact operating system kernel,

timer task, and XIO for the ICP2424 (xio_2424.mem), ICP2432 (xio_2432.mem),

or ICP6000 (xio_6000.mem)

• A module comprising the sample protocol application for the ICP2424

(sps_fw_2424.mem), ICP2432 (sps_fw_2432.mem), or ICP6000 (sps_fw_6000.mem)
DC 900-1338I 33

Protocol Software Toolkit Programmer Guide
• A module containing the source-level debug monitor for the ICP2424

(icp2424c.mem), ICP2432 (icp2432c.mem), or ICP6000 (icp6000c.mem), used only

with the Software Development Systems’ SingleStep debugger

In general, the toolkit programmer develops or modifies one or more application mod-

ules or tasks that run with Protogate’s system-services module. Application tasks can

run concurrently.

Modules are downloaded to the ICP as individual entities as described in Chapter 4.

They are not linked with one another. Any shared information must be made available

to a module when it is created (in other words, during compilation or assembly) or

must be obtained by the module at the time of execution. Modules designed to execute

in the OS/Impact environment access system services through the use of software traps

and, in general, communicate with other tasks through OS/Impact services, using pub-

lic task and queue IDs.

For these reasons, and because there are no provisions in the OS/Impact environment

for memory protection, it is essential to document the system resources required by a

module if it is to execute in combination with other modules. The following informa-

tion is provided for each module developed by Protogate and defined in the *.spc files:

• Reserved areas of memory for code, data, and stack space

• Reserved exception vector table entries

• Dependencies on, or conflicts with, other modules

• Configuration requirements (number of tasks, priorities, queues, alarms,

resources, and partitions for the configuration table parameter list)

• Task initialization structures to be included in the configuration table

• Reserved task, queue, alarm, resource, and partition IDs (to avoid conflict with

user-added modules and as public information for intertask communication)
34 DC 900-1338I

2: Software Development for the ICP
During the design and development of your application, you can use this information

to build a complete system composed of compatible and cooperating modules. In addi-

tion, your application code must provide a system configuration that is adequate for the

combined needs of all the modules in the system, and it must include the required task

initialization structures.

2.2 Development Tools

Modules are developed at Protogate using Wind River’s CrossCodeC cross-compiler,

assembler, and linker, and the SingleStep debugger. These tools were formerly available

from Software Development Systems (SDS) and later DIAB before Wind River took

over the product line. Note that most sections of this document still refer to these as

SDS tools instead of Wind River tools. This section describes the issues related to the

development of download modules from the perspective of these specific tools that

Protogate has chosen.

2.2.1 SDS Compiler/Assembler/Linker

The Protocol Toolkit includes modules developed by Software Development Systems

(SDS) for source-level debugging using the SDS SingleStep debugger for the 68000

microprocessor family. To use the SingleStep debugger, see Chapter 5.

The SDS tools are available on SUN4 UNIX workstations and PCs running DOS or

Windows NT. The CrossCodeC cross-compiler and SingleStep debugger must be pur-

chased directly from Wind River.

The following SDS documents apply to these development tools:

• CrossCodeC for the 68000 Microprocessor Family

• SingleStep Debugger for the 68000 Microprocessor Family

The CrossCodeC package is designed specifically for the Motorola 68000 family and

includes a complete development system with a C compiler, a Motorola-standard
DC 900-1338I 35

Protocol Software Toolkit Programmer Guide
68000 assembler, a linker, and a downloader. The SDS assembler allows you to define

up to 250 relocatable regions, identified by region names. These regions are mapped

into the target memory structure by the linker using a linker specification file. This file

allows you to map various regions to particular addresses and position them in ROM or

RAM as needed. The C compiler automatically splits output into five standard regions

for code, strings, constant data, initialized data, and uninitialized data which are named

code, string, const, data, and ram, respectively. The freeway/icpcode/proto_kit/icpnnnn1

directory contains a sample make file (makefile) and a sample linker specification file

(sps_2424.spc, sps_2432.spc, or sps_6000.spc) which can be used to build the

sps_fw_nnnn.mem image.

2.3 Interfacing to the Operating System

The assembly and C language interfaces to OS/Impact are described in the OS/Impact

Programmer Guide. The freeway/icpcode/proto_kit/src directory contains source code for

a C interface library (oscif.h and oscif.asm). The routines in this library are written

according to the subroutine calling conventions of the CrossCodeC compiler and can

be easily modified for most other C compilers or high-level language compilers.

The interface routines are necessary when accessing OS/Impact from C language rou-

tines for two reasons. First, OS/Impact’s system calls are accessed through a software

trap instruction, which cannot be generated directly from C. Second, the subroutine

calling conventions of the CrossCodeC compiler (where parameters are passed mainly

on the stack) differ from those of the OS/Impact system calls (where parameters are

passed in registers). The interface routines must perform the necessary translations

before and after OS/Impact system calls.

The oscif.h file contains C structure definitions for all relevant operating system data

structures.

1. icpnnnn refers to the icp2424, icp2432, or icp6000 directory.
36 DC 900-1338I

2: Software Development for the ICP
For programs written in assembly language, the freeway/icpcode/proto_kit/src directory

includes the files sysequ.asm, with OS/Impact system call macros, and oscif.asm, with

assembly language definitions of OS/Impact data structures. These files are in a format

compatible with the CrossCodeC assembler, but can also be modified for use by other

assemblers.

2.4 Motorola 68xxx Programming Environment

The Motorola 68xxx CPU is a 32-bit microprocessor with 32-bit registers, internal data

paths, and addresses that provides a four-gigabyte direct addressing range. If your

application code will be written in assembly language, you will find the MC68000 Fam-

ily Reference Manual (Motorola) indispensable. It contains information on the general-

purpose and special registers, addressing modes, instruction set, and exception process-

ing. When programming in a higher-level language, most aspects of the processor are

relatively transparent. The following sections present some general information to help

you understand the 68xxx programming environment.

2.4.1 Processor Privilege States

The 68xxx supports two privilege levels: user and supervisor. On the ICP, OS/Impact

operates in supervisor state, as do all interrupt service routines and certain sections of

the application code. All tasks (including the system-level timer) operate in user state,

where certain operations are not allowed. See the MC68000 Family Reference Manual

(Motorola) for additional information.

2.4.2 Stack Pointers

The 68xxx special registers include three stack pointers: user (USP), master (MSP), and

interrupt (ISP). When the M-bit in the status register is set to zero, only the USP and

ISP are used. The ICP always operates in this mode, and user code must never set the

M-bit to one.
DC 900-1338I 37

Protocol Software Toolkit Programmer Guide
In user state, the USP is the current stack pointer. In supervisor state, the ISP (usually

called the system stack pointer, or SSP) is current. The current stack pointer is swapped

automatically by the processor into general register A7 when the privilege level changes,

so that register A7 is always used as the stack pointer, regardless of the processor’s state.

A stack pointer is pre-decremented when an element is added to the stack (pushed) and

post-incremented when an element is removed (popped). Stacks therefore grow from

higher to lower memory addresses, and the stack pointer always contains the address of

the element currently at the top of the stack.

During its initialization, OS/Impact allocates space for the system stack and initializes

the SSP. The system stack is used whenever the processor is in supervisor state. This

includes system calls and all interrupt service routines, including those associated with

user applications.

You must allocate stack space for each application task you create and specify the initial

stack pointer in the task initialization structure (see Section 4.2.2 on page 72). The ini-

tial stack pointer should be specified as the ending address of the stack space plus one.

For example, if a task’s stack space is 0x40016000 through 0x400163FF, the initial stack

pointer should be specified as 0x40016400. OS/Impact saves this initial value in the task

control block as the current stack pointer. When the task is dispatched, OS/Impact ini-

tializes the USP to the stack address saved in the task control block. When the task is

preempted, the task’s state (the contents of the general registers) is saved on its stack

and the current USP is again saved in the task control block.

When allocating a task’s stack, you must consider the space required at the deepest level

of nested subroutine calls, and allow 66 bytes for the registers saved when the task is

preempted. You need not allocate additional stack space for interrupt service routines,

as the USP is not used for interrupt processing.
38 DC 900-1338I

2: Software Development for the ICP
Note
The stack spaces are defined in the linker specification file

freeway/icpcode/proto_kit/icpnnnn1/sps_nnnn.spc.

2.4.3 Exception Vector Table

On the 68xxx, interrupts and traps are processed through an exception vector table. The

68xxx vector base register points to the exception vector table, which contains 256 long-

word (four-byte) vectors. The vector base register is not accessible in user state, so

OS/Impact provides the base address of the exception vector table in its system address

table. (See the OS/Impact Programmer Guide.)

The MC68000 Family Reference Manual (Motorola) lists vector assignments as defined

by the 68xxx CPU. Table 2–1 lists the vectors that are reserved for use by Protogate’s

system software.

To install an interrupt service routine (ISR) for a particular device, multiply the vector

number by four to obtain the vector offset, add the offset to the base address of the

exception vector table, and store your ISR entry point at the resulting address.

When the device generates an interrupt, it supplies the 68xxx CPU with the eight-bit

vector number, which the CPU multiplies by four to obtain a vector offset, then adds

the contents of the vector base register to obtain the vector address at which your ISR

entry point is stored. When interrupt servicing is complete, the ISR must terminate

with a “return from ISR” (s_iret) system call (described in the OS/Impact Programmer

Guide) if the interrupt requires that system services be invoked. Otherwise, a return

from exception (RTE) is sufficient.

1. nnnn stands for 2424, 2432, or 6000.
DC 900-1338I 39

Protocol Software Toolkit Programmer Guide
When programming interrupt service routines in a high-level language, it is usually

necessary to provide an assembly language “shell” for the ISR in order to save certain

registers.

For example, the CrossCodeC compiler saves on entry and restores on exit all registers

used in a subroutine except D0, D1, A0, and A1, which are considered working regis-

ters. The calling code must save these registers, if necessary, before making a subroutine

call. These calling conventions, however, are not sufficient for ISRs. An ISR is not

“called” in the ordinary sense; it interrupts code that might currently be using the work-

ing registers. The ISR must, therefore, save those registers as well.

Because many compilers cannot distinguish between an ordinary subroutine and an

interrupt service routine, the programmer must provide an assembly language shell to

save the working registers on entry and restore them at completion of the ISR. (Note

that it is the address of the shell rather than the high-level language routine that must

be stored in the appropriate vector of the exception vector table.) Figure 2–1 shows a

sample assembly language shell.

Table 2–1: Vectors Reserved for System Software

Vector Number
(Decimal)

Vector Offset
(Hexadecimal) Function

25 64 Auto vector level 1

26 68 Auto vector level 2

27 6C Auto vector level 3

28 70 Auto vector level 4

32 80 TRAP # 0

33 84 TRAP # 1

34 88 TRAP # 2

35 8C TRAP # 3

36 90 TRAP # 4

37 94 TRAP # 5

47 BC TRAP # 15
40 DC 900-1338I

2: Software Development for the ICP
2.4.4 Interrupt Priority Levels

The Motorola 68xxx supports seven levels of prioritized interrupts, with level 7 being

the highest priority. Any number of devices can be chained to interrupt at the same pri-

ority. Table 2–2 shows the interrupt priorities for the various ICP’s hardware devices.

When an interrupt occurs at a particular priority, the interrupt mask field in the 68xxx’s

status register is set to the priority level of that interrupt, causing other interrupts at the

same or lower priorities to be ignored. When interrupt servicing is complete, the inter-

rupt mask level in the status register is returned to its previous value, at which time

pending interrupts at lower priorities can be serviced.

The interrupt priority level can be changed by directly modifying the mask field in the

status register, but this is possible only in supervisor state. OS/Impact includes a system

call that can be called from the task level to modify the interrupt priority level.

The MC68000 Family Reference Manual (Motorola) contains important information

that should be studied before implementing interrupt-level code.

SECTION 9
XREF _Cisr external reference to C isr
XDEF _isr_shell external definition for C code

* which stores this address
* in the exception vector table
_isr_shell

movem.l d0/d1/a0/a1,-(sp) save registers not saved by C
jsr _Cisr call C routine for interrupt

* processing
movem.l (sp)+,d0/d1/a0/a1 restore registers
s_iret return from isr (system call)

Figure 2–1: Assembly Language Shell
DC 900-1338I 41

Protocol Software Toolkit Programmer Guide
2.5 ICP2424 and ICP2432 Hardware Device Programming

The ICP2424 uses the Motorola 68340 CPU, an integrated processor. The ICP2432 uses

the Motorola 68349 CPU. The 6834x includes:

• a CP32 CPU

• a two-channel DMA controller

• a two-channel universal synchronous/asynchronous receiver/transmitter

(USART)

• a periodic interrupt timer

• two counter/timers

Table 2–2: ICP Interrupt Priority Assignments

Device(s) Level

ICP2424

Integrated Universal Serial Controllers (IUSC) 6

68340 periodic timer interrupt 5

ISAbus 5

ICP2432

Integrated Universal Serial Controllers (IUSC) 6

68349 periodic timer interrupt 5

PCIbus 5

ICP6000

Direct memory access controller 6

Serial communications controllers 5

Multi-function peripheral timer 5

VMEbus slave interface device 2
42 DC 900-1338I

2: Software Development for the ICP

th 2424
d 2432 have

d/green
Ds.
In addition to the Motorola 6834x, the ICP2424 and ICP2432’s programmable devices

include:

• two, four, or eight Z16C32 integrated universal serial controllers (IUSCs) with

integral DMA for the ICP2432 or four IUSCs for the ICP2424

• Sipex’s SP502 (ICP2424) or SP504 (ICP2432) multi-mode serial transceivers

• a test mode register

• an LED register

Note
The 8-port ICP2432 only supports EIA-232.

2.5.1 Programming the 68340/68349

The ICP2424 does not use the 68040’s two-channel DMA controller. The ICP2432 uses

the 68349’s two-channel DMA controller for PCIbus transfers.

The 6834x’s serial port A is used as a console port. The SingleStep debugger uses vector

0x4c for serial port A interrupts. Serial port B’s control signals are used to control the

red and green LEDs on the mounting bracket. Table 2–3 contains the information

needed to turn the green and red LEDs on and off.

Table 2–3: LED Control Information

Address Value Operation

0xee00f71e 0x40 Green LED on

0xee00f71e 0x10 Red LED on

0xee00f71f 0x40 Green LED off

0xee00f71f 0x10 Red LED off

Bo
an
re
LE
DC 900-1338I 43

Protocol Software Toolkit Programmer Guide
Timer 1 of the two 8-bit timers is used by the ICP to support DRAM/Refresh. Timer 2

is not used. OS/Impact uses the periodic interrupt timer, which uses vector 0x40.

2.5.2 Programming the Integrated Universal Serial Controllers

The Z16C32 IUSCs are used to control the ICP’s serial ports. Each IUSC controls trans-

mit and receive operations for one port. The IUSC also includes a DMA facility. Refer

to the Z16C32 IUSC Integrated Universal Serial Controller Technical Manual, for IUSC

programming instructions. The sample protocol software package includes examples of

IUSC programming for asynchronous, byte synchronous and bit synchronous commu-

nications. See Chapter 6 for more information.

2.5.3 Programming Sipex’s Multi-Mode Serial Transceivers

The ICP2424 uses the SP502 and the ICP2432 uses the SP504 multi-mode serial trans-

ceiver. These transceivers allow software to select the electrical protocol to be used while

communicating on the serial line. Table 2–4 gives the value to be written into the trans-

ceiver to select the corresponding electrical interface. See Chapter 3 for the addresses of

the transceivers.

Table 2–4: SP502 or SP504 Electrical Interface Values

Interface Value

RS-232 0x02

RS-449 0x0c

EIA-530 0x0d

V.35 0x0e
44 DC 900-1338I

2: Software Development for the ICP
2.5.4 Programming the Test Mode Register

All modem control signals except Test Mode are handled directly by the IUSC associ-

ated with the port. The Test Mode input status for all supported ports is through the

Test Mode register located at 0x1808000 for the ICP2424 or 0x1810000 for the

ICP2432. When a bit is set to one, the Test Mode signal is asserted on the serial line. See

Figure 2–2 for the ICP2424 or Figure 2–3 for the ICP2432.

2.5.5 Programming the LED Register (ICP2424 only)

The byte-wide write-only LED register resides at address 0x410000. The LED register is

used to control the eight LEDs on the ICP2424 board’s edge. The LEDs are illuminated

when the register bit is 0 and off when the bit is 1.

2.6 ICP6000 Hardware Device Programming

In addition to the Motorola 68020 CPU, the ICP6000’s programmable devices include

the following:

Figure 2–2: Test Mode Register, ICP2424

Figure 2–3: Test Mode Register, ICP2432

Address = 0x1808000, byte wide, read only

0123Reserved

Address = 0x1810000, byte wide, read only

01237 456
DC 900-1338I 45

Protocol Software Toolkit Programmer Guide
• a MC68901 multi-function peripheral (MFP) with four timers, interrupt control

logic, and a single-channel universal synchronous/asynchronous receiver/trans-

mitter (USART) which is used to support the ICP’s console

• four or eight two-channel Z8530 serial communications controllers (SCCs)

• a 32-channel DMA transfer controller

Refer to the MC68901 Multi-function Peripheral (Motorola) and the Serial Communica-

tions Controller User’s Manual (Zilog).

The following sections describe how to program these devices as related specifically to

their implementation on the ICP. More information can be found in the Freeway

ICP6000R/ICP6000X Hardware Description. Appendix A of this manual provides some

important application notes correcting errors and omissions in the technical manuals

and describing some peculiarities of the devices and the ICP hardware.

The ICP hardware also includes a VMEbus slave interface device that controls the ICP’s

interface to the Freeway server or the embedded ICP’s client machine. This device is

under the control of XIO and does not normally require programming at the applica-

tion level. All data transfers to and from the client machine are performed by the ICP

through the VMEbus master interface. Programming parameters for the master inter-

face are provided to the ICP by the client-side driver prior to download. Refer to the

Freeway ICP6000R/ICP6000X Hardware Description for more information.

2.6.1 Programming the Multi-function Peripheral

The MC68901 multi-function peripheral (MFP) requires 16 interrupt vectors. The

starting vector number is programmed using the MFP’s vector register and must be an

even multiple of 16. The In-service Register Enable bit in the vector register must be set

(that is, OR the vector number with 8 before storing it in the vector register).

OS/Impact uses MFP timer channel A. The PTBUG debugging tool uses channel D as

the baud rate generator for the MFP’s serial port and uses the MFP’s USART to control
46 DC 900-1338I

2: Software Development for the ICP
the console port. Timer channels B and C are dedicated to hardware functions. Do not

change the configuration of the timer channels.

The MFP contains 24 byte-wide registers beginning at the MFP base address

(0x20000000). The MFP’s eight channels of external interrupt control are used to pro-

vide SCC interrupts. The MFP must be initialized appropriately before using SCC

interrupts.Table 2–5 shows the recommended setup.

With the MFP vector register set to 0x48, the MFP’s base vector is 0x40 and the eight

SCCs interrupt at the vector numbers shown in Table 2–6.

Refer to the MC68901 Multi-function Peripheral (Motorola) for MFP programming

instructions. The sample protocol software package includes code to perform MFP ini-

tialization and handle MFP control of SCC interrupts.

Table 2–5: Setup for MFP Initialization

Register
Value

(Hexadecimal)

VR 48

DDR 00

AER 00

IPRA 00

IPRB 00

IERA C0

IERB CF

IMRA C0

IMRB CF
DC 900-1338I 47

Protocol Software Toolkit Programmer Guide
2.6.2 Programming the Serial Communications Controllers

Four or eight Z8530 or Z85230 serial communications controllers (SCCs) are used to

control the ICP6000’s eight or sixteen ports. Each SCC has two channels, A and B, and

each channel controls transmit and receive operations for one port. For example,

SCC01 controls port 0 on channel A and port 1 on channel B, SCC23 controls port 2 on

channel A and port 3 on channel B, and so on. Table 3–4 on page 55 lists the SCC base

addresses. Each SCC is accessed through the eight-bit registers shown in Table 2–7.

Each channel of the SCC contains 16 eight-bit write registers, numbered 0 through 15,

and nine eight-bit read registers, numbered 0, 1, 2, 3, 8, 10, 12, 13, and 15. Write register

Table 2–6: Vector Numbers for SCC Interrupts

Channels
Vector

(Hexadecimal)

0 and 1 40

2 and 3 41

4 and 5 42

6 and 7 43

8 and 9 46

10 and 11 47

12 and 13 4E

14 and 15 4F

Table 2–7: SCC Access Registers

Register
Offset from SCC

Base Address

Channel A Data 0

Channel A Control 1

Channel B Data 2

Channel B Control 3
48 DC 900-1338I

2: Software Development for the ICP
8 and read register 8 (the transmit and receive data buffers) are accessed directly

through the channel’s data register. All other registers except Read and Write registers

(RRO and WRO) are accessed through the channel’s control register in two steps: a

write to select the actual register number, followed by a read or write to transfer the

data. RRO and WRO are accessible with a single transfer.

Note
These two steps must be done at CPU level 6 to lock out any ISRs

that might need to access the SCCs.

Refer to the Serial Communications Controller User’s Manual (Zilog) for SCC program-

ming instructions. The sample protocol software package includes examples of SCC

programming for asynchronous, byte synchronous, and bit synchronous communica-

tions. See Chapter 6 for more information. Also see pointer array Z8530 *scc[] in

freeway/icpcode/proto_kit/src/spsstructs.h.

2.6.3 Programming the DMA Controller

The 32-channel direct memory access (DMA) controller is programmed using a single

byte-wide command register and, for each channel, a 32-bit memory address register

and a 32-bit terminal count register. Channels 0 through 15 are dedicated to receive

operations on serial ports 0 through 15, and channels 16 through 31 are likewise dedi-

cated to transmit operations.

The command register is located at address 0x10000000. The memory address registers

begin at address 0x400FFF00. The terminal count registers begin at address

0x40xFFF80. (x is 0 for a 1 MB ICP, 3 for a 4 MB ICP, or 7 for a 8 MB ICP.) Only the

low-order 20 bits of the memory address and terminal count registers are valid, allow-

ing an address range of 1 megabyte beginning at the base address of RAM

(0x40000000). Also see pointer array IO_DMA io_dma[3] in freeway/icpcode/

proto_kit/src/spsstructs.h.
DC 900-1338I 49

Protocol Software Toolkit Programmer Guide
Vector numbers 224–255 (0xE0–0xFF) are dedicated to DMA controller channels 0–31,

respectively.

Refer to the Freeway ICP6000R/ICP6000X Hardware Description for DMA program-

ming instructions. The sample protocol software package includes examples of DMA

programming for transmit and receive operations.
50 DC 900-1338I

Chapter
3 Memory Organization
This chapter describes the memory maps for the ICP2424, ICP2432, and ICP6000.

3.1 ICP2424

The 128-kilobyte EPROM on the ICP2424 is located at address 0x0000. The EPROM

contains the diagnostics, Peeker debugging tool, and boot loader.

One megabyte of dynamic random access memory (DRAM) starts at 0x00800000. This

DRAM is only accessible to the MC68340 and is used for program and private data

space that does not need to be accessed by any of the devices in the Z-bus space. The

Z-bus space contains one megabyte of DRAM as shared memory. The shared memory

starts at 0x01000000 as seen from the MC68340. The shared memory is to buffer data

between the ISAbus and the IUSCs. The ISAbus has access to that memory at the loca-

tions defined in Table 3–1. The IUSCs’ DMA controllers see the shared memory at

0x00000000.

Addresses 0x00800000 to 0x00801200 of the private memory are reserved. The system

services module (containing the operating systems and XIO) is loaded beginning at

address 0x00801200. As described in Section 4.3.1 on page 75, the fixed memory

requirements for a particular version of the system services module are specified in the

spsdefs.h file, and additional memory required for the OS/Impact’s configurable data

section depends on the system configuration. The rest of the DRAM is available for user

applications.
DC 900-1338I 51

Protocol Software Toolkit Programmer Guide
The ICP2424 Hardware Description and Theory of Operation provides a complete mem-

ory map. Table 3–2 summarizes the hardware device and register addresses.

Table 3–1: ICP2424 Memory Address Registers Base Address

Physical
Device ID

Address
(Hexadecimal)

0 00080000

1 00090000

2 000A0000

31

1 Physical device IDs 4, 5, 6, and 3 are
preferred for logical ICPs 0, 1, 2, and 3,
respectively.

000B0000

4a 000C0000

5a 000D0000

6a 000E0000

72

2 Physical device ID 7 cannot be used in
Freeway 1100 because of a mother-
board device conflict.

000F0000

Table 3–2: ICP2424 Device and Register Addresses

Device or Register
Base Address

(Hexadecimal)

LED on board edge 00410000

Base address of IUSC for Port 0 01800000

Base address of IUSC for Port 1 01801000

Base address of IUSC for Port 2 01802000

Base address of IUSC for Port 3 01803000

SP502 for Port 0 01804000

SP502 for Port 1 01805000

SP502 for Port 2 01806000

SP502 for Port 3 01807000
52 DC 900-1338I

3: Memory Organization

/14/97: This
anual isn’t
ished yet;
ott has it.
ake sure it
es have a
mplete
emory map.
3.2 ICP2432

The 128-kilobyte EPROM on the ICP2432 is located at address 0x0000. The EPROM

contains the diagnostics, Peeker debugging tool, and boot loader.

Two or eight megabytes of dynamic random access memory (DRAM) start at

0x00800000. Memory addresses 0x00800000 to 0x00801200 are reserved. The system

services module (containing the operating systems and XIO) is loaded beginning at

address 0x00801200. As described in Section 4.3.1 on page 75, the fixed memory

requirements for a particular version of the system services module are specified in the

spsdefs.h file, and additional memory required for the OS/Impact’s configurable data

section depends on the system configuration. The rest of the DRAM is available for user

applications.

The ICP2432 Hardware Description and Theory of Operation provides a complete mem-

ory map. Table 3–3 summarizes the hardware device and register addresses.

Table 3–3: ICP2432 Device and Register Addresses

Device or Register
Base Address

(Hexadecimal)

Base address of IUSC for Port 0 01800000

Base address of IUSC for Port 1 01810000

Base address of IUSC for Port 2 01820000

Base address of IUSC for Port 3 01830000

Base address of IUSC for Port 4 01840000

Base address of IUSC for Port 5 01850000

Base address of IUSC for Port 6 01860000

Base address of IUSC for Port 7 01870000

SP504 for Port 0 01880000

SP504 for Port 1 01890000

SP504 for Port 2 018A0000

SP504 for Port 3 018B0000

11
m
fin
Sc
M
do
co
m

DC 900-1338I 53

Protocol Software Toolkit Programmer Guide
3.3 ICP6000

The 64-kilobyte PROM on the ICP6000 is located at address 0x0000. The PROM con-

tains the diagnostics, PTBUG debugging tool, and boot loader.

Socket U19 on the ICP is available for a user-added PROM of up to 256 kilobytes. If

installed, this PROM is addressed beginning at 0x20000.

One, four, or eight megabytes of dynamic random access memory (DRAM) starts at

0x40000000. Addresses 0x40000000 to 0x40001200 are reserved for PTBUG’s data area.

The system services module (containing the operating system and XIO) is loaded

beginning at address 0x40001200. As described in Section 4.3.1 on page 75, the fixed-

memory requirements for a particular version of the system services module are speci-

fied in the spsdefs.h file, and the additional memory required for OS/Impact’s config-

urable data section depends on the system configuration. The rest of the RAM is

available for user applications.

The Freeway ICP6000R/ICP6000X Hardware Description provides a complete memory

map. Table 3–4 in this chapter summarizes the addresses of hardware registers and the

base addresses of hardware devices.

The Freeway server communicates with the ICP6000 via 16 mailbox registers. Table 3–5

defines the base of these registers as seen on the VMEbus.
54 DC 900-1338I

3: Memory Organization
Table 3–4: ICP6000 Device and Register Addresses

Device or Register
Base Address

(Hexadecimal)

DMA command register 10000000

General control register 0 10000001

General control register 1 10000002

General status register 0 10000003

Multi-function peripheral base address 20000000

VMEbus slave interface base address 30000000

Base of DMA memory address registers 400FFF00 (for 1 MB DRAM system)
403FFF00 (for 4 MB DRAM system)
407FFF00 (for 8 MB DRAM system)

Base of DMA terminal count registers 400FFF80 (for 1 MB DRAM system)
403FFF80 (for 4 MB DRAM system)
407FFF80 (for 8 MB DRAM system)

Base address of SCC01 60000000

Base address of SCC23 60000004

Base address of SCC45 60000008

Base address of SCC67 6000000C

Base address of SCC89 60000010 (for a 16-port ICP6000)

Base address of SCCAB 60000014 (for a 16-port ICP6000)

Base address of SCCCD 60000018 (for a 16-port ICP6000)

Base address of SCCEF 6000001C (for a 16-port ICP6000)
DC 900-1338I 55

Protocol Software Toolkit Programmer Guide

Table 3–5: ICP6000 VME Slave Address Registers Base Address

Physical Device
ID

Address
(Hexadecimal)

0 F0001

1 VME short address space.

12

2 Physical device IDs 1, 2, 3, and 4 are preferred
for logical ICPs 0, 1, 2, and 3, respectively.

F200

2b F400

3b F600

4b F800

5 FA00

6 FC00

7 FE00
56 DC 900-1338I

Chapter
4 ICP Download,
Configuration,
and Initialization
Section 4.1 of this chapter describes additional download considerations not covered in

the Freeway User Guide or the embedded ICP user guide so you can download the tool-

kit protocol software with or without the Software Development Systems (SDS) debug

monitor. Section 4.2 describes configuration and initialization issues. Section 4.3

describes the relationship between the system configuration and OS/Impact’s memory

requirements and performance.

4.1 Download Procedures

4.1.1 Freeway Server Download Procedure

The protocol software toolkit installation procedure is described in the Freeway User

Guide. On UNIX systems, all subdirectories are installed by default under the directory

named /usr/local/freeway. On VMS systems, all subdirectories are installed by default

under the directory named SYS$SYSDEVICE:[FREEWAY]. On Windows NT systems,

all subdirectories are installed by default under the directory named c:\freeway. It is

highly recommended that you use these default directories.

During the software installation, boot, and test procedures described in the Freeway

User Guide, the non-debug version of the toolkit software is downloaded to the ICP.

However, during toolkit application development, you must modify your Freeway

server boot configuration file and then reboot the Freeway server to download and start

the debug monitor module. Section 4.1.1.1 and Section 4.1.1.2 describe the files and

modifications required to download with or without the Software Development Sys-

tems (SDS) debug monitor.
DC 900-1338I 57

Protocol Software Toolkit Programmer Guide
The Freeway server boot configuration file, used to control the download procedure, is

covered in detail in the Freeway User Guide. The boot configuration file is located in the

freeway/boot directory (for example, bootcfg.vme for a Freeway 2000/4000/8800). The

download script file parameter (download_script) in the boot configuration file specifies

the modules to be downloaded to the ICP and the memory location for each module.

You must modify the download_script parameter as described in Section 4.1.1.2 when

you need to change between debug and non-debug operation.

When you reboot the Freeway server, the modules are downloaded to the ICP in two

stages. First, the server software uses a file transfer program to download the modules

to the server’s local memory. The modules are then transferred across the ISAbus,

PCIbus, or VMEbus to the ICP.

PCIbus and VMEbus transfers are handled by the ICP’s CPU. The server software pro-

vides the location and size of the binary images and the address in the ICP’s RAM at

which the modules should be loaded, and then signals the ICP to begin the download

process.

ISAbus transfers are handled by the server’s CPU. The entire image is placed in shared

memory, then the ICP moves the image to private memory.
58 DC 900-1338I

4: ICP Download, Configuration, and Initialization
4.1.1.1 Downloading Without the Debug Monitor

Under normal operations you download the toolkit software without the debug moni-

tor. The following files are required:

spsload This is the download script file. You must specify this file name

for the download_script parameter in your boot configuration

file. The file is in the freeway/boot directory.

xio_2424.mem,
xio_2432.mem, or
xio_6000.mem

This is the system-services module containing the OS/Impact

operating system kernel, timer task, and XIO. This file is in the

freeway/boot directory.

sps_fw_2424.mem,
sps_fw_2432.mem, or
sps_fw_6000.mem,

This is the toolkit sample protocol software (SPS) module.

This file is in the freeway/icpcode/proto_kit/icpnnnn1 and

freeway/boot directories. Source files are in the freeway/

icpcode/proto_kit/src directory. If you make changes to the

source files, you must rebuild the sps_fw_nnnn.mem module

before downloading. The makefile is in the freeway/

icpcode/proto_kit/icpnnnn directory.

The protocol toolkit developer may wish to change the download script file to down-

load the sps_fw_nnnn2.mem file directly from freeway/icpcode/proto_kit/icpnnnn; other-

wise, you must copy any new versions of the protocol sps_fw_nnnn.mem file after each

rebuild.

Figure 4–1 shows the spsload download script file that downloads the toolkit software

when you reboot the Freeway server. Uncomment the “normal” lines associated with

the type of ICP you are using and modify path names as needed. Do not change the

memory locations (such as 40001200) for the LOAD commands.

1. icpnnnn refers to the icp2424, icp2432, or icp6000 directory.

2. nnnn refers to the icp2424, icp2432, or icp6000.
DC 900-1338I 59

Protocol Software Toolkit Programmer Guide
Note
Do not remove the comment indicator (#) from the “LOAD

buffer.size” statement if the buffer size is to be the default

(Section 4.1.3 on page 64).

#--#
#
spsload - Protocol load file to be used to load the SPS toolkit protocol
onto an ICP.
#
Protocol load files are referenced from the server boot configuration file
#
load files contain LOAD and INIT commands.
LOAD <fully qualified path name to the .mem file> <load address>
INIT <initialization address>
#
If no path name is provided for the .mem files to be loaded, Freeway
searches the System Boot Directory specified in the Freeway System
Boot Parameters for the file. A fully qualified path name to
each file may be used if desired. e.g.
#
LOAD /usr/local/freeway/boot/sps_fw_2424.mem 818000
#
for the "sps_fw_2424.mem" file in the "/usr/local/freeway/boot"
directory on a UNIX host. (see the bootcfg example
file for example path syntax for various host machines)
#
Each sps load file must contain an osimpact (xio) .mem file
and an sps .mem file
#
Uncomment the ICP load/init section below for your ICP model.
#
#---#

Figure 4–1: Protocol Toolkit Download Script File (spsload)
60 DC 900-1338I

4: ICP Download, Configuration, and Initialization
#
SNMP support notes for SPS toolkit protocol software product SP-000-6013:
#
When using Freeway server SP-000-6055 Rev M (or later revision)
LOAD the appropriate snmp .mem file show in the samples below.
#
When using Freeway server SP-000-6055 Rev L (or prior revision)
DO NOT load the appropriate snmp .mem file show in the samples below.
#
#---#
#
#
the example below is for icp2424 normal operation
#
#LOAD xio_2424.mem 801200
#LOAD snmp2424.mem 810000
#LOAD sps_fw_2424.mem 818000
#LOAD buffer.size 1001000
#INIT 818000
#
the example below is for icp2424 debug operation
(SNMP support is not recommended for debug operation)
#
#LOAD xio_2424.mem 801200
#LOAD icp2424c.mem 812000
#LOAD sps_fw_2424.mem 818000
#LOAD buffer.size 1001000
#INIT 812000
#
the example below is for icp2432 normal operation
#
#LOAD xio_2432.mem 801200
#LOAD snmp2432.mem 810000
#LOAD sps_fw_2432.mem 818000
#LOAD buffer.size 9d0000
#INIT 818000
#
the example below is for icp2432 debug operation
(SNMP support is not recommended for debug operation)
#
#LOAD xio_2432.mem 801200
#LOAD icp2432c.mem 812000
#LOAD sps_fw_2432.mem 818000
#LOAD buffer.size 9d0000
#INIT 812000
#

Figure 4–1: Protocol Toolkit Download Script File (spsload) (Cont’d)
DC 900-1338I 61

Protocol Software Toolkit Programmer Guide
the example below is for icp6000 normal operation
#
#LOAD xio_6000.mem 40001200
#LOAD snmp6000.mem 40010000
#LOAD sps_fw_6000.mem 40018000
#LOAD buffer.size 400d0000
#INIT 40018000
#
the example below is for icp6000 debug operation
(SNMP support is not recommended for debug operation)
#
#LOAD xio_6000.mem 40001200
#LOAD icp6000c.mem 40012000
#LOAD sps_fw_6000.mem 40018000
#LOAD buffer.size 400d0000
#INIT 40012000
#

Figure 4–1: Protocol Toolkit Download Script File (spsload) (Cont’d)
62 DC 900-1338I

4: ICP Download, Configuration, and Initialization
4.1.1.2 Downloading With the Debug Monitor

During application development you must download the toolkit software with the

debug monitor. The SDS tools are not compatible with VMS platforms, but UNIX,

DOS and Windows versions are available. If you are a VMS user, you can develop and

debug your software with these tools using a PC running under DOS or Windows and

a utility to transport files from the PC to the VMS system. Chapter 5 explains how to

use the SDS debug tools.

The following files are required:

spsload This is the download script file. You must specify this file name

for the download_script parameter in your boot configuration

file. The file is in the freeway/boot directory.

icp2424c.mem,
icp2432c.mem or
icp6000c.mem

This module contains the source-level debug monitor. This file

is in the freeway/icpcode/proto_kit/icpnnnn1 directory.

sps_fw_2424.mem,
sps_fw_2432.mem, or
sps_fw_6000.mem

This is the toolkit sample protocol software (SPS) module. This

file is in the freeway/icpcode/proto_kit/icpnnnn1 directory. Source

files are in the freeway/icpcode/proto_kit/src directory. If you

make changes to the source files, you must rebuild the

sps_fw_nnnn.mem module before downloading. The makefile is

in the freeway/icpcode/proto_kit/icpnnnn directory.

Figure 4–1 on page 60 shows the spsload download script file that downloads the toolkit

software when you reboot the Freeway server. Uncomment the “debug” lines associated

with the type of ICP you are using and modify path names as needed. Do not change the

memory locations (such as 40001200) for the LOAD commands.

1. icpnnnn refers to the icp2424, icp2432, or icp6000 directory.
DC 900-1338I 63

Protocol Software Toolkit Programmer Guide

11/14/97:
Right now the
only embedde
product we
have runs on
Windows NT
When we get
products for
VMS and DE
UNIX, etc., th
section will
have to be
expanded.
When the SDS debug monitor is downloaded along with other executable image files,

the placement and order of execution of the downloaded code is different. The down-

load addresses of the modules can differ, and the debug module will be first to execute.

Note that the monitor must use RAM from 0x812000 to 0x818000 on the ICP2424 or

ICP2432, and from 0x40012000 to 0x40018000 on the ICP6000.

4.1.2 Embedded ICP Download Procedure

As with the Freeway server environment described in Section 4.1.1, the freeway/boot/

spsload file defines the files to be downloaded to the embedded ICP. Uncomment the

lines associated with the type of ICP you are using and modify path names as needed.

Do not change the memory locations (such as 40001200) for the LOAD commands.

The ICPs are loaded by the program icpload (a Windows NT service) which is normally

executed during the start up of the client machine. During development, the ICPs may

be loaded or reloaded by running spsload.

4.1.3 ICP Buffer Size

The maximum ICP buffer size can be set at ICP download time by downloading a

“buffer size” file. A default buffer.size file is provided in the freeway/boot directory and

can be downloaded at the following addresses (as shown in Figure 4–1 on page 60):

ICP2424 0x01001000
ICP2432 0x009D0000
ICP6000 0x400D0000

To create your own buffer.size file:

1. Set your default directory to freeway/icpcode/proto_kit/buffer_size.

2. Compile and link the make_size utility program:

on Windows NT: nmake -f makefile.nt

on UNIX: make -f makefile.unix

on VMS: @makefile

d

.

C
is
64 DC 900-1338I

4: ICP Download, Configuration, and Initialization
3. Run the make_size utility program, specifying the desired buffer size when

prompted.

4. Copy the new buffer.size file to the freeway/boot directory for subsequent down-

loads.

However, since in most cases the maximum buffer size is not changed, it is suggested

that the #define variable DEFAULT_FNAME be changed if the default size of 1024 is not

acceptable.

4.2 OS/Impact Configuration and Initialization

A complete ICP run-time system is composed of a system-services module and one or

more user-application modules. One of the user-application modules must include a

configuration table and a system task initialization routine. For example, the system-

services module provided with toolkit is the binary image file (xio_2424.mem,

xio_2432.mem, or xio_6000.mem), and the sample user-application modules are the

sample protocol software binary image (sps_fw_2424.mem, sps_fw_2432.mem, or

sps_fw_6000.mem).

The last step of the download script file specifies an entry point or start-up address for

execution of the downloaded code (see the INIT command in Figure 4–1). This entry

point must be the address of your system task initialization routine (or the address of

the icpnnnnc.mem debug module if you are running with the SDS debug monitor).

After download completes and control has been transferred to your task initialization

routine, system configuration and initialization begin as described in the remainder of

this section.
DC 900-1338I 65

Protocol Software Toolkit Programmer Guide
Figure 4–2 shows a sample memory layout that specifies the download and start-up

locations in the ICP2424’s RAM for the system-services module and sample protocol

application.

Figure 4–2: ICP2424 Memory Layout with Application Only

0x800000

0x801200

31
59

ICP2424 RAM

Reserved

System-services Module

User-application Module

Load system-
services module

(xio_2424.mem)

0x812000

Task Initialization Routine

Start of initialization
Load user-

application module
(sps_fw_2424.mem)

0x818000
Unused

Reserved
66 DC 900-1338I

4: ICP Download, Configuration, and Initialization
Figure 4–3 shows a similar ICP2424 configuration consisting of the system-services

module, SDS debug monitor, and sample protocol application.

Figure 4–3: ICP2424 Memory Layout with Application and SDS Debug Monitor

0x800000

0x801200

31
60

ICP2424 RAM

Reserved

System-services Module

User-application Module

Load system-
services module

(xio_2424.mem)

0x812000

Task Initialization Routine

Start of initialization

Load user-
application module
(sps_fw_2424.mem)

0x818000

Load debug
monitor module
(icp2424c.mem)

SDS Debug Monitor
DC 900-1338I 67

Protocol Software Toolkit Programmer Guide
Figure 4–4 shows a sample memory layout that specifies the download and start-up

locations in the ICP2432’s RAM for the system-services module and sample protocol

application.

Figure 4–4: ICP2432 Memory Layout with Application Only

0x800000

34
03

ICP2432 RAM

Reserved

System-services Module

User-application Module

Load system-
services module

(xio_2432.mem)
0x801200

0x812000Reserved

Task Initialization Routine

Start of initializationLoad user-
application module
(sps_fw_2432.mem)

Unused
0x818000
68 DC 900-1338I

4: ICP Download, Configuration, and Initialization
Figure 4–5 shows a similar ICP2432 configuration consisting of the system-services

module, SDS debug monitor, and sample protocol application.

Figure 4–5: ICP2432 Memory Layout with Application and SDS Debug Monitor

0x800000

34
04

ICP2432 RAM

Reserved

System-services Module

User-application Module

Load system-
services module
(xio_2432.mem)

0x801200

0x812000

Task Initialization Routine

Start of initialization

Load user-
application module
(sps_fw_2432.mem)

0x818000

Load debug
monitor module
(icp2432c.mem)

SDS Debug Monitor
DC 900-1338I 69

Protocol Software Toolkit Programmer Guide
Figure 4–6 shows a sample memory layout that specifies the download and start-up

locations in the ICP6000’s RAM for the system-services module and sample protocol

application.

Figure 4–6: ICP6000 Memory Layout with Application Only

25
20

ICP6000 RAM

Reserved for PTBUG

System-services Module

User-application Module

Task Initialization Routine

Start of initialization
Unused

0x40000000

0x40001200
Load system-

services module
(xio_6000.mem)

0x40012000

Load user-
application module
(sps_fw_6000.mem)

0x40018000

Reserved
70 DC 900-1338I

4: ICP Download, Configuration, and Initialization
Figure 4–7 shows a similar ICP6000 configuration consisting of the system-services

module, SDS debug monitor, and sample protocol application.

Figure 4–7: ICP6000 Memory Layout with Application and SDS Debug Monitor

0x40000000

0x40001200

25
21

ICP6000 RAM

Reserved for PTBUG

System-services Module

User-application Module

Load system-
services module
(xio_6000.mem)

0x40012000

Task Initialization Routine

Start of initialization

Load user-
application module
(sps_fw_6000.mem)

0x40018000

Load debug
monitor module
(icp6000c.mem)

SDS Debug Monitor
DC 900-1338I 71

Protocol Software Toolkit Programmer Guide
4.2.1 Configuration Table

The format of the configuration table is defined in the OS/Impact Programmer Guide

and consists of a list of configurable parameters and a list of task initialization struc-

tures.

OS/Impact creates its data structures based on the values of the parameters, then creates

a task for each task initialization structure.

Section 4.3 discusses the selection of appropriate configuration parameters. Figure 4–8

gives an example of a configuration table (not including the task initialization struc-

tures).

4.2.2 Task Initialization Structures

A list of task initialization structures must follow the configuration table. The sample

configuration table shown previously in Figure 4–8 is repeated in Figure 4–9 with task

initialization structures for a sample task.

spscon
DC.W 8 number of tasks
DC.W 8 number of priorities
DC.W 164 number of queues
DC.W 10 number of alarms
DC.W 8 number of partitions
DC.W 0 number of resources
DC.W 100 tick length (milliseconds)
DC.W 8 ticks for time slice
DC.L 0 no user clock isr

Figure 4–8: Sample Configuration Table
72 DC 900-1338I

4: ICP Download, Configuration, and Initialization
Figure 4–9: Sample Configuration Table with Task Initialization Structures

*
* Configuration Table
*

SECTION 14

XDEF spscon

spscon
DC.W 8 number of tasks
DC.W 8 number of priorities
DC.W 164 number of queues
DC.W 10 number of alarms
DC.W 8 number of partitions
DC.W 0 number of resources
DC.W 100 tick length
DC.W 8 ticks for time slice
DC.L 0 no user clock isr

* Task Initialization Structure for the sample protocol task

DC.W SPSTSK_ID task ID
DC.W 2 task priority
DC.L _spstsk entry point address
DC.L RAM+$f8000 initial stack pointer
DC.W 0 time slice enabled
DC.W 0 filler (not used)

* Task Initialization Structure for the spshio (utility) task

DC.W SPSHIO_ID task ID
DC.W 2 task priority
DC.L _spshio entry point address
DC.L RAM+$fe000 initial stack pointer
DC.W 0 time slice enabled
DC.W 0 filler (not used)

* end of list
DC.W 0 end of list marker
DC 900-1338I 73

Protocol Software Toolkit Programmer Guide
4.2.3 Task Initialization Routine

You must supply a task initialization routine in one of the downloaded modules to be

used at the start-up of the ICP. The task initialization routine is executed at the comple-

tion of the download sequence and must perform the following functions:

1. Load the configuration table address into register A0.

2. Obtain the operating system initialization entry point address from the global sys-

tem table at fixed address 0x801600 for the ICP2424 or ICP2432, or 0x40001600

for the ICP6000. Load this address into register A1.

3. Jump to the operating system initialization entry point “osinit.”

Figure 4–10 shows a sample task initialization routine associated with the configuration

table shown previously in Figure 4–9.

4.2.4 OS/Impact Initialization

After your task initialization routine passes control to OS/Impact’s system initialization

entry point with the address of the configuration table in register A0, the “osinit” rou-

tine performs the following operations:

1. Initialize system stack pointer, exception vector table, and clock interrupts (using

the tick length specified in the configuration table).

2. Build data structures (task control blocks, queue control blocks, and so on)

according to parameters specified in the configuration table.

XDEF _sysinit
_sysinit

move.l #spscon,a0 address of config table
move.l RAM+$1600,a1 address of OS/Impact init
jmp (a1) jump to OS/Impact's init

Figure 4–10: Sample Task Initialization Routine
74 DC 900-1338I

4: ICP Download, Configuration, and Initialization
3. Allocate space for the timer task’s stack and create the task.

4. Use the task initialization structures included in the configuration table to create

one or more application tasks.

5. Transfer control to the kernel’s dispatcher to begin normal run-time operations.

The timer task is the highest priority in the system and is dispatched first. It performs

certain initialization procedures and then stops, after which the other tasks that were

created are dispatched in order of priority.

4.3 Determining Configuration Parameters

Although the design of a system should never be constrained by its configuration, when

available memory is extremely limited or system performance is critical, it might be

wise to consider the relationship between the system configuration and OS/Impact’s

memory requirements and performance. These relationships are discussed in the fol-

lowing sections.

4.3.1 OS/Impact Memory Requirements

OS/Impact requires memory space for code, system data, stacks, and the exception vec-

tor table. Some data requirements are fixed, and some are dependent on the system

configuration. The space required for the exception vector table, code, and fixed data

for a particular version of the operating system can be found in xio_nnnn.xrf for

xio_nnnn.mem. The number of bytes required for the system stacks and configurable

data structures can be calculated as shown in Table 4–1.

Table 4–2, which is based on the configuration shown previously in Figure 4–8 on

page 72, shows a sample calculation used to determine the total number of system data

bytes required. The total memory requirements for the system are calculated by adding

the total number of system bytes required to the ending address of the system services

module and rounding up, if necessary, to an even multiple of four bytes.
DC 900-1338I 75

Protocol Software Toolkit Programmer Guide
Table 4–1: System Data Requirements

Stack Bytes Required

Supervisor stack 1024

Timer task’s stack 512

Task control blocks Number of tasks x 24

Queue control blocks Number of queues x 20

Partition control blocks Number of partitions x 28

Resource control blocks Number of resources x 16

Alarm control blocks Number of alarms x 28

Task alarm control blocks Number of tasks x 28

Dispatch queues ((Number of priorities + 1) x 8) + 4

Table 4–2: Sample Calculation of System Data Requirements

Stack Bytes Required

Supervisor stack 1024

Timer task’s stack 512

Task control blocks 8 x 24 = 192

Queue control blocks 30 x 20 = 600

Partition control blocks 4 x 28 = 112

Resource control blocks 0 x 16 = 0

Alarm control blocks 10 x 28 = 280

Task alarm control blocks 8 x 28 = 224

Dispatch queues ((5 + 1) x 8) + 4 = 52

2996

or

0xBB4
76 DC 900-1338I

4: ICP Download, Configuration, and Initialization
Continuing this example, assume that the xio_6000.xrf file shows 0x400045BE as the

system services module ending address. When the module is downloaded, the excep-

tion vector table, fixed data, and code occupy 0x33BE bytes at memory locations

0x40001200 (starting load address) through 0x400045BE. After operating system ini-

tialization is finished using the configuration table in our example, an additional 0xBB4

bytes is used for system stacks and configurable variables. The first free byte following

system memory is then 0x400045BE + 0xBB4 + 2 (for an even multiple of four), or

0x40005174. This address can be verified by checking the gs_ramend field of the global

system table after the system has been downloaded and initialized. The global system

table is defined in the OS/Impact Programmer Guide.

4.3.2 Configuration and System Performance

The following fields of the configuration table define the number of control structures

to be allocated during system initialization:

As described in Section 4.3.2.1, the values of these fields, no matter how large, have no

effect on system performance. The cf_nprior field determines the number of task prior-

ities in the system and affects performance as described in Section 4.3.2.2. The cf_ltick

field determines the length of a “tick” and the cf_lslice field determines the length of a

time slice. The relationships of these fields to system performance are discussed in

Section 4.3.2.3.

cf_ntask Task control blocks and task alarm control blocks

cf_nque Queue control blocks

cf_nalarm Alarm control blocks

cf_npart Partition control blocks

cf_nresrc Resource control blocks
DC 900-1338I 77

Protocol Software Toolkit Programmer Guide
4.3.2.1 Number of Configured Task Control Structures

The cf_ntask field of the configuration table defines the number of task control blocks

to be allocated in the system. Task control blocks are allocated sequentially, forming an

array of structures. The task ID is used as an index into the array to locate a particular

task control block. Therefore, the processing time required to access any task control

block is fixed and is not dependent on the number of task control blocks in the system.

Likewise, and for the same reason, the number of queue control blocks, alarm control

blocks, partition control blocks, and resource control blocks has no effect on system

performance.

4.3.2.2 Number of Configured Priorities

The cf_nprior field of the configuration table determines the number of task priorities to

be defined. A dispatch queue is created for each priority. When the head pointer for a

particular dispatch queue is zero, the queue is empty (in other words, no task is sched-

uled for execution at that priority). When the head pointer is non-zero, it contains the

address of a task control block corresponding to a task that is scheduled for execution

at that priority. Whenever a task switch occurs, the system dispatcher tests the head

pointer of each dispatch queue, in order of priority, until a non-zero value is encoun-

tered, then dispatches the task indicated by the task control block address. Because the

dispatch queues are searched sequentially, a large number of priorities can adversely

affect system performance. There is no benefit to configuring more priorities than

required by the system design.
78 DC 900-1338I

4: ICP Download, Configuration, and Initialization
For example, suppose that a particular system consists of the following tasks:

The operation of that system is no different than the operation of a system with the

same tasks at the following priorities:

The priority of task 5 is no lower in the second system than in the first. The difference

between the priorities of tasks 1 and 2 is no greater in the second system than in the first.

However, the first system executes more efficiently because it requires the configuration

of only three priorities (priority 0 is added automatically for the timer task), and the

dispatcher must search a maximum of only four dispatch queues at each task switch,

rather than the 201 required by the second system.

Task ID Priority

1 0 (timer task)

2 1 (reserved)

3 2

4 2

5 3

Task ID Priority

1 0 (timer task)

2 50 (reserved)

3 75

4 75

5 200
DC 900-1338I 79

Protocol Software Toolkit Programmer Guide
4.3.2.3 Tick and Time Slice Lengths

Ticks measure the duration of alarms and the system’s time slice period. The cf_ltick

field of the configuration table specifies the length of a tick (1 to 222 milliseconds).

The length of a tick should be set to the smallest of the following values:

• The minimum duration of any alarm in the system

• The maximum acceptable error in an alarm duration

• The desired time slice duration

Because each tick corresponds to a clock interrupt and involves processing by the clock

interrupt service routine, setting the tick length to a smaller value than is actually

required results in increased overhead and a degradation in system performance.

The cf_lslice field of the configuration table specifies the number of ticks for each time

slice. The time slice should be long enough to allow each task adequate processing time

before being preempted (in other words, to avoid “thrashing”), but not so long that any

task is able to prevent other tasks from executing in a timely fashion. (If no tasks in the

system are created with time slicing enabled, the length of the time slice is immaterial.)
80 DC 900-1338I

Chapter
5 Debugging
The debugging facilities available depend on whether Software Development Systems’

or some other cross development environment is being used. This chapter describes the

debugging facilities provided.

5.1 PEEKER Debugging Tool

PEEKER is a low-level peek and poke routine stored in the ICP2424 or ICP2432 PROM.

To use PEEKER, attach a 9600 b/s terminal directly to the ICP’s console port with the

console cable (and programmer’s module for the ICP2432) provided. To enter

PEEKER, type Control-C on the ICP’s console device, depress the black NMI switch on

the ICP2424’s card edge or the ICP2432’s programmer’s module, or execute a branch

or jump subroutine.

On entry, PEEKER displays the current values of the MC6834x’s register set.

PEEKER allows you to examine and modify locations in the ICP’s memory space by

bytes, words, or longwords.

In response to PEEKER’s prompt (pk>), enter Control-X to return to PEEKER’s caller

or to examine or modify a location.

To examine a location, enter:

• the location’s address in hexadecimal
DC 900-1338I 81

Protocol Software Toolkit Programmer Guide
• the access width (preceded by a semicolon):

• b for byte

• w for word

• l for a longword

• an equal sign

PEEKER then displays the address and contents of the given address in the form speci-

fied. The data may be modified by entering the new hexadecimal value followed by “^”,

“=”, a space, or a return as listed below.

The following is a typical example:

pk> 1000;b=
0000_1000 01 n <return>
0000_1001 10 p <return>
0000_1000 01 <return>
pk>

PEEKER uses the following special characters to navigate and/or process inputs:

^ Close current location, open previous location (in address
space), and display contents

= Close current location, open current location (in address
space), and display contents

space Close current location, open next location (in address space),
and display contents

return Close current location and return PEEKER to its initial state,
waiting for a new address or Control-X

b Open by byte

circumflex (^) Close current location, open previous location (in address
space), and display contents

comma Field delimiter between address and data

Control-X (exit) Return to whomever called PEEKER
82 DC 900-1338I

5: Debugging
When PEEKER is entered, a brief summary of the special characters is published after

the register dump:

Peek & Poke <address>[,<data>][;<b, w or l>]<p, =, n, or <return>>
R/r = dump registers
ctrl/x = return to caller

The ICP2424 has “reset” and “abort” (NMI) pushbuttons on its circuit board. Pushing

the NMI button allows you to break out of loops and gain control even if the CPU is at

level seven.

Note
If the vector table entry for Autovector 7 or the vector base register

has been corrupted, the result of pushing the NMI button is inde-

terminate.

delete Return PEEKER to its initial state

equal sign Close current location, open current location (in address
space), and display contents

l Open by longword

linefeed Control-J Close current location, open next location (in address space),
and display contents

space Close current location, open next location (in address space),
and display contents

n (next) Close current location, open next location (in address space),
and display contents

p Close current location, open previous location (in address
space), and display contents

period Ignore, but echo

r or R Publish registers and return PEEKER to initial state

<return> <esc> Close and return to initial state

tab Field delimiter between address and data

u (up) Close current location, open previous location (in address
space), and display contents

underscore Ignore, but echo

w Open by word (default)
DC 900-1338I 83

Protocol Software Toolkit Programmer Guide
5.2 PTBUG Debugging Tool

The PTBUG debugging tool is available on the ICP6000. The PTBUG Debug and Utility

Program Reference Manual (PTI) (for the ICP6000) describes how to use the PTBUG

debugging tool included in PROM on every ICP.

To use PTBUG, attach a 9600 b/s terminal directly to the ICP’s console port with the

console cable provided. After the ICP has completed its power-on/reset diagnostics or

after the protocol application has been loaded, type Control-C to enter PTBUG. To

generate a breakpoint or “panic” trap from user applications, execute the 68020 assem-

bly language instruction ILLEGAL to generate an illegal instruction trap or execute a

TRAP #15. The TRAP #15 can be continued by entering “go”.

For the ICP6000, an alternative is to connect the console via the programmer’s module

assembly (Protogate part number 10-000-0105). This device includes a circuit board

that supports reset and abort (NMI) signals. If your ICP software enters an endless loop,

the abort button can be used to force control to the PTBUG program. This allows you

to determine the location of the loop as well as the register contents, the memory con-

tents, and so on.

Note
If the vector table entry for Autovector 7 or the vector base register

has been corrupted, the result of pushing the NMI button is inde-

terminate.

5.3 SingleStep Debugging Tool

The SingleStep Debugger for the 68000 Microprocessor Family manual describes how to

use the SingleStep debugging tool provided by Software Development Systems (SDS).

SingleStep is a symbolic debugger that allows developers to debug optimized C code for

68000-based target systems. VMS users must have a PC running DOS and a utility to

transport files from the PC to the VMS system.
84 DC 900-1338I

5: Debugging
Modules built with SDS development tools can be downloaded to the ICP along with

the SDS RAM-based debug monitor. This monitor runs on the ICP and communicates

with SingleStep through the 68901 MFP’s USART for the ICP6000 or the 6834x serial

port A for the ICP2424 and ICP2432. You must connect the USART by a cable from the

ICP’s console port to a serial port on the SingleStep client machine. SingleStep instructs

the monitor to set breakpoints, dump memory, view registers, and so on.

You must perform the following basic operations to use SingleStep:

1. In the spsload file, uncomment (remove the pound sign) the LOAD command for

the debug monitor, uncomment the INIT ...12000 command, and comment out

the INIT ...18000 command.

2. Install cables that connect the serial port on the SingleStep client machine with

the console port on the ICP.

3. Reboot the Freeway server or rerun icpload on the embedded product to down-

load the SPS software and debug monitor to the ICP.

After the cables have been properly installed, you can test the configuration from

SingleStep. If the software was successfully downloaded, you can invoke SingleStep by

typing fm68k at the client machine’s prompt.

From the SingleStep prompt you can enter a transparent mode that echoes what the

monitor is transmitting. At the SingleStep prompt on a UNIX system, type the follow-

ing command. (This option is not available in the DOS or Windows NT environment.)

SingleStep> debug -p /dev/ttya=9600 -T -

This tells SingleStep to use port /dev/ttya and to set the baud rate to 9600. The “-T”

parameter puts SingleStep into debug mode. At this point, the pattern “{#@<cr><lf>”

should appear. If this pattern does not appear, make sure the cables are connected cor-

rectly, then type the command again. To verify the data path to the ICP, enter {#}. The

ICP should then respond with {#+.
DC 900-1338I 85

Protocol Software Toolkit Programmer Guide
Press <ctrl>C to exit this mode.

Type one of the following commands, depending on which ICP you are using.

SingleStep displays a few messages, followed by “Reset complete.”

SingleStep> debug -p /dev/ttya=9600 -N sps24.lo
SingleStep> debug -p /dev/ttya=9600 -N sps32.lo
SingleStep> debug -p /dev/ttya=9600 -N sps60.lo

If you are working on a PC, type one of the following commands, depending on which

ICP you are using:

SingleStep> debug -p com1=9600 -N sps24.lo
SingleStep> debug -p com1=9600 -N sps32.lo
SingleStep> debug -p com1=9600 -N sps60.lo

(You must have a terminal emulation program in order to have I/O through the serial

port.)

After “Reset complete” has been displayed, all SingleStep commands can be used. For

example, type the following command at the SingleStep prompt to show the source for

start.s:

SingleStep> where

Consult the SingleStep Debugger for the 68000 Microprocessor Family manual for com-

plete instructions on commands, aliases, and so on.

5.4 System Panic Codes

The OS/Impact system software generates an illegal instruction trap (using the ILLE-

GAL instruction) when it encounters a non-recoverable error condition. Before execut-

ing the ILLEGAL instruction, the operating system stores a “panic code” in the gs_panic

field of the global system table. The format and location of the global system table is

described in the OS/Impact Programmer Guide, and Appendix A in that document

describes the OS/Impact panic codes.
86 DC 900-1338I

5: Debugging
XIO pushes its panic code onto the stack and calls hio_panic, which executes an illegal

instruction. The illegal instruction will then trap to PTBUG or the debug monitor. User

applications can handle error conditions in the same manner to their own assembly

language panic routine.
DC 900-1338I 87

Protocol Software Toolkit Programmer Guide
88 DC 900-1338I

Chapter

2/7/96 Ginni:
Ron suggested
sizing the
memory
layout figures;
e.g.,
Temporary
Buffer is 800
while Header
Buffer is
18800. I don’t
have time
now, but
maybe next
revision.
6 ICP Software
Note
From the ICP’s perspective, the “host processor” can be either the

server processor of the Freeway in which the ICP resides, or the

processor of the client computer in which the ICP is embedded. In

this chapter, the term “ICP’s host” reflects this perspective.

6.1 ICP-resident Modules

The ICP-resident sample protocol software (SPS) is downloaded in addition to the sys-

tem services module. The sps_fw_2424.mem, sps_fw_2432.mem, or sps_fw_6000.mem

module contains the task-level code and interrupt service routines. Figure 6–1,

Figure 6–2, and Figure 6–3 show the SPS memory layout for the ICP2424, ICP2432,

and ICP6000, respectively.

Functionally, the sample protocol software is composed of the protocol and utility tasks

and a group of interrupt service routines. Figure 6–4 shows a block diagram of the Free-

way server and Figure 6–5 shows a block diagram of the embedded ICP product.

6.1.1 System Initialization

As the last step of the SPS download (Section 4.1 on page 57), the system is initialized at

the address of a system task initialization routine that is part of the SPS module

(sps_fw_2424.mem, sps_fw_2432.mem, or sps_fw_6000.mem). The task initialization rou-

tine loads the address of the system configuration table into register A0 and jumps to

OS/Impact’s initialization entry point (osinit). The SPS task initialization routine and

DC 900-1338I 89

Protocol Software Toolkit Programmer Guide
configuration table, described in Section 4.2 on page 65, are located in the spsasm.asm

file located in the freeway/icpcode/proto_kit/src directory.

OS/Impact’s osinit routine initializes the operating system variables and data structures,

then creates the timer task and the tasks specified in the configuration table. These are

the protocol task (spstsk) and the utility task (spshio). Section 4.2.4 describes the osinit

procedure in more detail.

Figure 6–1: Sample ICP2424 Protocol Software Memory Layout

31
61

Header Buffer
Partition

Reserved

1000000

1001000

10FFFFF

1021800

Data Buffer
Partition

1021000

Temporary Buffer
Partition

Shared Memory

Protocol Task, Utility
Task, and Interrupt

Service Routines

OS/Impact

Reserved

800000

801200

sps_fw_2424.mem

818000
Task Init Routine

812000
Debug Monitor

(optional)
icp2424c.mem

xio_2424.mem

CPU Private Memory

init stack

spstsk stack

spshio stack

Unallocated
90 DC 900-1338I

6: ICP Software
Figure 6–2: Sample ICP2432 Protocol Software Memory Layout

Protocol Task, Utility
Task, and Interrupt

Service Routines

OS/Impact

Reserved

34
05

800000

801200

sps_fw_2432.mem

818000
Task Init Routine

812000
Debug Monitor

(optional)
icp2432c.mem

xio_2432.mem

CPU Private Memory

init stack

spstsk stack

spshio stack

Header Buffer
Partition

Data Buffer
Partition

0x400 Guard Band
DC 900-1338I 91

Protocol Software Toolkit Programmer Guide
Figure 6–3: Sample ICP6000 Protocol Software Memory Layout

Protocol Task, Utility
Task, and Interrupt

Service Routines

OS/Impact

Reserved
for PTBUG

25
43

sps_fw_6000.mem

Task Init Routine

Debug Monitor
(optional)

icp6000c.mem

xio_6000.mem

Header Buffer
Partition

Data Buffer
Partition

DMA Support Registers

init stack

spstsk stack

spshio stack

40000000

40001200

40018000

40012000

Temporary Buffer
Partition

40030000
92 DC 900-1338I

6: ICP Software
Figure 6–4: Block Diagram of the Sample Protocol Software — Freeway Server

ICP

XIO

Server Processor

SPS Test
Program

Application
Program
Interface

Boot
Loader

Low-level
Debugger

Power-up/
Reset

Diagnostics

PROM

SDS
Debug

Monitor

ISAbus,
PCIbus, or
VMEbus

VxWorks

Server-
resident

Applications

Server/ICP
Driver

Utility
Task

. . .
Serial Ports

Protocol
Task

Receive
Post-processor

Device-specific Procedures

Start Transmit Start ReceiveInitialization

Specific Conditions

Device-specific ISRs

Transmit Receive

Transmit
Pre-processor

34
15
DC 900-1338I 93

Protocol Software Toolkit Programmer Guide
Figure 6–5: Block Diagram of the Sample Protocol Software — Embedded ICP

ICP

XIO

Host Processor

SPS Test
Program

Application
Program
Interface

Boot
Loader

Low-level
Debugger

Power-up/
Reset

Diagnostics

PROM

SDS
Debug

Monitor

ISAbus,
PCIbus, or
VMEbus

ICP Driver

Utility
Task

. . .
Serial Ports

Protocol
Task

Receive
Post-processor

Device-specific Procedures

Start Transmit Start ReceiveInitialization

Specific Conditions

Device-specific ISRs

Transmit Receive

Transmit
Pre-processor

34
16

Host OS
94 DC 900-1338I

6: ICP Software
6.1.2 Protocol Task

This section explains the buffer management method for writing to or reading from the

ICP’s host. The eXecutive Input/Output (XIO) interface is a collection of function calls

that are executed in the context of the user’s application tasks. XIO uses queues that are

declared by the utility task.

XIO consists of simple function calls. Section 7.4 on page 135 gives details of XIO.

During its initialization, the protocol task creates queues for each link, which relate to

the stages and direction of data flow as follows:

After initialization completes, the protocol task operates in a loop. Within the loop, it

makes a series of subroutine calls for each link. In the chkhio subroutine, the protocol

task checks for messages from the ICP’s host that have been routed to the individual

queues by the utility task; these messages are then processed according to command

type. For a transmit data block command, the message is not processed immediately,

but is transferred to the link’s board-to-link queue, where it is later processed in the

chkloq subroutine.

In the chkloq subroutine, which is called only for active links, the protocol task sends

data buffers associated with completed transmit messages back to the application pro-

gram as write acknowledgments and checks the board-to-link queue for transmissions

that are ready to be started.

In the chkliq subroutine, also called only for active links, the protocol task checks the

link-to-board queue for buffers that have been filled with received data at the interrupt

Board-to-Server Queue Link-to-Board Queue

Server ICP Serial

Line

Server-to-Board Queue Board-to-Link Queue
DC 900-1338I 95

Protocol Software Toolkit Programmer Guide
level. Completed received data messages are sent to the link’s board-to-server queue to

await processing by the utility task.

When all links have been processed, the protocol task suspends. It continues when a

message is posted to any of its queues or when an interrupt service routine notifies it

that a transmit or receive operation has completed. The interface between the protocol

task and its interrupt service routines is described in Section 6.2.

The SPS utility task, spshio, sets up an interface to XIO during its initialization, then

enters a loop. Within the loop, it checks its input queue for returned header buffers as

well as messages from the ICP’s host that have arrived on node 1 and node 2. It also

checks the protocol task’s board-to-server queues for messages to be sent to the host. It

then suspends, and will be unsuspended by the protocol task or when a message is

posted to its input queue. The operation of the utility task is described more completely

in Section 6.1.3.

6.1.3 Utility Task (spshio)

The ICP-resident software communicates indirectly with the ICP’s host through the

part of the system services module called the XIO interface. The utility task, spshio, han-

dles the interface between the protocol task, spstsk, and XIO. This section describes the

utility task and its relationship with the protocol task. Chapter 7 provides a more

detailed explanation of the ICP/host protocol used for communication between the

utility task and XIO.

As described in Section 6.1.2, the protocol task, spstsk, creates an board-to-server queue

and a server-to-board queue for each link during its initialization. These queues hold

messages to be transferred to and from the ICP’s host by the utility task. (Section 7.2.3

on page 124 describes the node declaration queues.) The protocol task is also responsi-

ble for creating the buffer partition that contains data buffers to be used for passing data

to and from the ICP’s host. The size of the buffers created for this partition depends on
96 DC 900-1338I

6: ICP Software
the value of the buffer.size file which is downloaded with the application. (See the /free-

way/boot/spsload file.)

During initialization, the utility task creates the header buffer partition and posts node

declaration queue requests to XIO to establish nodes to be used by the ICP for reading

from, and writing to, the ICP’s host. As requested by the utility task, XIO creates read

and/or write request queues for each node. Node 1 (the main node) and node 2 (the pri-

ority node) are special insofar as all information coming to the ICP from the ICP’s host

arrives through these nodes. These nodes do have write queues, and in rare cases (such

as rejecting an erroneous attach request) are used to pass information back to the ICP’s

host, but for the most part they are a one-way path for messages coming from the ICP’s

host. These messages are then de-multiplexed to the various links. The remaining nodes

are used strictly by the ICP for writing to the ICP’s host.

The utility task begins by creating all the nodes as well as the queues for the system

header and data buffers. After this initialization, the utility task operates in a loop and

performs the following functions:

1. Keeps reads posted on the main and priority nodes

2. Distributes incoming buffers to the correct server-to-board queues

3. Posts buffers from the board-to-server queues to the appropriate nodes

The utility task is also responsible for the verification of session and link IDs, and for

swapping bytes within words (to allow for differences in word ordering for Big Endian

(Motorola) and Little Endian (Intel and VAX)), both for messages coming from and

messages going to the ICP’s host. When no message processing is required, the utility

task suspends and will be unsuspended by the protocol task or when a message is posted

to its input queue.

The following sections provide detailed examples of read and write processing by the

utility task. Figure 6–6 shows the SPS message format.
DC 900-1338I 97

Protocol Software Toolkit Programmer Guide
Figure 6–6: Sample Protocol Software Message Format

Header Buffer

Data Buffer

Host Request
Header

System Buffer
Header

ICP_HDR
PROT_HDR

Data

System Buffer
Header

Portion
transferred
to or from

ICP

Portion
transmitted

or
received on
serial link

2523
98 DC 900-1338I

6: ICP Software
6.1.3.1 Read Request Processing

The utility task, spshio, issues read requests to XIO to obtain messages from the ICP’s

host, which could be either data or control messages. A message from the ICP’s host

contains one of the command codes described in Chapter 9. The

DLI_PROT_SEND_NORM_DATA command code is used as an example in this section

to describe the steps involved in processing read requests. Figure 6–7 illustrates these

steps.

1. To obtain messages from the ICP’s host, the utility task creates read request queue

elements composed of headers from partition H and data buffers from partition

D. The utility task sets the disposition flags in the system buffer headers to inform

XIO of the action it should take when the request is complete. It also sets the node

number in the host request header for XIO to use in communicating with the

host. Sixteen queue elements are created for node 1 and sixteen for node 2. These

are the only nodes to which the host can write.

2. The utility task issues read requests to XIO for each queue element created in

Step 1.

3. For each read request, XIO posts a read to the Read Request Queue associated

with the node identified in the host request header.

4. When the ICP’s host sends a write request to its driver, XIO transfers the message

to the data buffer, and the ICP read request issued in step 2 is complete.

5. XIO posts the header and the data buffer to the utility task’s data and header input

queues for node 1 or 2.

6. The protocol and utility tasks then do the following:

a. Based on the session or link field of the ICP header, the utility task multi-

plexes and transfers the data buffers from its data input queue to the appro-

priate server-to-board queue.
DC 900-1338I 99

Protocol Software Toolkit Programmer Guide
Figure 6–7: ICP Read Request (Transmit Data) Processing

Utility Task

Input Header
Queues

Read
Request
Queues

XIO

Read Request
Queue Element

Header
Buffer

3242

node 1

5

• • •

Header buffer partition H

Data buffer partition D

Server-to-Board
Queues

Protocol Task

• • •

6b
Transmit

data

link 0

link 1
•
•
•

link 15

Data
From
Server

2

node 1

node 2

3

4

node 2

node 2

node 1

Data
Buffer

Input Data
Queues

6a

6c

1

100 DC 900-1338I

6: ICP Software
b. The protocol task removes data buffers from the server-to-board queue,

processes the requests, then releases the buffers to partition D or uses them

to send acknowledgments back to the application program.

c. The utility task obtains additional data buffers from partition D and links

them to header buffers that were returned to its header input queue. It then

issues new read request to XIO for node 1 or 2 (depending on the node from

which the header buffers were returned). In this way, the utility task

attempts to keep at least one read request pending at all times.

6.1.3.2 Write Request Processing

The utility task issues write requests to XIO when data is received on a serial line or in

response to other requests from the ICP’s host. A message to the ICP’s host can contain

a received data block, a statistics report, an error message, or some other acknowledg-

ment to a client application program. A received data block is used as an example in this

section to describe the steps involved in processing write requests. Figure 6–8 illustrates

these steps.

1. The protocol task obtains a data buffer from partition D, to be filled with data

received on a particular link. When a block of data has been received, the protocol

task posts the buffer to the link’s board-to-server queue.

2. When the utility task finds the data buffer on the board-to-server queue, it links

the buffer to a header buffer obtained from partition H, creating a write request

queue element. The utility task sets the disposition flags in the system buffer head-

ers to inform XIO of the action it should take when the request is complete. It also

sets the link’s previously assigned node number in the host request header for

XIO to use in communicating with the host.

3. After filling out the data length and session fields of the ICP and PROT headers, the

utility task issues the write request to XIO.
DC 900-1338I 101

Protocol Software Toolkit Programmer Guide
Figure 6–8: ICP Write Request (Receive Data) Processing

Utility Task

• • •

Header buffer partition H

ICP-to-Server
Queues

Protocol Task

Receive
data

XIO

Data
Buffer

Header
Buffer

Data to
server

Write Request
Queue Element

• • •

Data buffer partition D

2

1
link 0

link 1
•
•
•

link 15

3243

node 4

node 18

•
•
•

node 3

Write
Request
Queues

4

5

3

6

102 DC 900-1338I

6: ICP Software
4. XIO posts a write to the Write Request Queue associated with the node identified

in the host request header.

5. When the ICP’s host sends a read request to its driver with a matching node num-

ber, XIO transfers the message from the data buffer to the ICP’s host memory and

the ICP write request issued in step 3 is complete.

6. As instructed by the disposition flags, XIO releases the header and data buffers to

their respective partitions.

6.2 Control of Transmit and Receive Operations

Various techniques are available for coordinating transmit and receive operations at the

task and interrupt level. The simplest method is to start every operation from the task

level. In this case, a signal of some kind must be sent from the interrupt service routine

to the task level at completion, at which time the task can start the next operation. This

is the method used by the SPS for data transmissions.

Another option is to maintain a queue of messages. To save time in the interrupt service

routine, messages can be added to the tail and removed from the head of the queue at

the task level, with the interrupt service routine moving from message to message

within the queue using a link field in the buffer headers. An example of this technique is

provided by the SPS receive operations.

The following sections describe the task/interrupt-service-routine interface used to

control transmit and receive operations for the SPS.
DC 900-1338I 103

Protocol Software Toolkit Programmer Guide

11/14/97: Eri
says he will
change the
spsstructs.h fi
to say -
BOARD-
instead of
_ICP- in the
comments. I
changed it now
to match the
text.
6.2.1 Link Control Tables

The protocol and utility tasks and the interrupt service routines communicate and

coordinate their operations for each link by means of a global link control table. One

link control table is allocated for each link. The link control table contains state infor-

mation, queue IDs, configuration parameters, SCC or IUSC register values and/or

addresses, transmit and receive control parameters, configuration-specific subroutine

addresses, statistics information, and so on. The link control table is defined in

/freeway/icpcode/proto_kit/src/spsstructs.h as follows:

/* LINK CONTROL TABLE (LCT) */

struct lct
{

bit16 lct_id; /* Link number */
bit8 lct_lact; /* Link active flag */
bit8 lct_flags; /* Flag bits byte */

bit16 lct_baud; /* baud rate constant */

bit8 lct_clkext; /* internal(1)/external(0) clock */
bit8 filler0;

bit16 lct_s_id; /* link control table session number */
bit16 filler1;

struct QCB_TYPE *lct_s2bq; /* SERVER-TO-BOARD BUFFER QUEUE */
struct QCB_TYPE *lct_b2sq; /* BOARD-TO-SERVER BUFFER QUEUE */
struct QCB_TYPE *lct_l2bq; /* LINK-TO-BOARD BUFFER QUEUE */
struct QCB_TYPE *lct_b2lq; /* BOARD-TO-LINK BUFFER QUEUE */
bit16 lct_s2bqid; /* SERVER-TO-BOARD BUFFER QUEUE ID */
bit16 lct_b2sqid; /* BOARD-TO-SERVER BUFFER QUEUE ID */
bit16 lct_l2bqid; /* LINK-TO-BOARD BUFFER QUEUE ID */
bit16 lct_b2lqid; /* BOARD-TO-LINK BUFFER QUEUE ID */

bit16 lct_hio_read_id; /* hio read queue's id */
bit16 lct_hio_write_id; /* hio write queue's id */

#if defined(ICP2424) || defined(ICP2432)
IUSC *lct_iusc ; /* pointer to serial controller */

#else
Z8530 *lct_scc ; /* pointer to serial controller */

c

le

104 DC 900-1338I

6: ICP Software
bit32 *lct_dma_rda; /* pointer to dma rcv address icp6000 */
bit32 *lct_dma_rtc; /* pointer to dma rcv count icp6000 */
bit32 *lct_dma_xda; /* pointer to xmit address icp6000 */
bit32 *lct_dma_xtc; /* pointer to dma xmit count icp6000 */

#endif
bit8 lct_prot; /* protocol type */
bit8 lct_syncs; /* number of leading sync chars (BSC) */
bit8 lct_bits; /* 0 = 8 bits, 1 = 7 bits (asynch) */
bit8 lct_crc; /* CRC on/off (1=on) */

bit8 lct_parity; /* Parity, stop bits & wr4 image holder */
bit8 lct_start; /* start char for BSC & asynch */
bit8 lct_stop; /* stop char for asynch */

bit8 lct_rcvie; /* Copy of rcv int enable byte (WR1) */
bit8 lct_xmtie; /* Copy of xmt int enable byte (WR1) */
bit8 lct_idle; /* WR10 - idle flags */

bit8 lct_zrof; /* Copy of WR3 for BSC--rcv disabled */
bit8 lct_zron; /* Copy of WR3 for BSC--rcv enabled */
bit8 lct_zxof; /* Copy of WR5 for BSC--xmt disabled */
bit8 lct_zxon; /* Copy of WR5 for BSC--xmt enabled */

bit8 lct_zwr1; /* Copy of WR1 for BSC */
bit8 lct_elect; /* Electrical Interface ICP24xx */
bit8 lct_exstat; /* External status record */
bit8 filler3;
bit16 filler3a;

bit8 lct_rstate; /* receive state */
bit8 lct_rlact; /* count of receive lists active */
bit8 lct_xstate; /* transmit state */
bit8 lct_xlact; /* count of transmit lists active */

bit16 lct_xbc; /* xmt byte counter */
bit16 lct_rbc; /* rcv byte counter */
bit8 *lct_xptr; /* xmt char ptr (asynch) */
bit8 *lct_rptr; /* rcv char ptr (asynch) */

bit16 lct_write_num; /* Write buffer number */
bit16 lct_read_num; /* Write buffer number */

DATA_BUFFER *lct_ftbuf; /* Transmit frame buffer */
DATA_BUFFER *lct_tprebuf; /* Transmit's previous frame buffer */
DC 900-1338I 105

Protocol Software Toolkit Programmer Guide
DATA_BUFFER *lct_frbuf; /* Receive frame buffer */
DATA_BUFFER *lct_rprebuf; /* Receive's previous frame buffer */

void (*lct_rcvstr)(); /* Start receive routine address */
void (*lct_xmton)(); /* Start transmit routine address */
void (*lct_devoff)(); /* Device off routine address */

int (*lct_postr)(); /* Post process rcv buffer routine addr */
void (*lct_prepx)(); /* Pre-process xmt buffer routine addr */

#if defined(ICP2424) || defined(ICP2432)
int (*lct_dbase)(); /* dma base isr routine address */
int (*lct_resv)(); /* dma reserved isr routine address */

#endif
int (*lct_dxmt)(); /* dma xmt isr routine address */
int (*lct_drcv)(); /* dma rdata isr routine address */

#if defined(ICP2424) || defined(ICP2432)
int (*lct_sbase)(); /* serial base isr routine address */
int (*lct_misc)(); /* serial misc isr routine address */
int (*lct_io_pin)(); /* serial io_pin isr routine address */
int (*lct_xdata)(); /* serial xdata isr routine address */
int (*lct_xstat)(); /* serial xstat isr routine address */
int (*lct_rdata)(); /* serial rdata isr routine address */
int (*lct_rstat)(); /* serial rstatus isr routine address */
int (*lct_illeg)(); /* serial illegal isr routine address */

#else
int (*lct_xdata)(); /* serial xdata isr routine address */
int (*lct_extern)(); /* serial external status isr address */
int (*lct_rdata)(); /* serial rdata isr routine address */
int (*lct_rspc)(); /* serial special receive condition isr */

#endif

STATA lct_stats;
};
typedef struct lct LCT;
106 DC 900-1338I

6: ICP Software
6.2.2 SPS/ISR Interface for Transmit Messages

When the protocol task receives a transmit data block message on a link’s server-to-

board queue, it moves the message to the link’s board-to-link queue to await transmis-

sion. The board-to-link queue is processed in the chkloq subroutine according to the

mode of communication.

The lct_flags field in the link control table is cleared by the protocol task when it initiates

a transmission and is set by the interrupt service routine when the transmission is fin-

ished. A transmission can be initiated only when the link is in the IDLE state. The pro-

tocol task points the transmit data block message on the head of the board-to-link

queue, calls the appropriate preprocess routine for the protocol to prepare the data for

transmission, and calls the subroutine xmton to set up the hardware devices for trans-

mission of the data. Xmton clears the flags field in the buffer’s headers and clears the

lct_flags and states in the link control table. When the transmit completes, the interrupt

service routine sets flags in the buffer’s headers, initializes the lct_flags and states in the

link control table, and resumes the protocol task. The protocol task releases the com-

pleted buffer and starts the transmission of the next message on the queue.

6.2.3 SPS/ISR Interface for Received Messages

When a link is enabled, the rcvstr subroutine for the requested protocol (located in

asydev.c, bscdev.c, and sdlcdev.c) is called, which calls “restock” to obtain PREALLO-

CATE data buffers from the data buffer partition and posts them to the link-to-board

queue. The lct_frbuf field in the link control table is set to the address of the first buffer

on the queue.

When a frame is received, the buffer is filled, and the interrupt service routine updates

lct_frbuf to the next buffer on the queue using the sb_nxte field in the system buffer

header. (The interrupt service routine does not unlink the filled buffer from the queue).

In the chkliq subroutine, the protocol task determines whether the buffer at the head of

the queue has been completed (a block has been received). If the receive is finished, and
DC 900-1338I 107

Protocol Software Toolkit Programmer Guide
the protocol task removes the buffer from the link-to-board queue, calls the appropri-

ate postprocessor to process the data before passing it to the application program, posts

it to the board-to-server queue, and resumes the utility task which passes the message

to the host.

Whenever the protocol task removes a buffer from the head of the link-to-board queue,

it restocks the queue. In this way, the protocol task maintains several available buffers

for received messages.

Figure 6–9 shows a link-to-board queue containing four buffers. Two are filled and

waiting for removal by the protocol task. The third buffer is set up for the current

receive.

Figure 6–9: Sample Link-to-Board Queue

System Buffer
Header

data

System Buffer
Header

data

System Buffer
Header

System Buffer
Header

ICP Header ICP Header ICP Header ICP Header

queue
head lct_frbuf

queue
tail

DMA transfer address

2401

Protocol HeaderProtocol HeaderProtocol HeaderProtocol Header
108 DC 900-1338I

6: ICP Software
6.3 Interrupt Service

At the interrupt level, the SPS provides specific examples of SCC and IUSC program-

ming for asynchronous (ASYNC), byte synchronous (BSC), and bit synchronous

(HDLC/SDLC) modes of operation. At the same time, examples are provided for:

• operation with and without the use of DMA

• C and assembly language programming

• CRC calculation in hardware (by the SCC or IUSC) or in software

Table 6–1 summarizes these features for each mode of operation.

6.3.1 ISR Operation in HDLC/SDLC Mode

In HDLC/SDLC mode, DMA is used for both transmit and receive. The SCC or IUSC

automatically provides the opening and closing flags on transmit. The DMA transfer

count is set to the number of bytes in the frame, not including CRC and flags. The SCC

or IUSC is set to calculate the CRC during transmission of the frame and to send the

CRC when it detects a transmit underrun. When the DMA reaches terminal count (and

Table 6–1: Summary of Communication Modes

Asynchronous BSC HDLC/SDLC

SCC or IUSC mode Asynchronous Byte synchronous Bit synchronous

Data transfer method Character interrupts Character
interrupts/DMA

DMA

Start block detection
(receive)

ISR search for start
character

SCC or IUSC detects
SYNC character

SCC or IUSC detects
opening flag

End block detection
(receive)

ISR search for end
character

Byte count in header SCC or IUSC detects
closing flag

CRC calculation Software Software SCC or IUSC

ISR programming
language

C Assembly/C C
DC 900-1338I 109

Protocol Software Toolkit Programmer Guide
no longer transfers characters to the SCC or IUSC), a transmit underrun is generated.

The SCC or IUSC transmits the two-byte CRC followed by a closing flag to terminate

the frame.

To receive, the DMA transfer count is set to the maximum block size and will not nor-

mally reach terminal count. The SCC or IUSC automatically calculates CRC during the

received frame and generates an end-of-frame (special receive condition) interrupt

when the closing flag is detected. The interrupt service routine reads an SCC register to

determine whether the CRC that the SCC calculated matched the CRC bytes received at

the end of the frame. The IUSC posts the status of the reception in the linked list header

record (located at the end of the data buffer) which is then examined by the ISR.

The following interrupts are processed in HDLC/SDLC mode:

SCC DMA Receive Terminal Count or IUSC End of Buffer If terminal count is

reached before end-of-frame, the received message is too long (receiving more

data would overrun the receive buffer). In this case, the interrupt service routine

increments an error count and restarts the receiver using the current receive

buffer.

SCC Special Receive Condition or IUSC RDMA Complete This interrupt is generated

at the end of a received frame. If the SCC or IUSC indicates a CRC error, an error

count is incremented, and the receiver is restarted using the current buffer. If the

CRC is good, the receiver is restarted using the next buffer in the link-to-board

queue.

SCC Transmit Buffer Empty or IUSC End of Buffer This interrupt is enabled only by

the external or transmit status interrupt service routine when a transmit under-

run occurs while the transmit buffer is not yet empty. The end of the transmission

is processed.
110 DC 900-1338I

6: ICP Software
SCC External/Status (ICP6000 only) This interrupt is generated under any of the fol-

lowing conditions:

Loss of DCD An error count is incremented and the receiver is restarted using

the current receive buffer.

Abort An error count is incremented and the receiver is restarted using the cur-

rent receive buffer.

Transmit Underrun If the DMA has reached terminal count, transmit underrun

can cause an external/status interrupt. This indicates end-of-frame on

transmit, although the final character of the frame might not yet be com-

pletely sent. If the SCC transmit buffer is empty, the end of the transmission

is processed. Otherwise, the SCC’s transmit interrupt is enabled, so the end

of the transmission can be processed when the transmit buffer becomes

empty. If a transmit underrun interrupt is generated when the DMA has not

reached terminal count, an actual underrun has occurred. An error count is

incremented, but the transmission is allowed to continue. (The receiving

link detects a CRC error on the frame.)

6.3.2 ISR Operation in Asynchronous Mode

For asynchronous mode, DMA (conditional compile option for the IUSC) is not used

for either transmit or receive. Rather, the SCC or IUSC is set up to generate interrupts

on every character received and transmitted. On transmit, a count is decremented as

each character is written to the SCC’s or IUSC’s transmit buffer, and the block is com-

plete when the count reaches zero. On receive, user-configured start and end characters

are used to delimit a block. CRC, if enabled, is calculated and compared at the task level.

The following interrupts are serviced in asynchronous mode:

SCC or IUSC Receive Character Available This interrupt is generated on every

received character. The receive interrupt service routine is state-driven. After
DC 900-1338I 111

Protocol Software Toolkit Programmer Guide
transferring the received character from the SCC or IUSC receiver to the receive

data buffer, the interrupt service routine processes the character according to the

current state:

State 0 Search for start character. If the start character is found, move to state 1;

otherwise, take no action and ignore the current character (it will be over-

written by the next character).

State 1 Receive frame. Check for stop character. If the stop character is found and

CRC is enabled, move to state 2. If the stop character is found and CRC is

not enabled, process the end of received block and restart the receiver at

state 0 using the next buffer in the link-to-board queue. If the stop char-

acter is not found, store the character and increment the count.

State 2 First CRC byte. Move to state 3.

State 3 Second CRC byte. Process the end of received block and restart the

receiver at state 0 using the next buffer in the link-to-board queue.

SCC Special Receive Condition or IUSC Receive Status This interrupt is generated on

receiver overrun, parity error, or framing error. The appropriate error count is

incremented, but the receive is not aborted.

SCC or IUSC Transmit Buffer Empty This interrupt is generated on every transmitted

character. The transmit byte count is decremented, and the end of the transmis-

sion is processed if the count has reached zero. (The next transmission is started

at the task level.) The IUSC is set up to interrupt when there are 16 bytes free in

its transmit FIFO and up to 16 bytes are loaded during each interrupt.

6.3.3 ISR Operation in BSC Mode

In BSC mode, a simple header is prepended to the start of the data block, containing a

user-configured start character and a byte count. For transmit, the DMA transfer count
112 DC 900-1338I

6: ICP Software
is set to the number of bytes in the block, including the header and the two-byte CRC,

if enabled. The CRC is calculated and appended to the data at the task level.

For receive, the SCC or IUSC is initially set up to generate interrupts on every character

received. Each character is compared to the configured start character. After the start

character has been found, the remainder of the BSC header can be received. The DMA

transfer count is set to the value specified in the BSC header, SCC or IUSC receive inter-

rupts are disabled, and DMA is used to receive the remainder of the message.

The following interrupts are processed in BSC mode:

SCC or IUSC Receive Character Available While enabled, this interrupt is generated

on every received character. No data is transferred to the receive buffer until the

data count is received. When the entire three-byte header has been received, the

interrupt service routine disables receive and special receive condition interrupts,

sets the DMA transfer count according to the count field of the BSC header (plus

two if CRC is enabled), and initiates DMA transfer.

SCC or IUSC Special Receive Condition While enabled (before and during reception

of the BSC header), this interrupt is generated on receiver overrun errors. An

error count is incremented and the receive is aborted.

SCC DMA Receive Terminal Count or IUSC End of Buffer This interrupt is generated

when the data portion of a BSC message has been received. The interrupt service

routine re-enables SCC or IUSC receive and special receive condition interrupts

and restarts the receiver using the next buffer in the link-to-board queue. CRC, if

enabled, is checked at the task level.

SCC DMA Transmit Terminal Count or IUSC End of Buffer This interrupt is gener-

ated at the end of a transmitted frame. The interrupt service routine processes the

end of the transmission. (The next transmission is started at the task level.)
DC 900-1338I 113

Protocol Software Toolkit Programmer Guide
114 DC 900-1338I

Chapter
7 Host/ICP Interface
Note
From the ICP’s perspective, the “host processor” can be either the

server processor of the Freeway in which the ICP resides, or the

processor of the client computer in which the ICP is embedded. In

this chapter, the terms “ICP host processor,” “ICP’s host,” and

“host/ICP interface” reflect this perspective.

This chapter describes the interface between the ICP’s host processor and an ICP. This

interface will be referred to as the “host/ICP interface.” It is managed by an XIO inter-

face which runs on the ICP, in the OS/Impact environment, and provides a queue-

driven, non-blocking interface to the host processor. Section 7.4 on page 135 gives

details of XIO.

7.1 ICP’s Host Interface Protocol

Communications between the ICP’s host and the ICPs is performed by the host’s

driver, icp.c, and the ICP’s driver, XIO. Information concerning any data transfers

between the two is passed through a Protocol eXchange Region (PXR).

The PXR for the ICP6000 is implemented via a hardware device that has 16 byte wide

registers called mailboxes. The ICP’s host sees these registers as bytes on word bound-

aries, while the ICP sees them as consecutive bytes. One of these registers is used for

host-to-ICP commands; when the host writes to this register, an interrupt is generated
DC 900-1338I 115

Protocol Software Toolkit Programmer Guide
to the ICP in order to gain service. Another register is used for ICP-to-host commands,

but another device’s registers must be set up to generate the interrupt to the host.

ICP2424s use a region of shared memory to support the PXR. The ICP2424 PXR is the

first 16 bytes of the shared memory. These are consecutive bytes addressable as bytes,

words, or longwords as long as the proper boundaries are observed.

The PXR for the ICP2432 is implemented via mailboxes within the PCI interface chip.

They are accessed as 32-bit entities.

The host driver and the ICP driver have a master/slave relationship. The master is the

driver that actually moves the data between the host and the ICP. For the ICP2432 and

ICP6000, the ICP is the master. For the ICP2424, the host is the master.

When the slave has a buffer into which data may be transferred, it issues a “read”

request to the master along with the address of the buffer and the maximum amount of

data it can hold. When the master receives a matching request from its application pro-

gram and moves the data into the buffer, it signals the slave that the “read” is complete.

When the slave has a buffer of data ready to transfer to the master, it issues a “write”

request to the master with the address of the data’s buffer and the amount of data in it.

When the master receives a matching request from its application program, it transfers

the data and signals the slave with a “write” complete.

As the protocol is asynchronous, the slave can send any number of requests to the mas-

ter without waiting for completions on previous requests, and the master can process

requests and return completions in any order.

The ICP driver and the host driver coordinate the information flowing between the ICP

and the host processor by means of node numbers. Each node can have one read and

one write queue. At startup, the utility task creates the nodes it will be using, up to the

maximum number of nodes allowed by the configuration parameters of the two driv-

ers.
116 DC 900-1338I

7: Host/ICP Interface
The ICP posts read requests to node 1 (the main node) and node 2 (the priority node);

all information coming to the ICP from the host processor arrives through these two

nodes. These nodes do have write queues, and in rare cases (such as rejecting an errone-

ous attach request) are used to pass information to the ICP’s host, but for the most part

they are a one-way path for messages coming from the host; these messages are then de-

multiplexed to the various links. The remaining nodes are used strictly by the ICP for

writing to the host. The ICP read request processing is explained in more detail in

Section 6.1.3.1 on page 99 and is shown in Figure 6–7 on page 100.

After a message bound for the application program is processed by the protocol task, it

is posted to the board-to-server queue belonging to that link. The utility task subse-

quently removes the message from that queue, prefixes a properly initialized buffer

header (for example, providing information on what to do with process completions),

then posts it as a write request to a write queue belonging to one of the nodes created at

startup. (The particular node is ascertained by indexing into the session table and

accessing the node number field by means of the unique session ID that was assigned to

that link as a result of a prior attach command.) XIO then passes the message through

to the host processor. The ICP write request processing is explained in more detail in

Section 6.1.3.2 on page 101 and is shown in Figure 6–8 on page 102.

Note that when a request completion is received from the host processor, XIO uses the

node number and request type to match the completion with a pending request. There-

fore XIO does not send the host processor a request for a particular node number until

any pending request from the same node number is complete. Additionally, requests

for any queue are sent to the host processor in the same order they were posted to the

queue, but no order is guaranteed for requests posted to different queues. Likewise,

notifications of completion are guaranteed to be in the same order that the completions

were received from the host processor, but the host processor is not required to send

completions in the same order that it received the requests. XIO provides two options

for processing the request completions. These options are described in Section 7.2.3.1

on page 126.
DC 900-1338I 117

Protocol Software Toolkit Programmer Guide
7.2 Queue Elements

In general, a queue element consists of one or more linked buffers, and a queue can

contain one or more linked queue elements. Every buffer of a queue element contains a

standard system buffer header, as defined in the OS/Impact Programmer Guide. A field

in each buffer’s header is used as a link to the next buffer of the queue element. Two

fields in the header are valid only in the first buffer of a queue element. One field is a

link to the next element on a queue and the other, if the queue is doubly linked, is a link

to the previous element.

A buffer can be obtained from a system partition (using the get buffer, s_breq, system

call), but this is not a requirement. Any block of memory large enough to contain a sys-

tem buffer header can be used as a buffer (for example, a fixed data structure defined

within an ICP-resident application). There is no maximum buffer size, no maximum

number of buffers in a queue element, and no maximum number of queue elements

attached to a queue.

Figure 7–1 shows a singly-linked sample queue containing three queue elements.

Figure 7–2 shows a doubly-linked sample queue containing three queue elements.
118 DC 900-1338I

7: Host/ICP Interface
Figure 7–1: Sample Singly-linked Queue with Three Elements

AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA

AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA

AAAAA
AAAAA
AAAAA

A
A

AAAAA
AAAAA
AAAAA
AAAAA

A
A

A
A

0

0

AAAAA
AAAAA
AAAAA
AAAAA

A
A
A

A
A
A

next element

next buffer

data

data

0

next buffer

data
AAAAA
AAAAA
AAAAA
AAAAA

AAAAA
AAAAA
AAAAA

A
A

A
A

A
A
A

A
A
A

0

0

0

next buffer

data

data

queue head queue tail

AA
AA

AA
AA
AA
AA

Legend

2450

system buffer header

buffer

queue element

A
A

AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA

AAAAA
AAAAA
AAAAA

A
A

A
A

AAAAA
AAAAA
AAAAA
AAAAA

next element

0

data

next element

prev element

next buffer

A
A
A

DC 900-1338I 119

Protocol Software Toolkit Programmer Guide
Figure 7–2: Sample Doubly-linked Queue with Three Elements

AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA

AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA

AAAAA
AAAAA
AAAAA
AAAAA
AAAAA
AAAAA
AAAAA
AAAAA
AAAAA
AAAAA
AAAAA
AAAAA
AAAAA
AAAAA
AAAAA
AAAAA
AAAAA
AAAAA

AAAAA
AAAAA
AAAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

queue head queue tail

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A

A
A

AA
AA

AA
AA

AA

Legend

0

0

0

AAAAA
AAAAA
AAAAA

A
A

A
A

0

0

0

AAAAA
AAAAA
AAAAA
AAAAA

A
A

A
A

next element

next buffer

prev element

next element

next buffer

prev element

0

prev element

next element

2451

system buffer header

buffer

queue element

data data data

data

data

0

0

next buffer

data
120 DC 900-1338I

7: Host/ICP Interface
7.2.1 System Buffer Header

As mentioned previously, every buffer of every queue element must begin with a system

buffer header. The following structure defines the format of the system buffer header:

struct SBH_TYPE
{

struct SBH_TYPE *sb_nxte; /* next element */
struct SBH_TYPE *sb_pree; /* previous element */
struct SBH_TYPE *sb_thse; /* this element */
struct SBH_TYPE *sb_nxtb; /* next buffer */
unsigned short sb_pid; /* partition ID */
unsigned short sb_dlen; /* data length */
unsigned short sb_disp; /* disposition flag */
unsigned short sb_dmod; /* disposition modifier */

};

The header fields, as used by the system, are described below:

Next Element This field is used only by the operating system, and only in the

first buffer of a queue element. While the element is attached to

a singly- or doubly-linked queue, this field contains the address

of the next element on the queue.

Previous Element This field is used only by the operating system, and only in the

first buffer of a queue element. While the element is attached to

a doubly-linked queue, this field contains the address of the

previous element on the queue.

This Element This field is used only by the operating system, and only in the

first buffer of the queue element, as a consistency check when

the element is posted to or removed from a queue. This field

contains the address of the buffer itself (that is, the address of

the queue element).
DC 900-1338I 121

Protocol Software Toolkit Programmer Guide
Next Buffer This field contains the address of the next buffer of the queue

element. In general, this field must be zero in the last buffer. In

the data buffer of a host request queue element, XIO uses this

field for a special purpose, as described in Section 7.2.4.1 on

page 131.

Partition ID This field contains the partition ID if the buffer was obtained

from a partition.

Data Length This field contains the number of valid bytes of data in the

buffer (excluding the system buffer header).

Disposition Flag This field, in combination with the disposition modifier, indi-

cates the action to be taken by XIO when processing of the

queue element is complete (when the request completion is

received from the host). This flag has the following possible val-

ues:

POST_QE Post queue element to queue

FREE_QE Zero disposition modifier to mark queue ele-

ment free

TOKEN_QE Release queue element to a resource

POST_BUF Post buffer to queue

FREE_BUF Zero disposition modifier to mark buffer free

TOKEN_BUF Release buffer to a resource

REL_BUF Release buffer to partition

POST_QE, FREE_QE, and TOKEN_QE are valid only in the first

buffer of a queue element and apply to the entire queue ele-
122 DC 900-1338I

7: Host/ICP Interface
ment (the disposition flag is then ignored in all other buffers of

the queue element). POST_BUF, FREE_BUF, TOKEN_BUF,

and REL_BUF are valid in all buffers and apply only to an indi-

vidual buffer. For example, in a queue element consisting of

only one buffer, POST_QE is equivalent to POST_BUF, but for

a multiple-buffer queue element, the value POST_QE in the

first buffer indicates that the queue element is to be posted to a

particular queue intact, but the value POST_BUF in every

buffer indicates that each buffer is to be posted to a queue as an

individual queue element. Section 7.2.3.1 on page 126 and

Section 7.2.4.1 on page 131 describe the use of this field in

more detail.

Disposition modifier This field provides additional information required for com-

pletion processing by XIO. What is contained in this field

depends on the value of the disposition flag, as follows:

7.2.2 Queue Element Initialization

For the utility task to communicate with the host, it must post at least three node dec-

laration queue elements, described in Section 7.2.3, to XIO’s public node declaration

queue during its initialization. Two of these, the main node and the priority node, are

the conduits for passing information from the host to the ICP. The remaining nodes

Disposition Flag Disposition Modifier

POST_QE Queue ID

FREE_QE Non-zero value to be cleared

TOKEN_QE Resource ID

POST_BUF Queue ID

FREE_BUF Non-zero value to be cleared

TOKEN_BUF Resource ID

REL_BUF Not used
DC 900-1338I 123

Protocol Software Toolkit Programmer Guide
are used by your ICP-resident software to send information in the form of data and

command acknowledgments to the host processor.

Each node declaration queue element must contain a unique ICP node number and

unique queue IDs which will be used for the read and write queues for that node. After

this operation is complete, the utility task can begin posting host request queue ele-

ments, described in Section 7.2.4, to these queues. The following sections describe the

two types of queue elements.

7.2.3 Node Declaration Queue Element

The utility task, spshio, creates node declaration queue elements, generally during ini-

tialization, and posts them to XIO. These queue elements identify the ICP node number

that the task will use and queue IDs to which either read or write requests (or both) for

that node will be posted. (XIO creates the queues. Only the queue IDs are supplied by

the utility task.) In your code, you can declare several nodes (up to the maximum

allowed by the driver), but you must post a separate node declaration queue element for

each.

Since ICP node numbers must be unique throughout an ICP subsystem, a task can

declare a node number only once; no other tasks can make a declaration using that

node number. The queue IDs associated with declared node numbers must also be

unique. A single ID cannot be used as both the read and write queue for a node, nor can

it be used for other nodes or for any other purpose.

The node declaration queue element consists of a single buffer containing a system

buffer header followed by a node declaration header. The queue element is shown in

Figure 7–3 and has the following format:
124 DC 900-1338I

7: Host/ICP Interface
struct NODEC_TYPE
{

struct SBH_TYPE sbh; /* system buffer header */
unsigned short rqid; /* host read request queue ID */
unsigned short wqid; /* host write request queue ID */
unsigned char node; /* ICP node number */
unsigned char status; /* completion status */

};

Figure 7–3: Node Declaration Queue Element

AAAA
AAAA

Fields that require
initialization

Legend

AA
AA

AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA

AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA

System
Buffer
Header

Node
Declaration
Header

2452

sb_nxte

sb_pree

sb_thse

sb_nxtb = 0

sb_pid

sb_dlen

sb_disp

sb_dmod

rqid

wqid

node status
DC 900-1338I 125

Protocol Software Toolkit Programmer Guide
7.2.3.1 System Buffer Header Initialization

In the system buffer header, the sb_thse field must be set to the starting address of the

buffer. (This field is set by the system if the buffer was obtained from a partition.) The

sb_nxtb field must be set to zero. The disposition flag, sb_disp, and disposition modifier,

sb_dmod, fields must be initialized as described in the following paragraphs, but no

other fields in the system buffer header require specific initialization.

The disposition flag must be set to one of the values defined for the field as described in

Section 7.2.1 on page 121. If the requesting task obtained the buffer from a partition,

and if it does not require notification when the request has been processed by XIO, the

value REL_BUF can be used; this causes XIO to release the buffer to its partition on

completion. However, since a post to either of the host request queue IDs specified in

the queue element fails if XIO has not yet processed the request (and created the

queues), tasks generally request completion notification. Since the queue element con-

sists of only one buffer, POST_QE and POST_BUF are equivalent, and cause XIO to post

the queue element to a specified queue. Likewise, FREE_QE and FREE_BUF are equiv-

alent, and cause XIO to clear the disposition modifier. TOKEN_QE and TOKEN_BUF

are also equivalent and cause XIO to release the queue element to a specified resource.

If the disposition flag is set to POST_QE or POST_BUF, the disposition modifier must

contain a valid queue ID. If the requesting task is the owner of that queue, it then sus-

pends its operation, and resumes when XIO posts the queue element (with a post and

resume system call) to the queue on completion.

If FREE_QE or FREE_BUF is specified in the disposition flag, the disposition modifier

should be set to a non-zero value, so the requesting task can recognize the completion

when the field is cleared by XIO.

If TOKEN_QE or TOKEN_BUF is specified in the disposition flag, the disposition mod-

ifier must contain a valid resource ID. The requesting task cannot use this method to

obtain completion information unless the node declaration queue element is the only
126 DC 900-1338I

7: Host/ICP Interface
token associated with the resource. If this is the case, the task can make a resource

request and obtain the token when it is released by XIO on completion.

7.2.3.2 Completion Status

Before processing the completion of the queue element, XIO stores a completion code

in the status field of the node declaration header, as follows:

7.2.4 Host Request Queue Element

When your ICP-resident application or utility task posts a read or write request to the

host processor, it must create a queue element and post it to the appropriate node’s read

or write queue. The queue element consists of two buffers, a header buffer and a data

buffer. The header buffer contains a system buffer header followed by a host request

header. The next buffer (sp_nxtb) field of the system buffer header in the header buffer

contains the address of the data buffer. The data buffer also contains a system buffer

header, followed by an ICP header, a protocol header, and the received data, if any, that

will ultimately be transferred to the application program (in the case of a write request),

or the area to which data being sent from the application program will be transferred

(in the case of a read request).

Figure 7–4 shows an example of a host request queue element with an encapsulated

data buffer.

0 = Good completion

1 = The node number is out of range or already declared

2 = A queue create system call failed (the queue ID is out of range
or the queue already exists)
DC 900-1338I 127

Protocol Software Toolkit Programmer Guide
Figure 7–4: Host Request Queue Element with Data Area

AAAAAAA
AAAAAAA

AAAAAAA
AAAAAAA
AAAAAAA

AAAAAAA
AAAAAAA
AAAAAAA

AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA

AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA

AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA

System
Buffer
Header

Server
Request
Header

System
Buffer
Header

•
•
•

•
•
•

Data Area
dlen

Fields that require initialization
(in all or some cases)

Legend

Data Buffer

Header Buffer

2453

sb_nxte

sb_pree

sb_thse

sb_pid

sb_dlen

subfunc

sb_nxte

sb_pree

sb_pid

sb_dlen

line

circuit

status

s_dlen

s_node i_node

ICP_HDR
PROT_HDR

AAA
AAA

sb_nxtb = 0

sb_disp

sb_dmod

funct

snode inode

sb_thse

sb_nxtb

sb_disp

sb_dmod

dlen
128 DC 900-1338I

7: Host/ICP Interface
 The header buffer has the following structure:

struct SREQ_HDR_TYPE
{

struct SBH_TYPE sbh;
struct sreq_type req;

};

The two structures that make it up are as follows:

struct SBH_TYPE
{

struct SBH_TYPE *sb_nxte; /* next element */
struct SBH_TYPE *sb_pree; /* previous element */
struct SBH_TYPE *sb_thse; /* this element */
struct SBH_TYPE *sb_nxtb; /* next buffer */
unsigned short sb_pid; /* partition ID */
unsigned short sb_dlen; /* data length */
unsigned short sb_disp; /* disposition flag */
unsigned short sb_dmod; /* disposition modifier */

};

struct sreq_type
{

unsigned char funct; /* function code (read or write) */
unsigned char subfunct; /* subfunction code */
unsigned char snode; /* host node number */
unsigned char inode; /* ICP node number */
unsigned short line; /* line number */
unsigned short circuit; /* circuit number */
unsigned short dlen; /* data length, in bytes */
unsigned short status; /* completion code */
unsigned char s_node; /* actual host node number

(on completion) */
unsigned char i_node; /* actual ICP node number

(on completion) */
unsigned short s_dlen; /* actual number of bytes

transferred */
};
DC 900-1338I 129

Protocol Software Toolkit Programmer Guide
The data buffer has the following structure:

struct data_buffer
{

struct SBH_TYPE sbh; /* (defined in oscif.h) */
ICP_HDR icp_hdr;
union
{

PROT_HDR prot_hdr;
XMT_HDR xmt_hdr;

} prot_hdrs;
bit8 data; /* start of data */

};
typedef struct data_buffer DATA_BUFFER;

The structures that make it up are as follows:

struct SBH_TYPE
{

struct SBH_TYPE *sb_nxte; /* next element */
struct SBH_TYPE *sb_pree; /* previous element */
struct SBH_TYPE *sb_thse; /* this element */
struct SBH_TYPE *sb_nxtb; /* next buffer */
unsigned short sb_pid; /* partition ID */
unsigned short sb_dlen; /* data length */
unsigned short sb_disp; /* disposition flag */
unsigned short sb_dmod; /* disposition modifier */

};

struct icp_hdr /* ICP message header */
{

bit16 su_id; /* service user (client) ID */
bit16 sp_id; /* service provider (server) ID */
bit16 count; /* size of data following this header */
bit16 command; /* function code */
bit16 status; /* function status */
bit16 params[3]; /* API specific parameters */

};
typedef struct icp_hdr ICP_HDR;
130 DC 900-1338I

7: Host/ICP Interface
struct prot_hdr /* Protocol message header */
{

bit16 command; /* function code */
bit16 modifier; /* function modifier */
bit16 link; /* physical port number */
bit16 circuit; /* data link circuit identifier */
bit16 session; /* session identifier */
bit16 sequence; /* message sequence number */
bit16 reserved1; /* reserved */
bit16 reserved2; /* reserved */

};
typedef struct prot_hdr PROT_HDR;

struct xmt_hdr
{

bit32 flags; /* local transmit/receive flags */
bit8 filler;
bit8 syncs[8]; /* starting sync chars (BSC) */
bit8 start_char; /* start char (BSC) */
bit16 count;

};
typedef struct xmt_hdr XMT_HDR;

7.2.4.1 System Buffer Header Initialization

In the system buffer header of the header buffer (the first buffer of the queue element),

sb_thse must be initialized. (This field is set by the system if the buffer was obtained

from a partition.) The sb_nxtb field must be set to the starting address of the data buffer

(that is, to the start of its system buffer header). In addition, the disposition flag, sb_disp,

and possibly the disposition modifier, sb_dmod, must be initialized.

In the system buffer header of the second buffer (the data buffer), initialization of

sb_thse is not required. If the sb_nxtb field is set to zero, the remainder of the buffer

immediately follows the system buffer header. If the sb_nxtb field is non-zero, it must

contain a pointer to the first byte of the API header. For the data buffer, initialization of

the system buffer header’s disposition flag and disposition modifier might be required,

depending on the value of the header buffer’s disposition flag.
DC 900-1338I 131

Protocol Software Toolkit Programmer Guide
In the header buffer, the disposition flag must be set to one of the values defined for the

field in Section 7.2.1 on page 121. If it is set to POST_QE, FREE_QE, or TOKEN_QE, the

disposition flag in the data buffer is ignored. If the disposition flag in the header buffer

is set to POST_BUF, FREE_BUF, TOKEN_BUF, or REL_BUF, the disposition flag in the

data buffer must also be set to one of those four values, although not necessarily the

same one. These options are described in the following paragraphs.

In general, a task requires notification of the completion of a read request so that it can

process the message received from the ICP’s host. However, it might or might not

require notification of the completion of a write request. If the task obtained the buffers

of a queue element from a partition, and if it does not require notification when the

request has been processed by XIO, the value REL_BUF in the disposition flags of both

buffers causes XIO to release the buffers to their partitions on completion.

If the task is maintaining host request queue elements as resource tokens and does not

require notification when the request has been processed by XIO, the value TOKEN_QE

in the disposition flag and a resource ID in the disposition modifier of the header buffer

cause XIO to release the queue element to the resource on completion. Alternatively,

the task could maintain the individual buffers of the queue element as resource tokens,

in which case TOKEN_BUF should be stored in the disposition flag and resource ID in

the disposition modifier of both the header and data buffers.

For notification of the completion of a host request, a task can set the disposition flag in

the header buffer to POST_QE, in which case XIO, on completion, posts the queue ele-

ment, intact, to the queue specified in the disposition modifier of the header buffer.

Alternatively, the task can set the disposition flag in the header buffer to FREE_QE, in

which case XIO clears the disposition modifier in the header buffer on completion.

If the completion is to be processed separately for the two buffers of the queue element,

the requesting task can use the POST_BUF, FREE_BUF, and REL_BUF values, in any

combination, for the disposition flags. For example, if the task obtained its data buffer

from a partition, but defined a fixed data structure as the header buffer, it might set the
132 DC 900-1338I

7: Host/ICP Interface
disposition flag in the header buffer to FREE_BUF and the disposition flag in the data

buffer to REL_BUF. Then, when the request is complete, the header buffer is marked

free by XIO, indicating to the task that it is available for re-use. The data buffer is

released to its partition by XIO, and requires no further processing.

If the disposition flag in either buffer is set to POST_QE or POST_BUF, the correspond-

ing disposition modifier must contain a valid queue ID. If the requesting task is the

owner of the queue, it can suspend its operation and resume when XIO posts the queue

element or buffer (with a post and resume, s_post, system call) to the queue on comple-

tion of the request.

If FREE_QE or FREE_BUF is specified in the disposition flag of either buffer, the corre-

sponding disposition modifier should be set to a non-zero value so that the requesting

task can recognize the completion when the field is cleared by XIO.

7.2.4.2 Host Request Header Initialization

The subfunction, line number, and circuit number fields of the host request header are

defined for compatibility with other Simpact products and are not used for the ICP.

The function code must be set to one of the following values:

When a node is declared, a host read request queue ID and a host write request queue

ID are defined. For both the main and priority nodes, at least one host request queue

element containing a read function code (in the funct field of the host request header)

must always be posted to that node’s read request queue, and a queue element contain-

ing a write function code must always be posted to that node’s write request queue.

For nodes specific to your ICP-resident task, at least one host request queue element

must always be posted to each node’s write request queue. For compatibility with other

0x02 = Write request

0x08 = Read request
DC 900-1338I 133

Protocol Software Toolkit Programmer Guide
Protogate implementations, provisions exist for read request queues for these nodes;

however, they are not used in the Freeway implementation. In addition, for any node, a

host request queue element posted to either the read or write queue must contain a

matching ICP node number in the inode field of the host request header. The snode field

should be set as defined for the particular application. (This field is passed to the host,

but is not interpreted by XIO. In general, it is used on a write request to specify the des-

tination of the data, and is not used on a read request.)

As the data transfer address for the request, XIO passes to the host the address that is

stored in the sb_nxtb field of the data buffer’s system buffer header. If this value is zero,

XIO uses the beginning address of the data buffer plus the length of the system buffer

header instead. (The system buffer header itself, as well as any portion of the buffer that

separates the system buffer header from the data, are never transferred to or from the

host.) For a write request, the dlen field of the host request header should be set to the

actual number of bytes of data in the data buffer, excluding the system buffer header

and any portion of the buffer that separates the header from the data. For a read

request, the dlen field should be set to the maximum length of the data buffer, excluding

the system buffer header and any portion of the buffer that separates the header from

the data.

No other fields of the host request header require initialization.

7.2.4.3 Completion Status

Before processing the completion of the queue element, XIO stores a completion code

in the status field of the host request header, as follows:

If the completion status is good, XIO also returns the node numbers supplied by the

host and the actual number of bytes transferred. The ICP node number is returned in

the i_node field, and always matches the ICP node number supplied by the requesting

SPS task in the inode field. The host node number is returned in the s_node field. For a

write, this value always matches the node number supplied by the requesting SPS task
134 DC 900-1338I

7: Host/ICP Interface
in the snode field. For a read, the node number is generally not specified on request

(snode is not used), and on completion, the s_node field identifies the node number

from which the data was received.

Note that inode and i_node are two separate fields in the host request header, as are snode

and s_node.

The number of bytes actually transferred to or from the host is returned in the s_dlen

field. This value is never greater than the number requested (dlen), but might be less,

depending on the data length requested by the corresponding application program.

7.3 Reserved System Resources: XIO Interface

XIO reserves the following system resources:

For proper operation of XIO, ICP-resident SPS tasks added to the system must not use

conflicting system resources.

7.4 Executive Input/Output

Executive Input/Output (XIO) consists of three functions which are described in the

following sections: s_initxio, s_nodec and s_xio.

0 = Good completion

1 = The queue to which the host request queue element was posted
is defined for a node number other than the one specified in
the inode field of the host request header

3 = The host request queue element was posted to a host read
request queue but contains a write function code, or was
posted to a host write request queue but contains a read func-
tion code

Queue IDs 1 and 2 (ID 1 = node declaration queue)

Vector numbers 25 and 26 (hexadecimal offsets 64 and 68)

GST entries gs_unused [0] (task entry point)
gs_unused [1] (panic code)
DC 900-1338I 135

Protocol Software Toolkit Programmer Guide
The s_initxio function is called once to initialize the internal data structures and devices

that allow XIO to communicate with the host’s ICP driver. After initialization, the user

application can call s_nodec to declare a node. After nodes are declared, the user appli-

cation issues read and write request using s_xio.

7.4.1 Initialize Executive Input/Output (s_initxio)

The Initialize XIO function sets up interrupt vectors and internal data structures. It

notifies the host that the ICP is ready to perform I/O.

C Interface:

s_initxio()

Return: none

Assembly Interface:

jsr _s_initxio

Input: none

Output: none

7.4.2 Node Declaration (s_nodec)

The Node Declaration function declares the nodes as described in Section 7.2.3 on

page 124. Any error information is returned in the status field of the node declaration

header (NODEC_TYPE).

C Interface:

s_nodec (nodec)
struct NODEC_TYPE *nodec;

Return: n/a

Assembly Interface:

TRAP #4
136 DC 900-1338I

7: Host/ICP Interface
Input: A0.L = address of NODEC_TYPE structure

Output: none

Access: task or ISR

7.4.3 XIO Read/Write (s_xio)

Issue a read or write request. Depending on the value of the funct field of the host

request header (Figure 7–4 on page 128), the s_xio function issues a read or write

request.

C Interface:

s_xio (p_hdr)
SREQ_HDR_TYPE *p_hdr;

p_hdr: pointer to host request header

Assembly Interface:

TRAP #4

Input: A0.L = address of SREQ_HDR_TYPE structure

Output: none

Access:

task or ISR

7.5 Diagnostics

OS/Impact defines a global system table (GST) that can be accessed at a fixed offset

from the load address and contains information used for system initialization and diag-

nostic purposes. A number of four-byte entries are defined by the operating system as

unused and are available for use by ICP-resident system and SPS tasks. (See the

OS/Impact Operating System Programmer’s Guide for a definition of the GST.)
DC 900-1338I 137

Protocol Software Toolkit Programmer Guide
OS/Impact initializes the second unused entry in the GST to zero. If OS/Impact

encounters a fatal error during its operation, it stores a panic code at this location and

executes an illegal instruction, which causes a trap to the debugger. The panic codes,

described below, are each composed of an identifier in the high-order word and a mod-

ifier in the low-order word.

Identifier 0x100

Modifier Error code returned from s_qcreat

Description Creation of the node declaration queue failed (queue ID 1).

Identifier 0x200

Modifier Error code returned from s_qcreat

Description Creation of the pending request queue failed (queue ID 2).

Identifier 0x300

Modifier Error code returned from s_accpt

Description An accept message system call on the node declaration queue returned

an invalid queue ID error.

Identifier 0x400

Modifier Queue ID

Description An accept message system call on a read request queue returned an

invalid queue ID error.

Identifier 0x500

Modifier Queue ID

Description An accept message system call on a write request queue returned an

invalid queue ID error.

Identifier 0x600

Modifier Error code returned from s_susp

Description A suspend call failed.
138 DC 900-1338I

7: Host/ICP Interface
Identifier 0x700

Modifier Disposition flag value

Description A buffer contains an illegal disposition flag value.

Identifier 0x800

Modifier Error code returned from s_accpt

Description An accept message system call on the pending request queue returned

an invalid queue ID or queue empty error. (The queue should not be

empty, because s_accpt is not called unless the queue head pointer is

non-zero.)

Identifier 0x900

Modifier 8 (error code returned from DMA subroutine)

Description A data transfer from the host to the ICP failed due to a bus error.

Identifier 0xA00

Modifier 8 (error code returned from DMA subroutine)

Description A data transfer from the ICP to the host failed due to a bus error.
DC 900-1338I 139

Protocol Software Toolkit Programmer Guide
140 DC 900-1338I

Chapter
8 Client Applications —
DLI Overview
Note
In this document, the term “Freeway” can mean either a Freeway

server or an embedded ICP. For the embedded ICP, also refer to

the user guide for your ICP and operating system (for example, the

ICP2432 User Guide for Windows NT).

This chapter describes how to use the data link interface (DLI) functions, part of Proto-

gate’s application program interface (API), to initiate and terminate sessions when

developing applications that interface to the ICP sample protocol software (SPS). You

should be familiar with the concepts described in the Freeway Data Link Interface Refer-

ence Guide ; however, some summary information is provided in Section 8.1.

If you are using an embedded ICP, you must also refer to the user guide for your specific

ICP and operating system regarding the embedded DLI interface (referred to as

DLITE).

The following might be helpful references while reading this chapter:

• Section 8.2 compares a typical sequence of DLI function calls using blocking ver-

sus non-blocking I/O.

• Appendix C explains error handling and provides a summary table for error

codes. The Freeway Data Link Interface Reference Guide gives complete DLI error

code descriptions.
DC 900-1338I 141

Protocol Software Toolkit Programmer Guide
• The Freeway Data Link Interface Reference Guide shows a generic code example

which can guide your application program development. The loopback test pro-

gram (spsalp.c) distributed with the product software is another example.

• Chapter 9 provides detailed command and response header formats.

• The various mnemonic codes mentioned throughout this document are defined

in the include files provided with this product, which are described in Table 8–1.

8.1 Summary of DLI Concepts

The DLI presents a consistent, high-level, common interface across multiple clients,

operating systems, and transport services. It implements functions that permit your

application to use data link services to access, configure, establish and terminate ses-

sions, and transfer data across multiple data link protocols. The DLI concepts are

described in detail in the Freeway Data Link Interface Reference Guide. This section sum-

marizes the basic information.

8.1.1 Configuration in the Freeway Server or Embedded ICP Environment

Several items must be configured before a client application can run in the Freeway

environment:

• boot configuration for Freeway server implementations

• data link interface (DLI) session configuration

Table 8–1: Include Files

Description Include File

DLI_PROT_* Codes dliprot.h

DLI_ICP_ERR_* Codes dlicperr.h

DLI_ICP_CMD_* Codes dliicp.h

FW_* Codes freeway.h
142 DC 900-1338I

8: Client Applications — DLI Overview

/14/97:
ure 8-1 is
t what is
lly in the
tware, but
ic said to use
 The real file
esn’t have
glink and
able.
• transport subsystem interface (TSI) connection configuration

• protocol-specific ICP link configuration

The Freeway server boot configuration file is normally created during the installation

procedures described in the Freeway User Guide. DLI session and TSI connection con-

figurations are defined by specifying parameters in DLI and TSI ASCII configuration

files and then running two preprocessor programs, dlicfg and tsicfg, to create binary

configuration files. The DLI and TSI configuration process is described in

Section 8.1.1.1 and Section 8.1.1.2.

Protocol-specific ICP link configuration must be performed by the client application

(as described in Section 9.2.7.1 on page 175) after dlOpen completes the DLI session

establishment process.

8.1.1.1 DLI Configuration for Raw Operation

The application program interface (API) is implemented in two levels: the data link

interface (DLI) and the transport subsystem interface (TSI). These levels are docu-

mented in the Freeway Data Link Interface Reference Guide and the Freeway Transport

Subsystem Interface Reference Guide.

The DLI provides two levels of operation for ICP protocol software, as described in the

Freeway Data Link Interface Reference Guide. Normal operation is not supported by the

SPS. Raw operation means that the application programmer must provide link config-

uration, link enable, and all the other requirements of the ICP protocol software. The

SPS is provided as an example to be modified; however, the DLI supports only Raw

operation for the SPS. The DLI optional arguments data structure (DLI_OPT_ARGS),

which is central to Raw operation, is described in Section 9.1 on page 157. The embed-

ded DLITE interface also supports only Raw operation.

The configuration files for the client application are relatively simple. However, you

must specify the DLI configuration parameters whose values differ from the defaults.

11
Fig
no
rea
sof
Er
it!
do
Cf
En
DC 900-1338I 143

Protocol Software Toolkit Programmer Guide
Figure 8–1 shows a portion of a typical DLI configuration file, such as spsaldcfg. The

BoardNo parameter specifies the target ICP. If BoardNo is not specified, the default is

zero. The PortNo parameter may or may not be provided. The PortNo parameter is

required if the application requests a DLI session status and expects to see the correct

value for iPortNo. If your application does not require the iPortNo value, the DLI config-

uration file does not need to specify PortNo. If PortNo is not included, only one DLI sec-

tion (besides the “main” section) is required in the configuration file, which can be

referenced in all calls to dlOpen. Refer to the Freeway Data Link Interface Reference Guide

for more information on requesting DLI session status.

For an embedded ICP using the DLITE interface, Figure 8–2 shows the “main” section

and two sessions. You need to include only those parameters whose values differ from

the defaults. The DLITE interface supports only Raw operation. For more information

on the DLITE interface, refer to the user guide for your embedded ICP and operating

system (for example, the ICP2432 User Guide for Windows NT).
144 DC 900-1338I

8: Client Applications — DLI Overview
//---//
// "main" section. If not defined defaults are used. If present //
// the main section must be the very first section of the DLI //
// configuration file. //
//---//

main
{

AsyncIO = "yes"; // Non-blocking I/O //
TSICfgName = "spsaltcfg.bin"; // TSI binary config file //

}

//---//
// Define a section for a raw port. //
//---//

server0icp0port0
{

AlwaysQIO = "yes"; // DLI always queues I/O //
AsyncIO = "Yes"; // Non-blocking I/O //
BoardNo = 0; // First ICP is board 0 //
CfgLink = "No"; // Client must configure link //
Enable = "No"; // Client must enable link //

PortNo = 0; // First link is 0 //
Protocol = "raw"; // SPS uses Raw operation //
Transport = "conn0"; // TSI connection name //

}
//---//
// Define a section for a raw port. //
//---//

server0icp0port1
{

AlwaysQIO = "yes"; // DLI always queues I/O //
AsyncIO = "Yes"; // Non-blocking I/O //
BoardNo = 0; // First ICP is board 0 //
CfgLink = "No"; // Client must configure link //
Enable = "No"; // Client must enable link //

PortNo = 1; // Second link is 1 //
Protocol = "raw"; // SPS uses Raw operation //
Transport = "conn0"; // TSI connection name //

}

Figure 8–1: DLI Configuration File for Two Links (Freeway Server)
DC 900-1338I 145

Protocol Software Toolkit Programmer Guide

2/16/99 Per
Vic
Dobrawa:
To avoid
potential
confusion,
deleted
“transport”
parameter
(not used).
main // DLI “main” section: //
{

asyncIO = “yes”; // Use non-blocking I/O //
tsiCfgName = "." // tsiCfgName unused for DLITE //

// Exception: For NT = Location of log/trace svc //
// The following two parameters are for DLITE only: //

maxBuffers = 1024;
maxBufSize = 1200;

}

ICP0link0 // First session name: //
{ // Client-related parameters: //

alwaysQIO = “yes”; // Queue I/Os even if complete //
asyncIO = “yes”; // Use non-blocking I/O //
cfgLink = “no”; // Client configures links //
enable = “no”; // Client enables links //
localAck = “no”; // Client processes transmit ack //
boardNo = 0; // First ICP is zero //
portNo = 0; // First ICP link is zero //
protocol = “raw”; // DLITE requires Raw operation //
maxBufSize = 1200; // Used by DLITE //

}

ICP0link1 // Second session name: //
{ // Client-related parameters: //

alwaysQIO = “yes”; // Queue I/Os even if complete //
asyncIO = “yes”; // Use non-blocking I/O //
cfgLink = “no”; // Client configures links //
enable = “no”; // Client enables links //
localAck = “no”; // Client processes transmit ack //
boardNo = 0; // First ICP is zero //
portNo = 1; // First ICP link is zero //
protocol = “raw”; // DLITE requires Raw operation //
maxBufSize = 1200; // Used by DLITE //

}

Figure 8–2: DLI Configuration File for Two Embedded ICP Links (DLITE Interface)

146 DC 900-1338I

8: Client Applications — DLI Overview
8.1.1.2 DLI and TSI Configuration Process

This section summarizes the process for configuring DLI sessions and TSI connections.

DLI and TSI text configuration files are used as input to the dlicfg and tsicfg preproces-

sor programs to produce binary configuration files which are used by the dlInit and

dlOpen functions. For embedded ICPs, only a DLI configuration file is used (not a TSI

configuration file).

During your client application development and testing, you might need to perform

DLI configuration repeatedly (as well as TSI configuration for a Freeway server).

The DLI and TSI configuration files provided with the product are listed in Table 8–2.

The DLI and TSI configuration procedures are summarized as follows. Keep in mind

that TSI configuration does not apply to an embedded ICP environment.

1. For a Freeway server, create or modify a TSI text configuration file specifying the

configuration of the TSI connections (for example, spsaltcfg in the

freeway/client/test/sps directory).

2. Create or modify a DLI text configuration file specifying the DLI session configu-

ration for all ICPs and serial communication links in your system (for example,

spsaldcfg in the freeway/client/test/sps directory).

Table 8–2: Configuration File Names

Freeway Server Embedded ICP

DLI: spsaldcfg spsacfg
spsscfg

TSI: spsaltcfg TSI not applicable
for embedded ICP
DC 900-1338I 147

Protocol Software Toolkit Programmer Guide
3. If you have a UNIX or Windows NT system, skip this step. If you have a VMS sys-

tem, run the makefc.com command file from the [FREEWAY.CLIENT.TEST.SPS]

directory to create the foreign commands used for dlicfg and tsicfg.

@MAKEFC <tcp-sys>

where <tcp-sys> is your TCP/IP package:

MULTINET (for a Multinet system)

TCPWARE (for TCPware system)

UCX (for a UCX system)

VMS example: @MAKEFC UCX

4. For a Freeway server, go to the freeway/client/test/sps directory and execute tsicfg

with the text file from Step 1 as input. This creates the TSI binary configuration

file in the same directory as the location of the text file (unless a different path is

supplied with the optional filename). If the optional filename is not supplied, the

binary file is given the same name as your TSI text configuration file plus a .bin

extension.

tsicfg TSI-text-configuration-filename [TSI-binary-configuration-filename]

UNIX example: freeway/client/op-sys/bin/tsicfg spsaltcfg

VMS example: tsicfg spsaltcfg

NT example: freeway\client\op-sys\bin\tsicfg spsaltcfg

5. From the freeway/client/test/sps (or the freeway/client/nt_dlite/sps) directory, exe-

cute dlicfg with the text file from Step 2 as input. This creates the DLI binary con-

figuration file in the same directory as the location of the text file (unless a

different path is supplied with the optional filename). If the optional filename is

not supplied, the binary file is given the same name as your DLI text configuration

file plus a .bin extension.

dlicfg DLI-text-configuration-filename [DLI-binary-configuration-filename]

UNIX example: freeway/client/op-sys/bin/dlicfg spsaldcfg
148 DC 900-1338I

8: Client Applications — DLI Overview
VMS example: dlicfg spsaldcfg

NT example: freeway\client\op-sys\bin\dlicfg spsaldcfg

Note
You must rerun dlicfg or tsicfg whenever you modify the text con-

figuration file so that the DLI or TSI functions can apply the

changes. On all but VMS systems, if a binary file already exists with

the same name in the directory, the existing file is renamed by

appending the .BAK extension. If the renamed file duplicates an

existing file in the directory, the existing file is removed by the con-

figuration preprocessor program.

6. If you have a UNIX system, move the binary configuration files that you created

in Step 4 and Step 5 into the appropriate freeway/client/op-sys/bin directory where

op-sys indicates the operating system (for example: dec, hpux, sgi, solaris, or sunos).

UNIX example: mv spsaldcfg.bin /usr/local/freeway/client/hpux/bin

mv spsaltcfg.bin /usr/local/freeway/client/hpux/bin

7. If you have a VMS system, run the move.com command file from the [FREEWAY.

CLIENT.TEST.SPS] directory. This moves the binary configuration files you cre-

ated in Step 4 and Step 5 into the bin directory for your particular TCP/IP pack-

age.

@MOVE filename <tcp-sys>

where filename is the name of the binary configuration file and

<tcp-sys> is the TCP/IP package:

MULTINET (for a Multinet system)

TCPWARE (for TCPware system)

UCX (for a UCX system)

VMS example: @MOVE SPSALDCFG.BIN UCX
DC 900-1338I 149

Protocol Software Toolkit Programmer Guide

Techpubs —
keep the op-
sys up-to-
date with
DC900-133
8. If you have a Windows NT system, move the binary configuration files that you

created in Step 4 and Step 5 into the appropriate freeway\client\op-sys\bin directory

where op-sys indicates the operating system: axp_nt or int_nt (for a Freeway

server); axp_nt_emb or int_nt_emb (for an embedded ICP).

NT example: copy spsaldcfg.bin \freeway\client\axp_nt\bin

copy spsaltcfg.bin \freeway\client\axp_nt\bin

When your application calls the dlInit function, the DLI and TSI binary configuration

files generated in Step 4 and Step 5 are used to configure the DLI sessions and TSI con-

nections. Figure 8–3 shows the configuration process.

Figure 8–3: DLI and TSI Configuration Process

3

Application

DLI

TSI

Transport
Environment

28
36

dlicfg

DLI Text
Configuration File

DLI Binary
Configuration File

DLI Configuration
Preprocessor

tsicfg

TSI Text
Configuration File

TSI Configuration
Preprocessor

TSI Binary
Configuration File
150 DC 900-1338I

8: Client Applications — DLI Overview
8.1.2 Blocking versus Non-blocking I/O

Note
Earlier Simpact releases used the term “synchronous” for blocking

I/O and “asynchronous” for non-blocking I/O. Some parameter

names reflect the previous terminology.

Non-blocking I/O applications are useful when doing I/O to multiple channels with a

single process where it is not possible to “block” (sleep) on any one channel waiting for

I/O completion. Blocking I/O applications are useful when it is reasonable to have the

calling process wait for I/O completion.

In the Freeway environment, the term blocking I/O indicates that the dlOpen, dlClose,

dlRead and dlWrite functions do not return until the I/O is complete. For non-blocking

I/O, these functions might return after the I/O has been queued at the client, but before

the transfer to the ICP is complete. The client must handle I/O completions at the soft-

ware interrupt level in the completion handler established by the dlInit or dlOpen func-

tion, or by periodic use of dlPoll to determine the I/O completion status.

The asyncIO DLI configuration parameter specifies whether an application session uses

blocking or non-blocking I/O (set asyncIO to “no” to use blocking I/O). The alwaysQIO

DLI configuration parameter further qualifies the operation of non-blocking I/O activ-

ity. Refer to the Freeway Data Link Interface Reference Guide for more information.

The effects on different DLI functions, resulting from the choice of blocking or non-

blocking I/O, are explained in the Freeway Data Link Interface Reference Guide.

Server-resident applications must use non-blocking I/O; support for blocking I/O in

server-resident applications is not available.
DC 900-1338I 151

Protocol Software Toolkit Programmer Guide
8.1.3 Buffer Management

Currently the interrelated Freeway, DLI, TSI, and ICP buffers default to a size of 1024

bytes.

Caution
If you need to change a buffer size for your application, refer to the

Freeway Data Link Interface Reference Guide for explanations of the

complexities that you must consider.
152 DC 900-1338I

8: Client Applications — DLI Overview
8.2 Example Call Sequences

Table 8–3 shows the sequence of DLI function calls to send and receive data using

blocking I/O. Table 8–4 is the non-blocking I/O example. The remainder of this chapter

and the Freeway Data Link Interface Reference Guide give further information about

each function call. Refer back to Section 8.1.2 on page 151 for more information on

blocking and non-blocking I/O.

Note
The example call sequences assume that the cfgLink and enable DLI

configuration parameters are set to “no” (the default is “yes” for

both). This is necessary for the client application to configure and

enable the ICP links. Figure 8–1 on page 145 shows an example

DLI configuration file.

Table 8–3: DLI Call Sequence for Blocking I/O

1. Call dlInit to initialize the DLI operating environment. The first parameter is
your DLI binary configuration file name.

2. Call dlOpen for each required session (link) to get a session ID.

3. Call dlBufAlloc for all required input and output buffers.

4. Call dlWrite to send an attach request to Freeway.

5. Call dlRead to receive the protocol session ID from Freeway.

6. Call dlWrite to send a configuration message to Freeway.

7. Call dlRead to receive the configuration confirmation from Freeway.

8. Call dlWrite to send a link activation message to Freeway.

9. Call dlRead to receive the link activation confirmation from Freeway.

10. Call dlWrite to send requests and data to Freeway.

11. Call dlRead to receive responses and data from Freeway.

12. Repeat Step 10 and Step 11 until you are finished writing and reading.

13. Call dlBufFree for all buffers allocated in Step 3.

14. Call dlClose for each session ID obtained in Step 2.

15. Call dlTerm to terminate your application’s access to Freeway.
DC 900-1338I 153

Protocol Software Toolkit Programmer Guide
Note
Server-resident applications must use non-blocking I/O. It is also

necessary to call dlPost before relinquishing task control. See the

Freeway Data Link Interface Reference Guide for details.

Table 8–4: DLI Call Sequence for Non-blocking I/O

1. Call dlInit to initialize the DLI operating environment. The first parameter is
your DLI binary configuration file name.

2. Call dlOpen for each required session (link) to get a session ID.

3. Call dlPoll to confirm the success of each session ID obtained in Step 2.

4. Call dlBufAlloc for all required input and output buffers.

5. Call dlRead to queue the initial read request.

6. Call dlWrite to send an attach request to Freeway.

7. Call dlRead to receive the protocol session ID from Freeway.

8. Call dlWrite to send a configuration message to Freeway.

9. Call dlRead to receive the configuration confirmation from Freeway.

10. Call dlWrite to send a link activation message to Freeway.

11. Call dlRead to receive the link activation confirmation from Freeway.

12. Call dlWrite to send requests and data to Freeway.

13. Call dlRead to queue reads to receive responses and data from Freeway.

14. As I/Os complete, call dlPoll to confirm the success of each dlWrite in Step 12
and to accept the data from each dlRead in Step 13.

15. Repeat Step 12 through Step 14 until you are finished writing and reading.

16. Call dlBufFree for all buffers allocated in Step 4.

17. Call dlClose for each session ID obtained in Step 2.

18. Call dlPoll to confirm that each session was closed in Step 17.

19. Call dlTerm to terminate your application’s access to Freeway.
154 DC 900-1338I

8: Client Applications — DLI Overview
8.3 Overview of DLI Functions

After the protocol software is downloaded to the ICP, the client and ICP can commu-

nicate by exchanging messages. These messages configure and activate each ICP link

and transfer data. The client application issues reads and writes to transfer messages to

and from the ICP.

This section summarizes the DLI functions used in writing a client application. An

overview of using the DLI functions is:

• Start up communications (dlInit, dlOpen, dlBufAlloc, dlWrite, dlRead)

• Send requests and data using dlWrite

• Receive responses using dlRead

• For blocking I/O, use dlSyncSelect to query read availability status for multiple

sessions

• For non-blocking I/O, handle I/O completions at the software interrupt level in

the completion handler established by the dlInit or dlOpen function, or by periodic

use of dlPoll to query the I/O completion status

• Monitor errors using dlpErrString

• If necessary, reset and download the protocol software to the ICP using dlControl

• For server-resident applications, use dlPost before relinquishing task control

• Shut down communications (dlBufFree, dlClose, dlTerm)

Table 8–5 summarizes the DLI function syntax and parameters, listed in the most likely

calling order. Refer to the Freeway Data Link Interface Reference Guide for details.

Chapter 9 describes the dlWrite and dlRead functions. Both functions use the optional

arguments parameter to provide the protocol-specific information required for Raw

operation (see Section 8.1.1.1 on page 143). The “C” definition of the optional argu-

ments is described in Section 9.1 on page 157.
DC 900-1338I 155

Protocol Software Toolkit Programmer Guide
Table 8–5: DLI Functions: Syntax and Parameters (Listed in Typical Call Order)

DLI Function Parameter(s) Parameter Usage

int dlInit (char *cfgFile,
char *pUsrCb,
int (*fUsrIOCH)(char *pUsrCb));

DLI binary configuration file name
Optional I/O complete control block
Optional IOCH and parameter

int dlOpena (char *cSessionName,
int (*fUsrIOCH)

(char *pUsrCB, int iSessionID));

Session name in DLI config file
Optional I/O completion handler
Parameters for IOCH

int dlPoll (int iSessionID,
int iPollType,
char **ppBuf,
int *piBufLen,
char *pStat,
DLI_OPT_ARGS **ppOptArgs);

Session ID from dlOpen
Request type
Poll type dependent buffer
Size of I/O buffer (bytes)
Status or configuration buffer
Optional arguments

int dlpErrString (int dlErrNo); DLI error number (global variable
dlerrno)

char *dlBufAlloc (int iBufLen); Minimum buffer size

int dlRead (int iSessionID,
char **ppBuf,
int iBufLen,
DLI_OPT_ARGS *pOptArgs);

Session ID from dlOpen
Buffer to receive data
Maximum bytes to be returned
Optional arguments structure

int dlWrite (int iSessionID,
char *pBuf,
int iBufLen,
int iWritePriority,
DLI_OPT_ARGS *pOptArgs);

Session ID from dlOpen
Source buffer for write
Number of bytes to write
Normal or expedite write
Optional arguments structure

int dlPost (void);

int dlSyncSelect (int iNbrSessID,
int sessIDArray[],
int readStatArray[]);

Number of session IDs
Packed array of session IDs
Array containing read status for IDs

char *dlBufFree (char *pBuf); Buffer to return to pool

int dlClose (int iSessionID,
int iCloseMode);

Session ID from dlOpen
Mode (normal or force)

int dlTerm (void);

int dlControl (char *cSessionName,
int iCommand,
int (*fUsrIOCH)

(char *pUsrCB, int iSessionID));

Session name in DLI config file
Command (e.g. reset/download)
Optional I/O completion handler
Parameters for IOCH

a It is critical for the client application to receive the dlOpen completion status before making any other DLI
requests; otherwise, subsequent requests will fail. After the dlOpen completion, however, you do not have
to maintain a one-to-one correspondence between DLI requests and dlRead requests.
156 DC 900-1338I

Chapter
9 Client Applications —
Commands and Responses
This chapter presents the data structures required for the client application to exchange

messages with the ICP, followed by the details of the individual commands and

responses.

9.1 Client and ICP Interface Data Structures

The data link interface (DLI) provides a session-level interface between a client applica-

tion and the sample protocol software resident on an ICP. Messages traveling from the

client application go over the Ethernet to the Freeway server or ICP driver and end up

at the ICP. From the client’s perspective, these messages consist of data buffers supple-

mented with the DLI optional arguments data structure to provide the protocol-spe-

cific information required for Raw operation (refer back to Section 8.1.1.1 on

page 143). Figure 9–1 shows the “C” definition of the DLI optional arguments struc-

ture.

From the ICP’s perspective, these messages consist of the api_msg data structure shown

in Figure 9–2. The icp_hdr structure is of type ICP_HDR and the prot_hdr structure is of

type PROT_HDR, as shown in Figure 9–3.

Table 9–1 shows the equivalent fields between the DLI_OPT_ARGS structure and the

ICP_HDR and PROT_HDR structures. The client API translates between the

DLI_OPT_ARGS and the api_msg data structures. The usICPCommand field of the

DLI_OPT_ARGS structure corresponds to the command field of the ICP_HDR structure.

The usProtCommand field of the DLI_OPT_ARGS structure corresponds to the command

field of the PROT_HDR structure.
DC 900-1338I 157

Protocol Software Toolkit Programmer Guide
typedef struct {
unsigned short usFWPacketType; /* Client’s packet type */
unsigned short usFWCommand; /* Client’s cmd sent or rcvd */
unsigned short usFWStatus; /* Client’s status of I/O ops */
unsigned short usICPClientID; /* old su_id */
unsigned short usICPServerID; /* old sp_id */
unsigned short usICPCommand; /* ICP’s command. */
short iICPStatus; /* ICP’s command status */
unsigned short usICPParms[3]; /* ICP’s xtra parameters */
unsigned short usProtCommand; /* protocol cmd */
short iProtModifier; /* protocol cmd’s modifier */
unsigned short usProtLinkID; /* protocol link ID */
unsigned short usProtCircuitID; /* protocol circuit ID */
unsigned short usProtSessionID; /* protocol session ID */
unsigned short usProtSequence; /* protocol sequence */
unsigned short usProtXParms[2]; /* protocol xtra parms */
} DLI_OPT_ARGS;

Figure 9–1: “C” Definition of DLI Optional Arguments Structure
158 DC 900-1338I

9: Client Applications — Commands and Responses
struct api_msg {
ICP_HDR icp_hdr;
PROT_HDR prot_hdr;
bit8 *data;

};

Figure 9–2: “C” Definition of api_msg Data Structure

typedef struct { /* ICP message header */
bit16 su_id; /* service user (client) ID */
bit16 sp_id; /* service provider (server) ID */
bit16 count; /* size of data following this header */
bit16 command; /* function code */
bit16 status; /* function status */
bit16 params[3]; /* ICP-specific parameters */

} ICP_HDR;

typedef struct { /* Protocol message header */
bit16 command; /* function code */
bit16 modifier; /* function modifier */
bit16 link; /* physical port number */
bit16 circuit; /* data link circuit identifier */
bit16 session; /* session identifier */
bit16 sequence; /* message sequence number */
bit16 reserved1; /* reserved */
bit16 reserved2; /* reserved */

} PROT_HDR;

Figure 9–3: “C” Definition of icp_hdr and prot_hdr Data Structures
DC 900-1338I 159

Protocol Software Toolkit Programmer Guide
Table 9–1: Comparison of DLI_OPT_ARGS and ICP_HDR/PROT_HDR Fields

DLI_OPT_ARGS
in DLI Client Program

ICP_HDR and
PROT_HDR in

 ICP SPS Program Field Description

DLI_OPT_ARGS.usFWPacketType unused client’s packet type

DLI_OPT_ARGS.usFWCommand unused client’s command sent or received

DLI_OPT_ARGS.usFWStatus unused client’s status of I/O operations

DLI_OPT_ARGS.usICPClientID icp.su_id old su_id

DLI_OPT_ARGS.usICPServerID icp.sp_id old sp_id

count filled in by DLI icp.count data size

DLI_OPT_ARGS.usICPCommand icp.command ICP’s command

DLI_OPT_ARGS.iICPStatus icp.status ICP’s command status

DLI_OPT_ARGS.usICPParms[3] icp.params[3] ICP’s extra parameters

DLI_OPT_ARGS.usProtCommand prot.command protocol command

DLI_OPT_ARGS.iProtModifier prot.modifier protocol command’s modifier

DLI_OPT_ARGS.usProtLinkID prot.link protocol link ID

DLI_OPT_ARGS.usProtCircuitID prot.circuit protocol circuit ID

DLI_OPT_ARGS.usProtSessionID prot.session protocol session ID

DLI_OPT_ARGS.usProtSequence prot.sequence protocol sequence

DLI_OPT_ARGS.usProtXParms[2] prot.reserved1 protocol extra parameters

prot.reserved2 second XParms field
160 DC 900-1338I

9: Client Applications — Commands and Responses
9.2 Client and ICP Communication

The following sections discuss the DLI functions and DLI_OPT_ARGS data structure as

used by client applications in communicating with ICP software. In addition, this com-

munication is discussed from the ICP perspective with details regarding the content of

the ICP_HDR and PROT_HDR data structures.

The ICP supports the command/response codes shown in Table 9–2, which are

encoded into the DLI_OPT_ARGS structure (shown previously in Figure 9–1 on

page 158). The remainder of this chapter describes how these commands are used to

access and provide data to a wide area network.

Table 9–2: Command/Response Code Summary

Function
 usICPCommand

Field Code
usProtCommand

Field Code Reference Section

Attach DLI_ICP_CMD_ATT
ACH

DLI_ICP_CMD_ATTACH Section 9.2.3 on page 164

Bind DLI_ICP_CMD_BIND DLI_ICP_CMD_BIND Section 9.2.5 on page 169

Configure link DLI_ICP_CMD_WRIT
E
DLI_ICP_CMD_REA
D

DLI_PROT_CFG_LINK Section 9.2.7.1 on page 175

Request statistics DLI_ICP_CMD_WRIT
E
DLI_ICP_CMD_REA
D

DLI_PROT_GET_STATIST
ICS_REPORT

Section 9.2.7.2 on page 179

Send data DLI_ICP_CMD_WRIT
E

DLI_PROT_SEND_NORM
_DATA

Section 9.2.7.3 on page 182

Receive acknowledge DLI_ICP_CMD_REA
D

DLI_PROT_RESP_LOCAL
_ACK

Section 9.2.7.3 on page 182

Receive data DLI_ICP_CMD_REA
D

DLI_PROT_SEND_NORM
_DATA

Section 9.2.8.1 on page 185

Unbind DLI_ICP_CMD_UNBI
ND

DLI_ICP_CMD_UNBIND Section 9.2.6 on page 172

Detach DLI_ICP_CMD_DET
ACH

DLI_ICP_CMD_DETACH Section 9.2.4 on page 167
DC 900-1338I 161

Protocol Software Toolkit Programmer Guide
9.2.1 Sequence of Client Events to Communicate to the ICP

To exchange data with a wide-area network, a client must follow these steps:

1. Initiate a session with the Freeway server or the embedded product’s driver

(dlOpen, Section 9.2.2 on page 163)

2. Initiate a session with the ICP link (Attach command, Section 9.2.3 on page 164)

3. Configure the link (Section 9.2.7.1 on page 175)

4. Activate the link (Bind command, Section 9.2.5 on page 169)

5. Send data to and receive data from the link (Section 9.2.7 on page 174 and

Section 9.2.8 on page 185)

6. Deactivate the link (Unbind command, Section 9.2.6 on page 172)

7. End the session with the ICP link (Detach command, Section 9.2.4 on page 167)

8. End the session with the Freeway server or the embedded product’s driver

(dlClose, Section 9.2.4 on page 167)

The following sections describe how to use the DLI subroutine library to perform these

steps. Prior to these steps, however, the DLI must be initialized. This is accomplished

when the application calls the dlInit function, which is declared as follows:

int dlInit (char *pCfgFile,
char *pUsrCB,
int (*pUsrIOCH) (char *pUsrCB));

The following is an example of a call to dlInit:

status = dlInit (“spsaldcfg.bin”, NULL, NULL);

This example indicates to DLI that the file spsaldcfg.bin is available to be read to config-

ure the process, and that if an I/O completion function is to be called, it is specified as

individual sessions are opened in calls to dlOpen. For more information, consult the

Freeway Data Link Interface Reference Guide.
162 DC 900-1338I

9: Client Applications — Commands and Responses
9.2.2 Initiating a Session with the ICP (dlOpen)

A session identifier is used by DLI to manage information exchanged between the client

application and the ICP. The session identifier is requested by the client, then defined

and returned by the DLI. This is accomplished when the application calls dlOpen. The

ICP software is not involved in these two steps. The dlOpen function is declared as fol-

lows:

int dlOpen (char *cSessionName,
short (*fUsrIOCH) (char *pUseCB,
int iSessionID));

The first argument is the name of a section in the application’s DLI configuration file.

The second argument is the name of a function, supplied by the application writer, that

DLI calls when it services an I/O condition for the session identifier returned by the

dlOpen call.

The following is an example of a call to dlOpen.

servSessID = dlOpen (“server0icp0port0”, ioComplete);

The string server0icp0port0 is the name of a section in a DLI configuration file, and

ioComplete is the name of a function the application writer provides. The value of

servSessID is used in further calls to DLI functions.
DC 900-1338I 163

Protocol Software Toolkit Programmer Guide
9.2.3 Initiating a Session with an ICP Link (Attach)

When the DLI configuration file parameter protocol is set to raw (protocol="raw"), a call

to the dlOpen function establishes a data path to the ICP for a given link. This path is ref-

erenced by the return value of dlOpen and is called the session identifier. A call to dlPoll

can be used to verify the success of the dlOpen function. If the status of the new session

is DLI_STATUS_READY, the open was successful. Next, the data path must be extended

to the ICP with an attach. This is accomplished by issuing a call to dlWrite with the

optional argument structure set as shown in Figure 9–4.

Note
The ICP returns a protocol session identifier in the usProtSessionID

field. This value must be used in the usProtSessionID field of the

optional arguments structure in all future calls to dlWrite for this

link.

DLI_OPT_ARGS.usFWPacketType FW_DATA
DLI_OPT_ARGS.usFWCommand FW_ICP_WRITE
DLI_OPT_ARGS.usFWStatus n/a
DLI_OPT_ARGS.usICPClientID n/a
DLI_OPT_ARGS.usICPServerID n/a
DLI_OPT_ARGS.usICPCommand DLI_ICP_CMD_ATTACH
DLI_OPT_ARGS.iICPStatus n/a
DLI_OPT_ARGS.usICPParms [0] n/a
DLI_OPT_ARGS.usICPParms [1] n/a
DLI_OPT_ARGS.usICPParms [2] n/a
DLI_OPT_ARGS.usProtCommand DLI_ICP_CMD_ATTACH
DLI_OPT_ARGS.iProtModifier n/a
DLI_OPT_ARGS.usProtLinkID Link the session relates to
DLI_OPT_ARGS.usProtCircuitID n/a
DLI_OPT_ARGS.usProtSessionID n/a
DLI_OPT_ARGS.usProtSequence n/a
DLI_OPT_ARGS.usProtXParms [0] n/a
DLI_OPT_ARGS.usProtXParms [1] n/a

Figure 9–4: Attach Command Format
164 DC 900-1338I

9: Client Applications — Commands and Responses
From the ICP’s perspective, the attach command establishes a session between the client

application and one of the ICP links. A successful attach command gives the ICP and the

client application IDs that are unique to the current session with which they can relay

information.

The protocol session identifier is used by the ICP to manage information exchanged

between the client application and a specific link. The protocol session identifier is

requested by the client, then defined and returned by the ICP.

For the attach command, the fields of the ICP and protocol headers that the ICP receives

contain the following values:

ICP_HDR
count = size of protocol header (16 bytes)
command = DLI_ICP_CMD_ATTACH
status = high bits indicate byte ordering
params[0] = return node number

PROT_HDR
link = link number

After the ICP processes the attach command, it returns these headers with the following

field modifications:

ICP_HDR
status = error code or zero if successful

PROT_HDR
modifier = error code or zero if successful
session = session ID assigned by the ICP

The ICP receives an ICP header containing DLI_ICP_CMD_ATTACH in the command

field and a return node number (assigned by msgmux for the Freeway server or the ICP

driver for the embedded ICP product) in the params[0] field. It also receives a link num-

ber in the link field of the protocol header. If the ICP can successfully complete the

attach, it returns a session number in the session field of the protocol header and a zero

(indicating success) in both the status field of the ICP header and the modifier field of the
DC 900-1338I 165

Protocol Software Toolkit Programmer Guide
protocol header. Any subsequent transactions involving this session number will be

transmitted from the ICP via the corresponding node number.

There is a correspondence between node numbers and session numbers. (Chapter 7

provides more information on node numbers and the host/ICP interface). All the com-

mands in Section 9.2.1 on page 162, from the attach command on, must have this ses-

sion number in the session field of the protocol header. (The msgmux or ICP driver

copies the protocol session ID from the usProtSessionID field in the client’s

DLI_OPT_ARGS to the session field in the protocol header.) If the attach is unsuccessful

(for example, the link has already been attached or the link or node number is invalid),

the ICP returns an appropriate error code in the status field of the ICP header and the

modifier field of the protocol header. The Freeway Data Link Interface Reference Guide

lists possible error codes.

The response to the attach is read with a call to dlRead. If the attach was successful, the

optional argument structure in the response is as shown in Figure 9–5.

DLI_OPT_ARGS.usFWPacketType n/a
DLI_OPT_ARGS.usFWCommand n/a
DLI_OPT_ARGS.usFWStatus n/a
DLI_OPT_ARGS.usICPClientID n/a
DLI_OPT_ARGS.usICPServerID n/a
DLI_OPT_ARGS.usICPCommand DLI_ICP_CMD_ATTACH
DLI_OPT_ARGS.iICPStatus DLI_ICP_ERR_NO_ERR
DLI_OPT_ARGS.usICPParms [0] n/a
DLI_OPT_ARGS.usICPParms [1] n/a
DLI_OPT_ARGS.usICPParms [2] n/a
DLI_OPT_ARGS.usProtCommand DLI_ICP_CMD_ATTACH
DLI_OPT_ARGS.iProtModifier n/a
DLI_OPT_ARGS.usProtLinkID link the session relates to
DLI_OPT_ARGS.usProtCircuitID n/a
DLI_OPT_ARGS.usProtSessionID Protocol Session ID
DLI_OPT_ARGS.usProtSequence n/a
DLI_OPT_ARGS.usProtXParms [0] n/a
DLI_OPT_ARGS.usProtXParms [1] n/a

Figure 9–5: Attach Response Format
166 DC 900-1338I

9: Client Applications — Commands and Responses
9.2.4 Terminating a Session with an ICP Link (Detach)

When the DLI configuration file parameter protocol is set to raw (protocol="raw"), a call

to the dlClose function terminates a data path to the ICP for a given link. However,

before the session is terminated, it is important to allow the ICP to release the space

allocated by it for session management. This is accomplished by issuing a call to dlWrite

with the optional argument structure as shown in Figure 9–6. After the ICP releases the

session, the application can call dlClose to terminate the session with the ICP

From the ICP’s perspective, the detach command terminates an active session between

the client and the ICP. When the application is finished with the ICP session, it writes a

detach command to the ICP. The application establishes a DLI_OPT_ARGS structure

requesting the detach, then sends the structure to the ICP with a call to the DLI dlWrite

function.

For the detach command, the fields of the ICP and protocol headers that the ICP

receives contain the following values:

DLI_OPT_ARGS.usFWPacketType FW_DATA
DLI_OPT_ARGS.usFWCommand FW_ICP_WRITE
DLI_OPT_ARGS.usFWStatus n/a
DLI_OPT_ARGS.usICPClientID n/a
DLI_OPT_ARGS.usICPServerID n/a
DLI_OPT_ARGS.usICPCommand DLI_ICP_CMD_DETACH
DLI_OPT_ARGS.iICPStatus n/a
DLI_OPT_ARGS.usICPParms [0] n/a
DLI_OPT_ARGS.usICPParms [1] n/a
DLI_OPT_ARGS.usICPParms [2] n/a
DLI_OPT_ARGS.usProtCommand DLI_ICP_CMD_DETACH
DLI_OPT_ARGS.iProtModifier n/a
DLI_OPT_ARGS.usProtLinkID link the session relates to
DLI_OPT_ARGS.usProtCircuitID n/a
DLI_OPT_ARGS.usProtSessionID Session to end
DLI_OPT_ARGS.usProtSequence n/a
DLI_OPT_ARGS.usProtXParms [0] n/a
DLI_OPT_ARGS.usProtXParms [1] n/a

Figure 9–6: Detach Command Format
DC 900-1338I 167

Protocol Software Toolkit Programmer Guide
ICP_HDR
count = size of protocol header (16 bytes)
command = DLI_ICP_CMD_DETACH
status = high bits indicate byte ordering

PROT_HDR
session = session ID

The ICP receives a message consisting of an ICP header with DLI_ICP_CMD_DETACH

in the command field and a protocol header with the session number in the session field.

The ICP responds to this command by making that session’s ID available for future ses-

sions. The ICP also turns off devices and clears the link control table’s link active flag for

that session’s link if this was not already done as a result of a prior unbind command.

The ICP always puts a zero, indicating success, in the status field of the ICP header and

the modifier field of the protocol header and sends the two headers back to the client as

an acknowledgment.

The response to the detach is read with a call to dlRead. If the detach was successful, the

optional argument structure in the response is as shown in

DLI_OPT_ARGS.usFWPacketType n/a
DLI_OPT_ARGS.usFWCommand n/a
DLI_OPT_ARGS.usFWStatus n/a
DLI_OPT_ARGS.usICPClientID n/a
DLI_OPT_ARGS.usICPServerID n/a
DLI_OPT_ARGS.usICPCommand DLI_ICP_CMD_DETACH
DLI_OPT_ARGS.iICPStatus DLI_ICP_ERR_NO_ERR
DLI_OPT_ARGS.usICPParms [0] n/a
DLI_OPT_ARGS.usICPParms [1] n/a
DLI_OPT_ARGS.usICPParms [2] n/a
DLI_OPT_ARGS.usProtCommand DLI_ICP_CMD_DETACH
DLI_OPT_ARGS.iProtModifier n/a
DLI_OPT_ARGS.usProtLinkID link the session relates to
DLI_OPT_ARGS.usProtCircuitID n/a
DLI_OPT_ARGS.usProtSessionID Protocol Session ID
DLI_OPT_ARGS.usProtSequence n/a
DLI_OPT_ARGS.usProtXParms [0] n/a
DLI_OPT_ARGS.usProtXParms [1] n/a

Figure 9–7: Detach Response Format
168 DC 900-1338I

9: Client Applications — Commands and Responses
9.2.5 Activating an ICP Link (Bind)

After dlOpen has been called and an attach message written to the ICP, the link can be

configured (Section 9.2.7.1 on page 175). After the link is configured, it is necessary to

request the ICP to start the link’s receiver and transmitter. Starting (enabling) the link

is accomplished by sending a bind message to the ICP. The bind command activates one

of the ICP’s links by initializing flags and turning on that link’s receiver. This is accom-

plished by issuing a call to dlWrite with the optional argument structure set as shown in

Figure 9–8.

From the ICP’s perspective, when the application sends a bind command to the ICP, the

ICP completes all preparations to receive and transmit on the specified link. For the

bind command, the fields of the ICP and protocol headers that the ICP receives contain

the following values:

DLI_OPT_ARGS.usFWPacketType FW_DATA
DLI_OPT_ARGS.usFWCommand FW_ICP_WRITE
DLI_OPT_ARGS.usFWStatus n/a
DLI_OPT_ARGS.usICPClientID n/a
DLI_OPT_ARGS.usICPServerID n/a
DLI_OPT_ARGS.usICPCommand DLI_ICP_CMD_BIND
DLI_OPT_ARGS.iICPStatus n/a
DLI_OPT_ARGS.usICPParms [0] n/a
DLI_OPT_ARGS.usICPParms [1] n/a
DLI_OPT_ARGS.usICPParms [2] n/a
DLI_OPT_ARGS.usProtCommand DLI_ICP_CMD_BIND
DLI_OPT_ARGS.iProtModifier n/a
DLI_OPT_ARGS.usProtLinkID Link to start
DLI_OPT_ARGS.usProtCircuitID n/a
DLI_OPT_ARGS.usProtSessionID Protocol Session ID
DLI_OPT_ARGS.usProtSequence n/a
DLI_OPT_ARGS.usProtXParms [0] 0 or DLI_PROT_SEND_BIND (See
Section 9.2.5.1)
DLI_OPT_ARGS.usProtXParms [1] n/a

Figure 9–8: Bind Command Format
DC 900-1338I 169

Protocol Software Toolkit Programmer Guide
ICP_HDR
count = size of protocol header (16 bytes)
command = DLI_ICP_CMD_BIND
status = high bits indicate byte ordering

PROT_HDR
session = session ID

The constant value DLI_ICP_CMD_BIND is in the command field of the ICP header and

a session number is in the session field of the protocol header. The ICP starts that link’s

receiver, sets the link control table link active flag, and returns an acknowledgment to

the client. If the link was already active, the acknowledgment contains an error code in

the ICP header’s status field and the protocol header’s modifier field. Otherwise they

contain zero, indicating success.

The response to the bind is a read with a call to dlRead. If the bind was successful, the

optional argument structure in the response is as shown in Figure 9–9

DLI_OPT_ARGS.usFWPacketType n/a
DLI_OPT_ARGS.usFWCommand n/a
DLI_OPT_ARGS.usFWStatus n/a
DLI_OPT_ARGS.usICPClientID n/a
DLI_OPT_ARGS.usICPServerID n/a
DLI_OPT_ARGS.usICPCommand DLI_ICP_CMD_BIND
DLI_OPT_ARGS.iICPStatus DLI_ICP_ERR_NO_ERR
DLI_OPT_ARGS.usICPParms [0] n/a
DLI_OPT_ARGS.usICPParms [1] n/a
DLI_OPT_ARGS.usICPParms [2] n/a
DLI_OPT_ARGS.usProtCommand DLI_ICP_CMD_BIND
DLI_OPT_ARGS.iProtModifier n/a
DLI_OPT_ARGS.usProtLinkID Link started
DLI_OPT_ARGS.usProtCircuitID n/a
DLI_OPT_ARGS.usProtSessionID Protocol Session ID
DLI_OPT_ARGS.usProtSequence n/a
DLI_OPT_ARGS.usProtXParms [0] 0 or DLI_PROT_SEND_BIND (See
Section 9.2.5.1)
DLI_OPT_ARGS.usProtXParms [1] n/a

Figure 9–9: Bind Response Format
170 DC 900-1338I

9: Client Applications — Commands and Responses
9.2.5.1 X21bis Line Status Reports (Optional)

X21bis line status reports are an optional ICP notification of changes in the connection

status of the physical circuits on the link. To enable X21bis line status reports, use the

DLI_ICP_CMD_BIND command message specifying DLI_PROT_SEND_BIND (instead

of 0) in the usProtXparms[0] field of the DLI_OPT_ARGS. The ICP returns the standard

DLI_ICP_CMD_BIND response message (see Figure 9–9 on page 170), then begins

monitoring the modem signals on the link to determine the connection status of the

physical circuits on the link.

After the ICP detects that the physical link connection can support data transfer, it

reports a DLI_PROT_RESP_BIND status for the link. If the ICP subsequently detects loss

of the physical link connection, it reports a DLI_PROT_RESP_UNBIND status for the

link. The ICP reports each such physical line status change by means of a

DLI_ICP_CMD_BIND response message in which the usProtXparms fields of the

DLI_OPT_ARGS contain information. The usProtXparms[0] field contains

DLI_PROT_SEND_BIND to identify the message as an unsolicited X21bis line status

report. The usProtXparms[1] field reports the new line status as DLI_PROT_RESP_BIND

(online) or DLI_PROT_RESP_UNBIND (offline).
DC 900-1338I 171

Protocol Software Toolkit Programmer Guide
9.2.6 Deactivating an ICP Link (Unbind)

Stopping (disabling) the link is accomplished by sending an unbind message to the ICP.

This is accomplished by issuing a call to dlWrite with the optional argument structure

set as shown in Figure 9–10.

From the ICP’s perspective, when the application sends an unbind command, the ICP

immediately terminates all receiving and transmitting on the link. Deactivation means

that data structures are initialized and the link’s serial transmitter and receiver are dis-

abled.

For the unbind command, the fields of the ICP and protocol headers that the ICP

receives contain the following values:

DLI_OPT_ARGS.usFWPacketType FW_DATA
DLI_OPT_ARGS.usFWCommand FW_ICP_WRITE
DLI_OPT_ARGS.usFWStatus n/a
DLI_OPT_ARGS.usICPClientID n/a
DLI_OPT_ARGS.usICPServerID n/a
DLI_OPT_ARGS.usICPCommand DLI_ICP_CMD_UNBIND
DLI_OPT_ARGS.iICPStatus n/a
DLI_OPT_ARGS.usICPParms [0] n/a
DLI_OPT_ARGS.usICPParms [1] n/a
DLI_OPT_ARGS.usICPParms [2] n/a
DLI_OPT_ARGS.usProtCommand DLI_ICP_CMD_UNBIND
DLI_OPT_ARGS.iProtModifier n/a
DLI_OPT_ARGS.usProtLinkID Link to stop
DLI_OPT_ARGS.usProtCircuitID n/a
DLI_OPT_ARGS.usProtSessionID Protocol Session ID
DLI_OPT_ARGS.usProtSequence n/a
DLI_OPT_ARGS.usProtXParms [0] n/a
DLI_OPT_ARGS.usProtXParms [1] n/a

Figure 9–10: Unbind Command Format
172 DC 900-1338I

9: Client Applications — Commands and Responses
ICP_HDR
count = size of protocol header (16 bytes)
command = DLI_ICP_CMD_UNBIND
status = high bits indicate byte ordering

PROT_HDR
session = session ID

The constant DLI_ICP_CMD_UNBIND is in the command field of the ICP header and a

session number is in the session field of the protocol header. The ICP stops devices for

that link, clears the link control table link active flag, and returns an acknowledgment

to the client. If the link was inactive, the acknowledgment contains an error code in the

ICP header’s status field and the protocol header’s modifier field. Otherwise they contain

zero, indicating success.

The response to the unbind is a read with a call to dlRead. If the unbind was successful,

the optional argument structure in the response is shown in Figure 9–11.

DLI_OPT_ARGS.usFWPacketType n/a
DLI_OPT_ARGS.usFWCommand n/a
DLI_OPT_ARGS.usFWStatus n/a
DLI_OPT_ARGS.usICPClientID n/a
DLI_OPT_ARGS.usICPServerID n/a
DLI_OPT_ARGS.usICPCommand DLI_ICP_CMD_UNBIND
DLI_OPT_ARGS.iICPStatus DLI_ICP_ERR_NO_ERR
DLI_OPT_ARGS.usICPParms [0] n/a
DLI_OPT_ARGS.usICPParms [1] n/a
DLI_OPT_ARGS.usICPParms [2] n/a
DLI_OPT_ARGS.usProtCommand DLI_ICP_CMD_UNBIND
DLI_OPT_ARGS.iProtModifier n/a
DLI_OPT_ARGS.usProtLinkID Link stopped
DLI_OPT_ARGS.usProtCircuitID n/a
DLI_OPT_ARGS.usProtSessionID Protocol Session ID
DLI_OPT_ARGS.usProtSequence n/a
DLI_OPT_ARGS.usProtXParms [0] n/a
DLI_OPT_ARGS.usProtXParms [1] n/a

Figure 9–11: Unbind Response Format
DC 900-1338I 173

Protocol Software Toolkit Programmer Guide
9.2.7 Writing to an ICP Link

After the application has issued a bind command to the ICP, it can send messages to the

ICP for transmission to the wide-area network. When the ICP receives a message from

the client for transmission, it prepares it as required and sends it on the specified link.

When the last character is transmitted, the ICP sends a message to the application. The

message written by the ICP to the client is called an acknowledgment, however, in this

case “acknowledgment” means that the client’s message has been transmitted and the

memory buffer containing the message has been freed for reuse. It does not mean that

the opposite end of the network has acknowledged that it correctly received the mes-

sage. This is an important area of wide-area communications. It is vital to determine

which system is responsible for maintaining a message in case the ultimate end reader

does not receive it and the message must be retransmitted. The ICP does not have a

disk, and may not be the best platform for maintaining an extensive queue of messages.
174 DC 900-1338I

9: Client Applications — Commands and Responses
9.2.7.1 Configuring the ICP Link

After the client has issued an attach command to the ICP, but before it issues a bind com-

mand, it can send ICP link configuration values to the ICP. If no configuration message

is received by the ICP, the default link configuration is used. When the ICP receives a

configuration message, it validates it and updates the current link configuration. First

the client allocates a buffer for the CONF_TYPE structure and fills in the structure. Next

the client establishes a DLI_OPT_ARGS structure requesting the write, then sends the

structure along with a buffer containing the configuration to the ICP.

To set the link configuration options, a buffer containing the structure shown in

Figure 9–12 is sent to the ICP. The fields of the data structure are set to appropriate val-

ues by the client application.

/* Structure of configuration request message */

struct conf_type
{

bit8 protocol1; /* With Ack: 0x00=BSC, 0x01=Async, 0x02=SDLC */
/* W/out Ack: 0x80=BSC, 0x81=Async, 0x82=SDLC */

bit8 clock; /* 0 = external, 1 = internal clock */
bit8 baud_rate; /* index into baudsc or baudas */
bit8 encoding; /* 0 = NRZ, 1 = NRZI (SDLC only) */
bit8 electrical; /* electrical interface icp24xx */
bit8 parity; /* 0 = none, 1 = odd, 2 = even */
bit8 char_len; /* 7 = 7 bits, 8 = 8 bits */

/* (asynch only) */
bit8 stop_bits; /* 1 = 1 stop bit, 2 = 2 stop bits */

/* (asynch only) */
bit8 crc; /* 0 = no CRC, 1 = CRC */

/* (SDLC always uses CRC) */
bit8 syncs; /* # of leading sync chars (1-8) */

/* (BSC only) */
bit8 start_char; /* block start character */

/* (not used for SDLC) */
bit8 stop_char; /* block end char (asynch only) */

};
typedef struct conf_type CONF_TYPE;

1 Specifying a protocol with Ack enables DLI_PROT_RESP_LOCAL_ACK transmission acknowledgment messages
for the link. Specifying a protocol without Ack disables DLI_PROT_RESP_LOCAL_ACK messages for the link

Figure 9–12: Link Configuration “C” Structure
DC 900-1338I 175

Protocol Software Toolkit Programmer Guide
The data area in the write is an instance of the CONF_TYPE structure. This structure is

defined as follows:

typedef struct {
unsigned char protocol; /* With Ack: 0x00=BSC, 0x01=Async, 0x02=SDLC */

/* W/out Ack: 0x80=BSC, 0x81=Async, 0x82=SDLC */
unsigned char clock; /* (bsc and sdlc only)

0 = external, 1 = internal */
unsigned char baud_rate; /* For protocol = async,

the following values apply:
0 = 300
1 = 600
2 = 1200
3 = 1800
4 = 2400
5 = 3600
6 = 4800
7 = 7200
8 = 9600
9 = 19200

10 = 38400
11 = 57600
12 = 115000
13 = 230400

For bsc and sdlc,
the following values apply:

0 = 300
1 = 600
2 = 1200
3 = 2400
4 = 4800
5 = 9600
6 = 19200
7 = 38400
8 = 57600
9 = 64000

10 = 307000
11 = 460800
12 = 614400
13 = 737300
14 = 921600
15 = 1228800
16 = 1843200

*/

unsigned char encoding; /* (sdlc only) 0 = NRZ, 1 = NRZI */
unsigned char electrical; /* Valid values: 0x02 = EIA 232

0x0c = EIA 449
0x0d = EIA 530
0x0e = V.35 */
176 DC 900-1338I

9: Client Applications — Commands and Responses
unsigned char parity; /* (async only) 0 = none, 1 = odd,
2 = even */

unsigned char char_len; /* (async only) 7 = 7 bits,
8 = 8 bits */

unsigned char stop_bits; /* (async only) 1 = 1 stop bit,
2 = 2 stop bits */

unsigned char crc; /* (async and bsc only)
0 = no CRC, 1 = CRC */

unsigned char syncs; /* (bsc only) number of leading
sync characters 1 to 8 */

unsigned char start_char; /* (async and bsc only) block
start character */

unsigned char stop_char; /* (async only) block end
character */

};

To configure an ICP link, the client sends a message with the optional arguments struc-

ture shown in Figure 9–13.

At the ICP, the fields of the ICP and protocol headers that the ICP receives contain the

following values:

DLI_OPT_ARGS.usFWPacketType FW_DATA
DLI_OPT_ARGS.usFWCommand FW_ICP_WRITE
DLI_OPT_ARGS.usFWStatus n/a
DLI_OPT_ARGS.usICPClientID n/a
DLI_OPT_ARGS.usICPServerID n/a
DLI_OPT_ARGS.usICPCommand DLI_ICP_CMD_WRITE
DLI_OPT_ARGS.iICPStatus n/a
DLI_OPT_ARGS.usICPParms [0] n/a
DLI_OPT_ARGS.usICPParms [1] n/a
DLI_OPT_ARGS.usICPParms [2] n/a
DLI_OPT_ARGS.usProtCommand DLI_PROT_CFG_LINK
DLI_OPT_ARGS.iProtModifier n/a
DLI_OPT_ARGS.usProtLinkID Link ICP is to configure
DLI_OPT_ARGS.usProtCircuitID n/a
DLI_OPT_ARGS.usProtSessionID Session ID (See attach, Section 9.2.3 on page 164)
DLI_OPT_ARGS.usProtSequence n/a
DLI_OPT_ARGS.usProtXParms [0] n/a
DLI_OPT_ARGS.usProtXParms [1] n/a

Figure 9–13: Configure Link Command Format
DC 900-1338I 177

Protocol Software Toolkit Programmer Guide
ICP_HDR
count = size of protocol header (16 bytes) plus data area
command = DLI_ICP_CMD_WRITE
status = high bits indicate byte ordering

PROT_HDR
command = DLI_PROT_CFG_LINK
session = session ID
DATA AREA = configuration data structure

The ICP returns these headers to the client as an acknowledgment that the link config-

uration was completed. The values in the headers of this acknowledgment are the same

as those that were received at the ICP, except that the ICP header’s status field and the

protocol header’s modifier field are filled in with codes reflecting the success of the

transaction. The client application receives this acknowledgment by issuing a read com-

mand as described in Section 9.2.8 on page 185.

The client’s expected response is a DLI_PROT_CFG_LINK message with the iICPStatus

field set to DLI_ICP_ERR_NO_ERR, as shown in Figure 9–14. The data area is not appli-

cable. If the ICP discovers an error in the message, it returns the configuration message

with the iICPStatus field set to DLI_ICP_ERR_BAD_PARMS.

DLI_OPT_ARGS.usFWPacketType n/a
DLI_OPT_ARGS.usFWCommand n/a
DLI_OPT_ARGS.usFWStatus n/a
DLI_OPT_ARGS.usICPClientID n/a
DLI_OPT_ARGS.usICPServerID n/a
DLI_OPT_ARGS.usICPCommand n/a
DLI_OPT_ARGS.iICPStatus DLI_ICP_ERR_NO_ERR
DLI_OPT_ARGS.usICPParms [0] n/a
DLI_OPT_ARGS.usICPParms [1] n/a
DLI_OPT_ARGS.usICPParms [2] n/a
DLI_OPT_ARGS.usProtCommand DLI_PROT_CFG_LINK
DLI_OPT_ARGS.iProtModifier n/a
DLI_OPT_ARGS.usProtLinkID Link ICP configured
DLI_OPT_ARGS.usProtCircuitID n/a
DLI_OPT_ARGS.usProtSessionID Session ID (See attach, Section 9.2.3 on page 164)
DLI_OPT_ARGS.usProtSequence n/a
DLI_OPT_ARGS.usProtXParms [0] n/a
DLI_OPT_ARGS.usProtXParms [1] n/a

Figure 9–14: Configure Link Response Format
178 DC 900-1338I

9: Client Applications — Commands and Responses
9.2.7.2 Requesting Link Statistics From the ICP

The get statistics command requests a configuration report for a particular link. The ICP

maintains a set of statistics for each link that keeps track of events occurring on each

ICP physical port.

To request the statistics on an ICP link, the client sends a message with the optional

arguments structure shown in Figure 9–15. There is no data area for a link statistics

request.

At the ICP, the fields of the ICP and protocol headers that the ICP receives contain the

following values:

ICP_HDR
count = size of protocol header (16 bytes)
command = DLI_ICP_CMD_WRITE
status = high bits indicate byte ordering

DLI_OPT_ARGS.usFWPacketType FW_DATA
DLI_OPT_ARGS.usFWCommand FW_ICP_WRITE
DLI_OPT_ARGS.usFWStatus n/a
DLI_OPT_ARGS.usICPClientID n/a
DLI_OPT_ARGS.usICPServerID n/a
DLI_OPT_ARGS.usICPCommand DLI_ICP_CMD_WRITE
DLI_OPT_ARGS.iICPStatus n/a
DLI_OPT_ARGS.usICPParms [0] n/a
DLI_OPT_ARGS.usICPParms [1] n/a
DLI_OPT_ARGS.usICPParms [2] n/a
DLI_OPT_ARGS.usProtCommand DLI_PROT_GET_STATISTICS_REPORT
DLI_OPT_ARGS.iProtModifier n/a
DLI_OPT_ARGS.usProtLinkID Link ICP is to report on.
DLI_OPT_ARGS.usProtCircuitID n/a
DLI_OPT_ARGS.usProtSessionID Session ID (See attach, Section 9.2.3 on page 164)
DLI_OPT_ARGS.usProtSequence n/a
DLI_OPT_ARGS.usProtXParms [0] n/a
DLI_OPT_ARGS.usProtXParms [1] n/a

Figure 9–15: Request Link Statistics Command Format
DC 900-1338I 179

Protocol Software Toolkit Programmer Guide
PROT_HDR
command = DLI_PROT_GET_STATISTICS_REPORT
session = session ID

At the ICP, the fields of the ICP and protocol headers that the ICP sends to the client

application contain the following values:

ICP_HDR
count = size of protocol header (16 bytes) plus size of data
command = DLI_ICP_CMD_READ
status = 0 (success) or an error code

PROT_HDR
command = DLI_PROT_GET_STATISTICS_REPORT
modifier = 0 (success) or an error code
session = session ID
DATA AREA = statistics report

The ICP copies the link control table’s statistics data structure to the data area that fol-

lows the protocol header and writes error codes to the status and modifier fields (or zero

to indicate success). The ICP always returns a report, even if that link has not yet been

enabled. The client receives the statistics report by issuing a read command. (Note that

this statistics report serves as an acknowledgment to the write command.)

The client’s expected response is a DLI_PROT_GET_STATISTICS_REPORT message

with the iICPStatus field set to DLI_ICP_ERR_NO_ERR, as shown in Figure 9–16. If the

ICP discovers an error in the message, it returns the statistics request message with the

iICPStatus field set to an error code.

The data area for the link statistics report contains the structure SPS_STATS_REPORT

as shown in Figure 9–17.
180 DC 900-1338I

9: Client Applications — Commands and Responses
DLI_OPT_ARGS.usFWPacketType n/a
DLI_OPT_ARGS.usFWCommand n/a
DLI_OPT_ARGS.usFWStatus n/a
DLI_OPT_ARGS.usICPClientID n/a
DLI_OPT_ARGS.usICPServerID n/a
DLI_OPT_ARGS.usICPCommand DLI_ICP_CMD_READ
DLI_OPT_ARGS.iICPStatus DLI_ICP_ERR_NO_ERR
DLI_OPT_ARGS.usICPParms [0] n/a
DLI_OPT_ARGS.usICPParms [1] n/a
DLI_OPT_ARGS.usICPParms [2] n/a
DLI_OPT_ARGS.usProtCommand DLI_PROT_GET_STATISTICS_REPORT
DLI_OPT_ARGS.iProtModifier n/a
DLI_OPT_ARGS.usProtLinkID Link ICP is reporting on.
DLI_OPT_ARGS.usProtCircuitID n/a
DLI_OPT_ARGS.usProtSessionID Session ID (See attach, Section 9.2.3 on page 164)
DLI_OPT_ARGS.usProtSequence n/a
DLI_OPT_ARGS.usProtXParms [0] n/a
DLI_OPT_ARGS.usProtXParms [1] n/a

Figure 9–16: Statistics Report Response Format

typedef struct {
bit16 msg_too_long; Number of messages read from WAN

 and thrown away
bit16 dcd_lost; Number of times receiver restarted

because carrier was lost
bit16 abort_rcvd; Number of times receiver restarted

because abort was received
bit16 rcv_ovrrun; Number of messages received with receiver overruns
bit16 rcv_crcerr; Number of messages received with bad CRCs
bit16 rcv_parerr; Async only. Parity errors
bit16 rcv_frmerr; Async only. Number of framing errors
bit16 xmt_undrun; Number of transmit underruns
bit16 frame_sent; Number of message buffers sent
bit16 frame_rcvd; Number of message buffers received

} SPS_STATS_REPORT;

Figure 9–17: Statistics Report “C” Structure
DC 900-1338I 181

Protocol Software Toolkit Programmer Guide
9.2.7.3 Writing Data to an ICP Link

The write command provides data to the ICP for transmission on the specified link. The

client establishes a DLI_OPT_ARGS structure requesting the write, then sends the struc-

ture along with a buffer containing the data to the ICP by calling the DLI dlWrite func-

tion.

To transmit data on an ICP link, the client sends a message with the optional arguments

structure shown in Figure 9–18. The data area in the write is the data to be

transmitted.

DLI_OPT_ARGS.usFWPacketType FW_DATA
DLI_OPT_ARGS.usFWCommand FW_ICP_WRITE
DLI_OPT_ARGS.usFWStatus n/a
DLI_OPT_ARGS.usICPClientID n/a
DLI_OPT_ARGS.usICPServerID n/a
DLI_OPT_ARGS.usICPCommand DLI_ICP_CMD_WRITE
DLI_OPT_ARGS.iICPStatus n/a
DLI_OPT_ARGS.usICPParms [0] n/a
DLI_OPT_ARGS.usICPParms [1] n/a
DLI_OPT_ARGS.usICPParms [2] n/a
DLI_OPT_ARGS.usProtCommand DLI_PROT_SEND_NORM_DATA
DLI_OPT_ARGS.iProtModifier n/a
DLI_OPT_ARGS.usProtLinkID Link ICP is to transmit on
DLI_OPT_ARGS.usProtCircuitID n/a
DLI_OPT_ARGS.usProtSessionID Session ID (See attach, Section 9.2.3 on page 164)
DLI_OPT_ARGS.usProtSequence n/a
DLI_OPT_ARGS.usProtXParms [0] n/a
DLI_OPT_ARGS.usProtXParms [1] n/a

Figure 9–18: Send Data Command Format
182 DC 900-1338I

9: Client Applications — Commands and Responses
At the ICP, the fields of the ICP and protocol headers that the ICP receives contain the

following values:

ICP_HDR
count = size of protocol header (16 bytes) plus size of data
command = DLI_ICP_CMD_WRITE
status = high bits indicate byte ordering

PROT_HDR
command = DLI_PROT_SEND_NORM_DATA
session = session ID
DATA AREA = data to be transmitted

The ICP protocol task prepares the data for transmission. If the protocol is bsc, the con-

figured number of sync characters are placed at the beginning of the message. If the pro-

tocol is async or bsc, the configured start character is placed immediately before the

client’s data. If the protocol is async, the configured stop character is appended. If a

CRC is configured, a CRC is calculated and appended. The ICP then activates the trans-

mit device for the protocol being used by that link.

When the message has been transmitted by the ICP, the client’s expected response is a

DLI_PROT_RESP_LOCAL_ACK message, as shown in Figure 9–19. The iICPStatus and

iProtModifier fields are zero, and there is no data area.

If the ICP cannot transmit the data, the client’s expected response is a

DLI_PROT_RESP_LOCAL_ACK message with iICPStatus and iProtModifier fields that

contain an error code. In this case, the data area contains the original data not sent.

Note
However, if the link was configured for a protocol without

Ack (see Figure 9–12 on page 175), then there is no

DLI_PROT_RESP_LOCAL_ACK.
DC 900-1338I 183

Protocol Software Toolkit Programmer Guide
DLI_OPT_ARGS.usFWPacketType n/a
DLI_OPT_ARGS.usFWCommand n/a
DLI_OPT_ARGS.usFWStatus n/a
DLI_OPT_ARGS.usICPClientID n/a
DLI_OPT_ARGS.usICPServerID n/a
DLI_OPT_ARGS.usICPCommand DLI_ICP_CMD_READ
DLI_OPT_ARGS.iICPStatus 0 if successful, else an error code
DLI_OPT_ARGS.usICPParms [0] n/a
DLI_OPT_ARGS.usICPParms [1] n/a
DLI_OPT_ARGS.usICPParms [2] n/a
DLI_OPT_ARGS.usProtCommand DLI_PROT_RESP_LOCAL_ACK
DLI_OPT_ARGS.iProtModifier 0 if successful, else an error code
DLI_OPT_ARGS.usProtLinkID Link ICP transmitted data on.
DLI_OPT_ARGS.usProtCircuitID n/a
DLI_OPT_ARGS.usProtSessionID Session ID (See attach, Section 9.2.3 on page 164)
DLI_OPT_ARGS.usProtSequence n/a
DLI_OPT_ARGS.usProtXParms [0] n/a
DLI_OPT_ARGS.usProtXParms [1] n/a

Figure 9–19: Data Acknowledgment Response
184 DC 900-1338I

9: Client Applications — Commands and Responses
9.2.8 Reading from the ICP Link

The ICP sends the following types of messages to the client:

• Command acknowledgments (discussed in earlier sections)

• Responses to information requests (such as link statistics, Section 9.2.7.2 on

page 179)

• Data read from the wide area network (discussed below)

The client calls the DLI dlRead function to access these messages. The application deter-

mines the content of the read buffer by examining the usProtCommand field of the

DLI_OPT_ARGS data structure (refer back to Table 9–2 on page 161).

The application allocates a DLI_OPT_ARGS structure (Figure 9–1 on page 158), then

provides the address of the structure along with the address of a pointer to a buffer to

the DLI dlRead function.

9.2.8.1 Reading Normal Data

The read command receives normal data that has arrived on one of the ICP ports. The

fields of the ICP and protocol headers that the ICP sends to the client application con-

tain the following values:

ICP_HDR
count = size of protocol header (16 bytes) plus size of data
command = DLI_ICP_CMD_READ
status = 0 (success) or an error code

PROT_HDR
command = DLI_PROT_SEND_NORM_DATA
modifier = 0 (success) or an error code
session = session ID
DATA AREA = incoming data

To provide the client with messages read from the link, the ICP sends a message with

the optional arguments structure shown in Figure 9–20. The ICP places the data read
DC 900-1338I 185

Protocol Software Toolkit Programmer Guide
from the link in the area that follows the protocol header. The data area contains the

data read. The stop character and CRC characters are not provided.

DLI_OPT_ARGS.usFWPacketType n/a
DLI_OPT_ARGS.usFWCommand n/a
DLI_OPT_ARGS.usFWStatus n/a
DLI_OPT_ARGS.usICPClientID n/a
DLI_OPT_ARGS.usICPServerID n/a
DLI_OPT_ARGS.usICPCommand DLI_ICP_CMD_READ
DLI_OPT_ARGS.iICPStatus n/a
DLI_OPT_ARGS.usICPParms [0] n/a
DLI_OPT_ARGS.usICPParms [1] n/a
DLI_OPT_ARGS.usICPParms [2] n/a
DLI_OPT_ARGS.usProtCommand DLI_PROT_SEND_NORM_DATA
DLI_OPT_ARGS.iProtModifier n/a
DLI_OPT_ARGS.usProtLinkID Link ICP read data from.
DLI_OPT_ARGS.usProtCircuitID n/a
DLI_OPT_ARGS.usProtSessionID Session ID (See attach, Section 9.2.3 on page 164)
DLI_OPT_ARGS.usProtSequence n/a
DLI_OPT_ARGS.usProtXParms [0] n/a
DLI_OPT_ARGS.usProtXParms [1] n/a

Figure 9–20: Receive Data from ICP Response
186 DC 900-1338I

9: Client Applications — Commands and Responses
9.3 Additional Command Types Supported by the SPS

In addition to the API function calls described in the preceding sections, the SPS sup-

ports a few commands that are used by layers that lie between the SPS and API layers.

These commands are described in the following sections.

9.3.1 Internal Termination Message

The dlTerm function call is used by a client application when it loses its connection to an

ICP. The API issues the dlTerm function call and provides the return node number to be

terminated. The SPS responds by clearing link active flags, turning off devices, and free-

ing session numbers for all links that had been communicating with the client applica-

tion using that particular return node number.

The following is an example of the format of the ICP and protocol headers received by

the SPS:

ICP_HDR
count = size of protocol header (16 bytes)
command = DLI_ICP_CMD_TERM
params[0] = node number to be terminated (ACK returns on this

node as well)

PROT_HDR
command = DLI_ICP_CMD_TERM

After performing the dlTerm call, the SPS returns an acknowledgment on the node that

was just terminated. This tells msgmux or the ICP driver that the dlTerm call completed

successfully and the node number can be reused.
DC 900-1338I 187

Protocol Software Toolkit Programmer Guide
9.3.2 Internal Test Message

The test command is a diagnostic tool used by the client application. Data is written to

the SPS in the data area following a protocol header. The utility task immediately

returns this data to the client application.

The following is an example of the format of the ICP and protocol headers received by

the SPS:

ICP_HDR
count = size of protocol header (16 bytes) plus size of data
command = DLI_ICP_CMD_WRITE_EXP
params[0] = return node number assigned by msgmux or the ICP driver

PROT_HDR
command = DLI_ICP_CMD_TEST
DATA AREA = sample data

9.3.3 Internal Ping

The ping command provides a way for the client application to verify that the SPS is up

and running. This message is passed from the utility task to the protocol task before

being returned to the client application as an acknowledgment.

The following is an example of the format of the ICP and protocol headers received by

the SPS:

ICP_HDR
count = size of protocol header (16 bytes)
command = DLI_ICP_CMD_PING
params[0] = return node number assigned by msgmux or the ICP driver

PROT_HDR
command = DLI_ICP_CMD_PING
188 DC 900-1338I

Appendix
A Application Notes
This appendix clarifies some points made in the technical manuals and describes some

peculiarities of the devices and the ICP6000 hardware.

• When the Force Hardware Reset command (bits 6 and 7 of SCC write register 9)

is issued to either channel of the SCC, both channels are reset.

• When programming in a high-level language, be sure that your compiler’s opti-

mizer handles the special requirements of device-level programming correctly.

For example, if you program two writes to a hardware register in sequence, the

optimizer could inappropriately remove the first write instruction as superfluous.

• A write to mailbox 15 (ICP6000) generates a level 3 interrupt and normally enters

the PTBUG debugging tool. However, if the ICP software is “hung” with the

interrupt mask level set to three or higher, the PTBUG interrupt cannot be ser-

viced and the ICP must be reset. It is not possible to disable transmit interrupts on

the DMA controller. Receive interrupts can be disabled through a bit in Control

Register 0, but only as a group (all channels enabled or all disabled).

• During processing of an SCC interrupt, the pending interrupt must be cleared in

both the MFP, with a write to register ISRA or ISRB, and the SCC, with a write to

register WR0. In addition, to avoid losing other interrupts pending on the same

SCC, you must continue processing SCC interrupts (without returning from the

interrupt service routine, S_IRET) until the MFP register GPIP or SCC read

requesting 3 A (RR3A) port shows no pending interrupts for the SCC in question.
DC 900-1338I 189

Protocol Software Toolkit Programmer Guide
The code required to correctly process SCC interrupts can be found in the sample

protocol software file spsasm.asm.
190 DC 900-1338I

Appendix
B Data Rate Time Constants for
SCC/IUSC Programming
This appendix provides some commonly used baud rate time constants for SCC/IUSC

programming on the ICP.

Table B–1 shows SCC time constants for 1X mode for the ICP6000, normally used for

all synchronous communication modes. To select 1X mode, set bits 7 and 6 in SCC

write register 4 to 00 (binary).

Table B–2 shows SCC time constants for 16X mode for the ICP6000, normally used for

asynchronous mode. To select 16X mode, set bits 7 and 6 in SCC write register 4 to 01

(binary).

The SCC time constant is a 16-bit value. The most significant byte (MSB) is stored in

SCC write register 13, and the least significant byte (LSB) is stored in SCC write register

12.

Table B–3 shows IUSC time constants for 1X mode for the ICP2424 and ICP2432, nor-

mally used for all synchronous communication modes. Table B–4 shows IUSC time

constants for 16X mode for the ICP2424 and ICP2432, normally used for asynchronous

mode. Set the required clock mode in the Channel Mode register of the IUSC.

The IUSC time constant is a 16-bit value stored in Time Constant register 0 or 1.

DC 900-1338I 191

Protocol Software Toolkit Programmer Guide
Table B–1: SCC Time Constants for 1X Clock Rate for ICP6000

Baud Rate
(kbits/sec)

Time Constant (hexadecimal)
MSB LSB

0.3 2F FE

0.6 17 FE

1.2 0B FE

2.4 05 FE

4.8 02 FE

9.6 01 7E

19.2 00 BE

38.4 00 5E

57.6 00 3E

Table B–2: SCC Time Constants for 16X Clock Rate for ICP6000

Baud Rate
(kbits/sec)

Time Constant (hexadecimal)
MSB LSB

0.3 02 FE

0.6 01 7E

1.2 00 BE

2.4 00 5E

4.8 00 2E

9.6 00 16

19.2 00 0A

38.4 00 04

57.6 00 02
192 DC 900-1338I

B: Data Rate Time Constants for SCC/IUSC Programming
Table B–3: IUSC Time Constants for 1X Clock Rate for ICP2424 and ICP2432

Baud Rate
(kbits/sec)

Time Constant
(hexadecimal)

0.3 2FFF

0.6 17FF

1.2 0BFF

2.4 05FF

4.8 02FF

9.6 017F

19.2 00BF

38.4 005F

57.6 003F

Table B–4: IUSC Time Constants for 16X Clock Rate for ICP2424 and ICP2432

Baud Rate
(kbits/sec)

Time Constant
(hexadecimal)

0.3 02FF

0.6 017F

1.2 00BF

2.4 005F

4.8 002F

9.6 0017

19.2 000B

38.4 0005

57.6 0003
DC 900-1338I 193

Protocol Software Toolkit Programmer Guide
194 DC 900-1338I

Appendix
C Error Codes
There are several methods used by the DLI and ICP software to report errors, as

described in the following sections:

C.1 DLI Error Codes

The error code can be returned directly by the DLI function call in the global variable

dlerrno. Typical errors are those described in the Freeway Data Link Interface Reference

Guide.

C.2 ICP Global Error Codes

Table C–1 lists the ICP-related errors that can be returned in the global variable

iICPStatus. The DLI constants are defined in the dlicperr.h file.

C.3 ICP Error Status Codes

The ICP-related errors listed in Table C–1 can also be returned in the dlRead

optArgs.iICPStatus field of the response, which is a duplicate of the iIPCStatus global vari-

able. The DLI sets the dlRead optArgs.usProtCommand field to the same value as the

dlWrite request that caused the error.
DC 900-1338I 195

Protocol Software Toolkit Programmer Guide
Table C–1: ICP Error Status Codes used by the ICP

Code Mnemonic Meaning

0 DLI_ICP_ERR_NO_ERR A data block has been successfully transmitted or
received on the line or a command has been success-
fully executed.

–101 DLI_ICP_ERR_BAD_NODE An invalid node number was passed to the ICP from
the DLI.

–102 DLI_ICP_ERR_BAD_LINK The link number from the client program is not a
legal value.

–103 DLI_ICP_ERR_NO_CLIENT A DLI_ICP_CMD_ATTACH status indicating that the
maximum number of clients are registered for the
link.

–103 DLI_ICP_ERR_DEVICE_UNAV
AIL

A DLI_PROT_RESP_LOCAL_ACK status indicating
that the requested data transmission failed to com-
plete due to a DLI_PROT_RESP_UNBIND line status
condition (see Section 9.2.5.1 on page 171).

–105 DLI_ICP_ERR_BAD_CMD The command from the client program is not a legal
value.

–109 DLI_ICP_ERR_XMIT_TIMEOU
T

A DLI_PROT_RESP_LOCAL_ACK status indicating
that the requested data transmission failed to com-
plete within the default time limit.

–115 DLI_ICP_ERR_BUF_TOO_SMA
LL

The size of the data buffer sent from the client
exceeds the size of the configured buffers.

–117 DLI_ICP_ERR_LINK_ACTIVE A client request to enable (bind) a link is rejected by
the ICP because the link is already enabled.

–118 DLI_ICP_ERR_LINK_INACTIV
E

A client request to disable (unbind) a link is rejected
by the ICP because the link is already disabled.

–119 DLI_ICP_ERR_BAD_SESSID The session identification is invalid.

–121 DLI_ICP_ERR_NO_SESSION A client request to attach a link is rejected by the ICP
because the session identification is invalid.

–122 DLI_ICP_ERR_BAD_PARMS The values used for the function call are illegal.

–145 DLI_ICP_ERR_INBUF_OVERFL
OW

Server buffer input overflow

–146 DLI_ICP_ERR_OUTBUF_OVER
FLOW

Server buffer output overflow
196 DC 900-1338I

Index
Numerics

68020 programming environment 37

A

Abort interrupt 111
Acknowledgment

local ack 175, 183
Acknowledgment response 184
Activate ICP link 169
Addresses

device
ICP2424 52
ICP2432 53
ICP6000 55

register
ICP2424 52
ICP2432 53
ICP6000 55

Addressing
Internet 26

Allocation of control structures 77
api_msg data structure 159
Application interface 33
Application notes 189
Assembler 35

SDS 35
Assembly macro library 31
Assembly-language shell 41
asydev.c file 107
Asynchronous mode, ISR operation in 111
Attach command 164
Attach response 166
Audience 13
DC 900-1338I
B

Base addresses, device
ICP2424 52
ICP2432 53
ICP6000 55

Baud rate
ICP2424 constants

16X clock rate 193
1X clock rate 193

ICP2432 constants
16X clock rate 193
1X clock rate 193

ICP6000 constants
16X clock rate 192
1X clock rate 192

Binary configuration files 26, 148
Bind command 169
Bind response 170
Bit numbering 18
Blocking I/O 151

call sequence 153
Board-level modules 33
Boot configuration file 58
BSC mode, ISR operation in 112
bscdev.c file 107
BSD Unix 22
Buffer size, set at download 64
Byte ordering 18
Bytes required

configurable data structures 75
system stacks 75

C

C cross-compiler 35
C subroutine library 31
197

Protocol Software Toolkit Programmer Guide
cf_lslice 77, 80
cf_ltick 77, 80
cf_nprior 77, 78
cf_ntask 78
cfgLink DLI parameter 153
chkhio subroutine 95
chkliq subroutine 95, 107
chkloq subroutine 95
Client and ICP communication 161
Client applications 141
Client interface data structures 157
Client operations 26
Client-server environment 25

establishing Internet address 26
Commands

attach 164
bind 169
configure link 175
detach 167
foreign 148
ping 188
receive data 185
request statistics 179
send data 182
test 188
unbind 172

Communication 163
ICP and client 161

Communication modes, summary 109
Compiler 35

SDS 35
Completion status 127, 134
Components, software 31

block diagram 29, 30
Configuration

binary files 148
boot file 58
DLI

alwaysQIO parameter 151
asyncIO parameter 151
cfgLink parameter 153
enable parameter 153
example 146
summary 147

DLI and TSI 26
198
DLI and TSI process 143, 147
dlicfg program 148
ICP 57
OS/Impact 65
overview 142
parameters 75
performance 77
table 72, 73
TSI

summary 148
tsicfg program 148

Configure link command 175
Configure link data structure 175
Configure link response 178
Configured priorities

number 78
Connection

TSI configuration 147
Control structures

allocation 77
CrossCodeC 35
Customer support 19

D

Data
exchanging with remote application 27
receiving 186
sending 182

Data acknowledgment response 184
Data length field 122
Data link interface 157

raw operation 143
Data link interface (DLI) 25, 26
Data rate

time constants 191
Data requirements

system 76
sample calculation 76

Data structures
api_msg 159
client and ICP interface 157
DLI optional arguments 158
icp_hdr 159
link configuration 175
prot_hdr 159
DC 900-1338I

Index
statistics report 181
task initialization 73

Data structures, size 75
DCD

loss of 111
Deactivate ICP link 172
Debug monitor 31
Debugger

Peeker 81
PTBUG 84
SingleStep 28, 35, 84

Detach command 167
Detach response 168
Development tools 35
Device base addresses

ICP2424 52
ICP2432 53
ICP6000 55

Device programming
ICP2424 42
ICP2432 42
ICP6000 45

Diagnostics 137
Direct memory access 25
Direct memory access controller 49
Dispostion flag field 122
Dispostion modifier field 123
dlBufAlloc (see also Functions) 156
dlBufFree (see also Functions) 156
dlClose (see also Functions) 156
dlControl (see also Functions) 156
dlerrno global variable 156, 195
DLI 157
DLI concepts 142

blocking vs non-blocking I/O 151
configuration 142

see also Configuration, DLI
configuration process 143, 147

DLI functions
overview 155
see also Functions
summary table 156
syntax synopsis 156

DLI optional arguments structure 158
dlicfg preprocessor program 148
DC 900-1338I
dlicperr.h include file 142, 195
dliicp.h include file 142
dlInit (see also Functions) 156
dliprot.h include file 142
DLITE embedded interface 23, 144

configuration file 146
dlOpen (see also Functions) 156
dlpErrString (see also Functions) 156
dlPoll (see also Functions) 156
dlPost (see also Functions) 156
dlRead (see also Functions) 156
dlSyncSelect (see also Functions) 156
dlTerm (see also Functions) 156
dlWrite (see also Functions) 156
DMA

receive interrupt 113
transmit interrupt 113

DMA controller 49
Documents

reference 15
Download

ICP 57
set buffer size 64
with debug 63
without debug 59

example script file 60
Download software 26
download_script 59, 63
Duration of tick and time slice 80

E

Electrical interface 24, 44
Embedded ICP

environment 26
overview 23

enable DLI parameter 153
Equipment required 13
Error codes

dlerrno global variable 156, 195
DLI 195
ICP error status codes, table 196
ICP global error codes 195
ICP status codes 195
iICPStatus global variable 195
optArgs.iICPStatus field 195
199

Protocol Software Toolkit Programmer Guide
Ethernet 24
Example

call sequence 153
DLI configuration file 146

Exception vector table 39
Exception vector table memory 75
Executable programs 31

F

Features
product 24

File transfer program 58
Files

asydev.c 107
binary configuration 148
bscdev.c 107
configuration file names 147
dlicperr.h 142, 195
dliicp.h 142
dliprot.h 142
example DLI configuration 146
executable 31
freeway.h 142
icp2424c.mem 63
icp2432c.mem 63
icp6000c.mem 63
makefc.com 148
move.com 149
oscif.h 36
osdefs.asm 37
sdlcdev.c 107
source 31
sps_2424.spc 36
sps_2432.spc 36
sps_6000.spc 36
sps_fw_2424.mem 36, 59, 63, 89
sps_fw_2432.mem 36, 59, 63, 89
sps_fw_6000.mem 36, 59, 63, 89
spsasm.asm 90
spsdefs.h 51, 53, 54
sysequ.asm 37
test programs 142
xio_2424.mem 59
xio_2432.mem 59
xio_6000.mem 59
200
Force hardware reset command 189
Foreign commands 148
FREE_BUF 126
FREE_QE 126
Freeway

client-server environment 25
overview 21

freeway.h include file 142
Functions

dlBufAlloc 156
dlBufFree 156
dlClose 156
dlControl 156
dlInit 156
dlOpen 156, 163
dlpErrString 156
dlPoll 156
dlPost 156
dlRead 156

optional arguments 157
dlSyncSelect 156
dlTerm 156, 187
dlWrite 156, 174

optional arguments 157

G

Get buffer system call 118
Global system table 86
gs_panic 86

H

Hardware device programming
ICP2424 42
ICP2432 42
ICP6000 45

Hardware register addresses
ICP2424 52
ICP2432 53
ICP6000 55

HDLC/SDLC mode, ISR operation in 109
Header fields

data length 122
disposition flag 122
disposition flag values

FREE_BUF 122
DC 900-1338I

Index
FREE_QE 122
POST_BUF 122
POST_QE 122
REL_BUF 122
TOKEN_BUF 122
TOKEN_QE 122

disposition modifier 123
next buffer 122
next element 121
partition ID 122
previous element 121
this element 121

Header files 31
Header, system buffer 118, 121
History of revisions 18
Host/ICP interface 115

I

ICP
activate link 169
buffer size, set at download 64
configuration 57
deactivate link 172
download 57
initialization 57
initiate session 164
reading 185
reading normal data 185
terminate session 167
writing data 182
writing link configuration to 175
writing request for link statistics 179
writing to link 174

ICP and client communication 161
ICP interface data structures 157
ICP software 89
icp_hdr data structure 159
ICP2424

ISA memory address registers 52
icp2424c.mem file 63
icp2432c.mem file 63
ICP6000

VME slave address registers 56
icp6000c.mem file 63
ICP/host interface 115
DC 900-1338I
iICPStatus global variable 195
Illegal instruction trap 86
Initialization

data structure 73
ICP 57
OS/Impact 65, 74
system 65, 89

Initiate session with ICP 163, 164
Interface

data link 157
host/ICP 115
SPS/ISR 107

Interface data structures
client and ICP 157

Interface, application 33
Interfaces

assembly 36
C language 36
operating system 36

Internal ping 188
Internal termination message 187
Internal test message 188
Internet addresses 26
Interrupt priority levels 41

ICP2424 42
ICP2432 42
ICP6000 42

Interrupt service 109
Interrupt service routine 39

asynchronous mode 111
BSC mode 112
HDLC/SDLC mode 109

Interrupt service routine, sample 41
Interrupt stack pointer 37
Interrupts 39

abort 111
IUSC end of buffer 110, 113
IUSC RDMA complete 110
IUSC receive status 112
loss of DCD 111
receive character available 111, 113
SCC DMA receive terminal count 110, 113
SCC DMA transmit terminal count 113
SCC external/status 111
SCC special receive condition 110, 112
201

Protocol Software Toolkit Programmer Guide
SCC transmit buffer empty 110
special receive condition 113
transmit buffer empty 112
transmit underrun 111

I/O
blocking vs non-blocking 151

I/O utility 31
ISA memory address registers

base address
ICP2424 52

ISP, see Interrupt stack pointer
ISR, see Interrupt service routine
ISR/SPS interface for receive 107
ISR/SPS interface for transmit 107
IUSC 44

data rate time constants 191
end of buffer interrupt 110, 113
RDMA complete interrupt 110
receive character available interrupt 111, 113
receive status interrupt 112
special receive condition interrupt 113
transmit buffer empty interrupt 112

L

LAN interface processor 22
lct_flags 107
lct_frbuf 107
LED register 45
Library

C interface 36
macro 31

Link control table 104
Linker 35

SDS 35
Link-to-Board queue, sample 108
Local acknowledgment message 175, 183
Loss of DCD interrupt 111

M

Macro library 31
makefc.com file 148
makefile 36
Master stack pointer 37
MC68901 46
Memory layout
202
ICP2424
application only 66
debug monitor and application 67

ICP2432
application only 68
debug monitor and application 69

ICP6000
application only 70
debug monitor and application 71

Memory organization
ICP2424 51
ICP2432 53
ICP6000 54

Memory requirements
OS/Impact 75

MFP, see Multi-function peripheral
Modules

debug monitor 34
ICP-resident 89
protocol-executable 33
sample protocol application 33
system services 33, 65
user application 65

Motorola 68020 programming environment 37
move.com file 149
MSP, see Master stack pointer
Multi-function peripheral 46
Multi-mode serial transceiver 44

N

Next buffer field 122
Next element field 121
Node declaration queue

public 123
Node declaration queue element 123, 124
Non-blocking I/O 151

call sequence 154
Number of configured priorities 78
Number of task control structures 78

O

Operating system
Protogate’s real-time 22, 23

Operating system interface 36
Optional arguments
DC 900-1338I

Index
structure 155, 157
Organization of memory 51
oscif.h include file 36
osdefs.asm file 37
OS/Impact 31, 46, 89

configuration 65
initialization 65, 74

OS/Impact memory requirements 75
osinit 90
Overview

DLI and TSI configuration 143, 147
DLI functions 155
embedded ICP 23
Freeway server 21
product 21
protocol toolkit 28

P

Panic codes 86
Parameters for configuration 75
Partition ID field 122
Partition, system 118
Peeker debugging tool 81
Ping

internal 188
ping command 188
Post and resume system call 126, 133
POST_BUF 126
POST_QE 126
Previous element field 121
Priorities 78
Priority levels for interrupts 41
Privilege states 37
Processor privilege states 37
Product

features 24
overview 21
support 19

Programmable devices 42, 45
68340 43
DMA controller 49
IUSC 44
LED register 45
multi-function peripheral 46
multi-mode serial transceiver 44
DC 900-1338I
serial communication controllers 48
test mode register 45

Programming environment 37
Programs

dlicfg preprocessor 148
test 142
tsicfg preprocessor 148

PROM 51
prot_hdr data structure 159
Protocol software 31
Protocol task 90, 95
Protocol toolkit overview 28
PTBUG 46
PTBUG access error 189
PTBUG debugging tool 84

Q

Queue create system call 127
Queue element

initialization 123
node declaration 124

Queue element, node declaration 123
Queue elements 118
Queues 95

R

RAM requirements 75
Raw operation 143, 155, 157
rcvstr subroutine 107
Read request processing 99, 100
Reading from ICP 185
Reading normal data 185
Receive

control 103
SPS/ISR interface 107

Receive character available interrupt 111
Receive data 185
Receive data processing 102
Receive data response 186
Reference documents 15
Register addresses, hardware 45, 47

ICP2424 52
ICP2432 53
ICP6000 55

REL_BUF 126
203

Protocol Software Toolkit Programmer Guide
Reports
statistics 181
statistics data structure 181

Request completion 117
Responses

attach 166
bind 170
configure link 178
detach 168
receive data 186
send data acknowledgment 184
statistics report 181
unbind 173

Revision history 18
rlogin 24

S

Sample configuration table 72, 73
Sample I/O utility 31
Sample protocol software 31

block diagram
embedded ICP 94
Freeway server 93

message format 98
modules 89

Sample task initialization routine 74
sb_disp 126
sb_dmod 126
sb_nxtb 126
sb_nxte 107
sb_thse 126
SCC

data rate time constants 191
DMA receive terminal count interrupt 110,

113
DMA transmit terminal count interrupt 113
external/status interrupt 111
how to program 48
receive character available interrupt 111, 113
special receive condition interrupt 110, 112,

113
transmit buffer empty interrupt 110, 112

sdlcdev.c file 107
SDS compiler/assembler/linker 35
Send data command 182
204
Send data response 184
Serial communication controllers, see SCC
Server processor 22
Server request header

initialization 133
Server request queue element 127
Session

closing 27
DLI configuration 147
opening 27

SingleStep debugger 28, 35
SingleStep debugging tool 84
Slave interface, VMEbus 46
SNMP 24
Software

download 26
Software components 31

block diagram 29, 30
Software development 33
Source programs 31
sp_nxtb 127
SP502 44
SPS, see sample protocol software
sps_2424.spc file 36
sps_2432.spc file 36
sps_6000.spc file 36
sps_fw_2424.mem file 36, 59, 63, 89
sps_fw_2432.mem file 36, 59, 63, 89
sps_fw_6000.mem file 36, 59, 63, 89
spsasm.asm file 90
spsdefs.h include file 51, 53, 54
spshio utility task 90, 99, 101, 104, 124
SPS/ISR interface for receive 107
SPS/ISR interface for transmit 107
spsload 59, 63
spstsk protocol task 90, 95
SSP, see System stack pointer
Stack pointers 37
Statistics report command 179
Statistics report data structure 181
Statistics report response 181
Status reports, X21bis 171
Structure for task initialization 72
Supervisor state 37
Support, product 19
DC 900-1338I

Index
sysequ.asm file 37
System buffer header 118, 121

initialization 126, 131
System call

get buffer 118
post and resume 126, 133
queue create 127

System configuration table 72
System data requirements 76

sample calculation 76
System initialization 89
System panic codes 86
System partition 118
System performance 77
System resources

XIO interface 135
System services module 31, 33
System stack pointer 38
System stacks

size 75
System-services module 65

T

Task control blocks
number 78

Task control structures
number 78

Task initialization routine 65, 74
sample 74

Task initialization structure 72, 73
Task priorities

number 78
Tasks

spshio utility 90, 99, 101, 104, 124
spstsk protocol 90, 95

TCP/IP 24
package 148

Technical support 19
telnet 24
Terminate session with ICP 167
Termination Message

internal 187
test command 188
Test message

internal 188
DC 900-1338I
Test mode register 45
Test programs 142
This element field 121
Tick length 80
Time constants

ICP2424
16X clock rate 193
1X clock rate 193

ICP2432
16X clock rate 193
1X clock rate 193

ICP6000
16X clock rate 192
1X clock rate 192

Time slice length 80
TOKEN_BUF 126
TOKEN_QE 126
Toolkit overview 28
Toolkit software components 31

block diagram 29, 30
Transmit

control 103
SPS/ISR interface 107

Transmit buffer empty interrupt 112
Transmit data processing 100
Transmit underrun interrupt 111
Transport subsystem interface (TSI) 26
TSI configuration

process 143, 147
see Configuration, TSI

tsicfg preprocessor program 148

U

Unbind command 172
Unbind response 173
UNIX

configuration process 148
User stack pointer 37
User state 37
User-application module 65
USP, see User stack pointer
Utility task 90, 99, 101, 104, 124

V

Vector base register 39
205

Protocol Software Toolkit Programmer Guide
Vector table 39
Vectors reserved for system software 40
VME slave address registers

base address
ICP6000 56

VMEbus slave interface 46
VMS

configuration process 148
VxWorks 22

W

WAN interface processor 22
Windows NT

configuration process 148
Write request processing 101, 102
Writing data to ICP 182
Writing link configuration to the ICP 175
Writing request for link statistics from ICP 179
Writing to ICP link 174

X–Z

X21bis line status reports 171
XIO interface

system resources 135
XIO services 31
xio_2424.mem file 59
xio_2432.mem file 59
xio_6000.mem file 59
xmton subroutine 107
Z16C32 44
Z8030 49
Z8530 48, 49
206
 DC 900-1338I

Protocol Software Toolkit Programmer Guide

DC 900-1338I
Customer Report Form

We are constantly improving our products. If you have suggestions or problems you would

like to report regarding the hardware, software or documentation, please complete this form

and mail it to Protogate, Inc., P.O. Box 503313, San Diego, CA 92150-3313, or fax it to (877)

473-0190.

If you are reporting errors in the documentation, please enter the section and page number.

Your Name:

Company:

Address:

Phone Number:

Product:

Problem or

Suggestion:

Protogate, Inc.
Customer Service
P.O. Box 503313

San Diego, CA 92150-3313

	Protocol Software Toolkit Programmer Guide
	Contents
	List of Figures
	List of Tables
	Preface
	Purpose of Document
	Intended Audience
	Required Equipment
	Organization of Document
	Protogate References
	Document Conventions
	Revision History
	Customer Support
	1 Introduction
	1.1� Product Overview
	1.1.1� Freeway Server
	Figure 1–1:� �Freeway Configuration
	1.1.2� Embedded ICP
	Figure 1–2:� Embedded ICP Configuration
	1.2� Freeway Client-Server Environment
	Figure 1–3:� A Typical Freeway Server Environment
	1.2.1� Establishing�Freeway Server Internet Addresses
	1.3� Embedded ICP Environment
	1.4� Client Operations
	1.4.1� Defining the DLI and TSI Configuration
	1.4.2� Opening a Session
	1.4.3� Exchanging Data with the Remote Application
	1.4.4� Closing a Session
	1.5� Protocol Toolkit Overview
	Figure 1–4:� ICP PROM and Toolkit Software Components — Freeway Server
	Figure 1–5:� ICP PROM and Toolkit Software Components — Embedded ICP
	1.5.1� Toolkit Software Components
	2 Software Development for the ICP
	2.1� Board-level Protocol-executable Modules
	2.2� Development Tools
	2.2.1� SDS Compiler/Assembler/Linker
	2.3� Interfacing to the Operating System
	2.4� Motorola 68xxx Programming Environment
	2.4.1� Processor Privilege States
	2.4.2� Stack Pointers
	2.4.3� Exception Vector Table
	Table 2–1:� Vectors Reserved for System Software
	Figure 2–1:� Assembly Language Shell
	2.4.4� Interrupt Priority Levels
	Table 2–2:� ICP Interrupt Priority Assignments
	2.5� ICP2424 and ICP2432 Hardware Device Programming
	2.5.1� Programming the 68340/68349
	Table 2–3:� LED Control Information
	2.5.2� Programming the Integrated Universal Serial Controllers
	2.5.3� Programming Sipex’s Multi-Mode Serial Transceivers
	Table 2–4:� SP502 or SP504 Electrical Interface Values
	2.5.4� Programming the Test Mode Register
	Figure 2–2:� Test Mode Register, ICP2424
	Figure 2–3:� Test Mode Register, ICP2432
	2.5.5� Programming the LED Register (ICP2424 only)
	2.6� ICP6000 Hardware Device Programming
	2.6.1� Programming the Multi-function Peripheral
	Table 2–5:� Setup for MFP Initialization
	Table 2–6:� Vector Numbers for SCC Interrupts
	2.6.2� Programming the Serial Communications Controllers
	Table 2–7:� SCC Access Registers
	2.6.3� Programming the DMA Controller �
	3 Memory Organization
	3.1� ICP2424
	Table 3–1:� ICP2424 Memory Address Registers Base Address
	Table 3–2:� ICP2424 Device and Register Addresses
	3.2� ICP2432
	Table 3–3:� ICP2432 Device and Register Addresses
	3.3� ICP6000
	Table 3–4:� ICP6000 Device and Register Addresses
	Table 3–5:� ICP6000 VME Slave Address Registers Base Address
	4 ICP Download, Configuration, and Initialization
	4.1� Download Procedures
	4.1.1� Freeway Server Download Procedure
	4.1.1.1� Downloading Without the Debug Monitor
	Figure 4–1:� Protocol Toolkit Download Script File (spsload) �
	4.1.1.2� Downloading With the Debug Monitor
	4.1.2� Embedded ICP Download Procedure
	4.1.3� ICP Buffer Size
	4.2� OS/Impact Configuration and Initialization
	Figure 4–2:� ICP2424 Memory Layout with Application Only
	Figure 4–3:� ICP2424 Memory Layout with Application and SDS Debug Monitor
	Figure 4–4:� ICP2432 Memory Layout with Application Only
	Figure 4–5:� ICP2432 Memory Layout with Application and SDS Debug Monitor
	Figure 4–6:� ICP6000 Memory Layout with Application Only
	Figure 4–7:� ICP6000 Memory Layout with Application and SDS Debug Monitor
	4.2.1� Configuration Table
	Figure 4–8:� Sample Configuration Table
	4.2.2� Task Initialization Structures
	Figure 4–9:� Sample Configuration Table with Task Initialization Structures
	4.2.3� Task Initialization Routine
	Figure 4–10:� Sample Task Initialization Routine
	4.2.4� OS/Impact Initialization
	4.3� Determining Configuration Parameters
	4.3.1� OS/Impact Memory Requirements
	Table 4–1:� System Data Requirements
	Table 4–2:� Sample Calculation of System Data Requirements
	4.3.2� Configuration and System Performance
	4.3.2.1� Number of Configured Task Control Structures
	4.3.2.2� Number of Configured Priorities
	4.3.2.3� Tick and Time Slice Lengths
	5 Debugging
	5.1� PEEKER Debugging Tool
	5.2� PTBUG Debugging Tool
	5.3� SingleStep Debugging Tool
	5.4� System Panic Codes
	6 ICP Software
	6.1� ICP-resident Modules
	6.1.1� System Initialization
	Figure 6–1:� Sample ICP2424 Protocol Software Memory Layout
	Figure 6–2:� Sample ICP2432 Protocol Software Memory Layout
	Figure 6–3:� Sample ICP6000 Protocol Software Memory Layout
	Figure 6–4:� Block Diagram of the Sample Protocol Software — Freeway Server
	Figure 6–5:� Block Diagram of the Sample Protocol Software — Embedded ICP
	6.1.2� Protocol Task
	6.1.3� Utility Task (spshio)
	Figure 6–6:� Sample Protocol Software Message Format
	6.1.3.1� Read Request Processing
	Figure 6–7:� ICP Read Request (Transmit Data) Processing
	6.1.3.2� Write Request Processing
	Figure 6–8:� ICP Write Request (Receive Data) Processing
	6.2� Control of Transmit and Receive Operations
	6.2.1� Link Control Tables
	6.2.2� SPS/ISR Interface for Transmit Messages
	6.2.3� SPS/ISR Interface for Received Messages
	Figure 6–9:� Sample Link-to-Board Queue
	6.3� Interrupt Service
	Table 6–1:� Summary of Communication Modes
	6.3.1� ISR Operation in HDLC/SDLC Mode
	6.3.2� ISR Operation in Asynchronous Mode
	6.3.3� ISR Operation in BSC Mode
	7 Host/ICP Interface
	7.1� ICP’s Host Interface Protocol
	7.2� Queue Elements
	Figure 7–1:� Sample Singly-linked Queue with Three Elements
	Figure 7–2:� Sample Doubly-linked Queue with Three Elements
	7.2.1� System Buffer Header
	7.2.2� Queue Element Initialization
	7.2.3� Node Declaration Queue Element
	Figure 7–3:� Node Declaration Queue Element
	7.2.3.1� System Buffer Header Initialization
	7.2.3.2� Completion Status
	7.2.4� Host Request Queue Element
	Figure 7–4:� Host Request Queue Element with Data Area
	7.2.4.1� System Buffer Header Initialization
	7.2.4.2� Host Request Header Initialization
	7.2.4.3� Completion Status
	7.3� Reserved System Resources: XIO Interface
	7.4� Executive Input/Output
	7.4.1� Initialize Executive Input/Output (s_initxio)
	7.4.2� Node Declaration (s_nodec)
	7.4.3� XIO Read/Write (s_xio)
	7.5� Diagnostics
	8 Client Applications — DLI Overview
	Table 8–1:� Include Files
	8.1� Summary of DLI Concepts
	8.1.1� Configuration in the Freeway Server or Embedded ICP Environment
	8.1.1.1� DLI Configuration for Raw Operation
	Figure 8–1:� DLI Configuration File for Two Links (Freeway Server)
	Figure 8–2:� DLI Configuration File for Two Embedded ICP Links (DLITE Interface)
	8.1.1.2� DLI and TSI Configuration Process
	Table 8–2:� Configuration File Names
	Figure 8–3:� DLI and TSI Configuration Process
	8.1.2� Blocking versus Non-blocking I/O
	8.1.3� Buffer Management
	8.2� Example Call Sequences
	Table 8–3:� DLI Call Sequence for Blocking I/O
	Table 8–4:� DLI Call Sequence for Non-blocking I/O
	8.3� Overview of DLI Functions
	Table 8–5:� DLI Functions: Syntax and Parameters (Listed in Typical Call Order)
	9 Client Applications — Commands and Responses
	9.1� Client and ICP Interface Data Structures
	Figure 9–1:� “C” Definition of DLI Optional Arguments Structure
	Figure 9–2:� “C” Definition of api_msg Data Structure
	Figure 9–3:� “C” Definition of icp_hdr and prot_hdr Data Structures
	Table 9–1:� Comparison of DLI_OPT_ARGS and ICP_HDR/PROT_HDR Fields
	9.2� Client and ICP Communication
	Table 9–2:� Command/Response Code Summary
	9.2.1� Sequence of Client Events to Communicate to the ICP
	9.2.2� Initiating a Session with the ICP (dlOpen)
	9.2.3� Initiating a Session with an ICP Link (Attach)
	Figure 9–4:� Attach Command Format
	Figure 9–5:� Attach Response Format
	9.2.4� Terminating a Session with an ICP Link (Detach)
	Figure 9–6:� Detach Command Format
	Figure 9–7:� Detach Response Format
	9.2.5� Activating an ICP Link (Bind)
	Figure 9–8:� Bind Command Format
	Figure 9–9:� Bind Response Format
	9.2.5.1� X21bis Line Status Reports (Optional)
	9.2.6� Deactivating an ICP Link (Unbind)
	Figure 9–10:� Unbind Command Format
	Figure 9–11:� Unbind Response Format
	9.2.7� Writing to an ICP Link
	9.2.7.1� Configuring the ICP Link
	Figure 9–12:� Link Configuration “C” Structure
	Figure 9–13:� Configure Link Command Format
	Figure 9–14:� Configure Link Response Format
	9.2.7.2� Requesting Link Statistics From the ICP
	Figure 9–15:� Request Link Statistics Command Format
	Figure 9–16:� Statistics Report Response Format
	Figure 9–17:� Statistics Report “C” Structure
	9.2.7.3� Writing Data to an ICP Link
	Figure 9–18:� Send Data Command Format
	Figure 9–19:� Data Acknowledgment Response
	9.2.8� Reading from the ICP Link
	9.2.8.1� Reading Normal Data
	Figure 9–20:� Receive Data from ICP Response
	9.3� Additional Command Types Supported by the SPS
	9.3.1� Internal Termination Message
	9.3.2� Internal Test Message
	9.3.3� Internal Ping
	A Application Notes
	B Data Rate Time Constants for SCC/IUSC Programming
	Table B–1:� SCC Time Constants for 1X Clock Rate for ICP6000
	Table B–2:� SCC Time Constants for 16X Clock Rate for ICP6000
	Table B–3:� IUSC Time Constants for 1X Clock Rate for ICP2424 and ICP2432
	Table B–4:� IUSC Time Constants for 16X Clock Rate for ICP2424 and ICP2432
	C Error Codes
	C.1� DLI Error Codes
	C.2� ICP Global Error Codes
	Table C–1:� ICP Error Status Codes used by the ICP
	C.3� ICP Error Status Codes
	Index

