

Protogate, Inc
12225 World T
San Diego, CA

January 2003
.
rade Drive, Suite R
 92128

PROTOGATE

ICP2432 User’s Guide
for Windows NT® 4.0 and
NT® 5.0 (Windows 2000®)

(DLITE Interface)

Protogate, Inc.
12225 World Trade Drive, Suite R
San Diego, CA 92128
(858) 451-0865

ICP2432 User’s Guide for Windows NT 4.0 and NT 5.0 (Windows 2000) (DLITE Interface)
© 2003 Protogate, Inc. All rights reserved
Printed in the United States of America

This document can change without notice. Protogate, Inc. accepts no liability for any errors this
document might contain

Freeway Embedded is a trademark of Simpact, Inc.
All other trademarks and trade names are the properties of their respective holders.

Contents
List of Figures 7

List of Tables 9

Preface 11

1 Product Overview 17

2 Software Installation 19

2.1 Memory Requirements . 19

2.2 ICP2432 Software Installation Procedure 19

2.3 Protocol or Toolkit Software Installation Procedure 24

3 Programming Using the DLITE Embedded Interface 33

3.1 Overview . 33

3.2 Embedded Interface Description . 35

3.2.1 Comparison of Freeway Server and Embedded Interfaces 35

3.2.2 Embedded Interface Objectives . 36

3.3 DLITE Interface . 37

3.3.1 DLITE Enhancements . 37

3.3.1.1 Multithread Support . 37

3.3.2 DLITE Limitations and Caveats . 39

3.3.2.1 Raw Operation Only . 39

3.3.2.2 No LocalAck Processing Support 39

3.3.2.3 AlwaysQIO Support . 40

3.3.2.4 Changes in Global Variable Support 40

3.3.2.5 dlInit Function No Longer Implied 40

3.3.2.6 Unsupported Functions . 41

3.3.3 The Application Program’s Interface to DLITE 41
DC 900-1514E 3

ICP2432 User’s Guide for Windows NT 4.0 and NT 5.0 (Windows 2000) (DLITE Interface)

3.3.3.1 Building a DLITE Application 42

3.3.3.2 Blocking and Non-blocking I/O 42

3.3.3.3 Changes in DLI/TSI . 43

3.3.3.4 Changes in DLI Functions . 44

3.3.3.5 Callbacks . 50

3.3.3.6 DLITE Error Codes . 52

3.3.4 Configuration Files . 54

3.3.5 Logging and Tracing . 55

3.3.5.1 Logger Service Parameters in the DLI Configuration File . . . 56

3.3.5.2 Common Logging Service Errors 57

3.3.5.3 General Application Error File 58

4 Programming Using the Win32 Interface 59

4.1 Function Mappings . 59

4.1.1 Opening the ICP . 60

4.1.2 Reading Data . 61

4.1.3 Writing Data. 62

4.1.4 Cancelling I/O. 63

4.1.5 Device Control . 63

4.1.5.1 Cancelling I/O Requests . 64

4.1.5.2 Obtaining Internal Driver Information 65

4.1.5.3 Expedited Write Requests . 67

4.1.5.4 Support for ICP Initialization 69

4.1.6 Closing A Handle . 69

4.2 Driver Features and Capabilities . 70

4.2.1 Download Support . 70

4.2.2 Communication With ICP-Resident Tasks 70

4.2.3 Multiplexed I/O . 71

4.2.4 Error Logging . 71

4.3 I/O Completion Status . 74

4.3.1 Successful Completion . 74

4.3.2 Error Completion . 74

A ICPTool for Windows NT 81

A.1 ICPTool Main Menu . 81

A.1.1 Download Protocol . 83
4 DC 900-1514E

Contents

A.1.1.1 Download Protocol Confirmation 85

A.1.1.2 Specifying a Protocol Download Script 85

A.1.2 Protocol Diagnostics . 86

A.1.2.1 Run Protocol Diagnostics . 86

A.1.2.2 Generic Diagnostic (Loopback) Test 88

A.1.2.3 Default Configuration Menu 90

A.1.2.4 Attach Link Menu . 92

A.1.2.5 Configure Link Menu . 93

A.1.2.6 Enable Link Menu . 94

A.1.2.7 Send Data Menu . 95

A.1.2.8 Disable Link Menu . 96

A.1.2.9 Detach Link Menu . 97

A.1.3 Advanced Options . 98

B Debug Support for ICP-resident Software 99

C DLITE Logger Windows NT System Service User’s Guide 101

C.1 Introduction . 101

C.2 Starting the Service . 102

C.3 Configuring the Service . 102

C.4 Connecting to the Service . 103

C.5 Packet Exchanges . 104

C.6 Client Structures. 104

C.7 Packet Examples . 105

D Multithreaded Sample Programs 107

D.1 Overview of the Test Program . 108

D.2 Hardware Setup for the Test Programs 109

D.3 Running the Test Program . 109

D.4 Sample Output from Test Program . 110

Index 113
DC 900-1514E 5

ICP2432 User’s Guide for Windows NT 4.0 and NT 5.0 (Windows 2000) (DLITE Interface)
6 DC 900-1514E

List of Figures
Figure 1–1: Typical Data Communications System Configuration. 18

Figure 2–1: Startup Information for Embedded ICP2432 20

Figure 2–2: Installation Directory for Embedded ICP2432. 21

Figure 2–3: Program Folder . 22

Figure 2–4: Restart Windows. 23

Figure 2–5: Startup Information for FMP . 26

Figure 2–6: Installation Directory for FMP . 27

Figure 2–7: Protogate ICPTool Icon . 29

Figure 2–8: ICPTool Main Menu. 29

Figure 2–9: Protocol Download Menu. 30

Figure 3–1: DLI/TSI Interface in the Freeway Server Environment 35

Figure 3–2: DLITE Interface in an Embedded ICP2432 Environment 36

Figure 3–3: Code Fragment Example to Download ICP 42

Figure 3–4: DLI_ICP_DRV_INFO “C” Structure . 47

Figure 4–1: ICP_Driver_Info Structure . 66

Figure 4–2: IcpState Field Definitions . 67

Figure 4–3: Sample Event Log Displayed in the Event Viewer 72

Figure 4–4: Log Message Event Detail . 73

Figure A–1: Protogate ICPTool Icon . 81

Figure A–2: ICPTool Main Menu. 82

Figure A–3: ICP Information . 82

Figure A–4: Protocol Download Menu. 84

Figure A–5: Protocol Download Confirmation . 85

Figure A–6: Protocol Diagnostics Menu . 87

Figure A–7: Generic Diagnostic Warning . 88
DC 900-1514E 7

ICP2432 User’s Guide for Windows NT 4.0 and NT 5.0 (Windows 2000) (DLITE Interface)

Figure A–8: Generic Diagnostic Main Menu . 89

Figure A–9: Default Configuration Menu . 91

Figure A–10: Attach Link Menu . 92

Figure A–11: Configure Link Menu . 93

Figure A–12: Enable Link Menu . 94

Figure A–13: Send Data Menu . 95

Figure A–14: Disable Link Menu . 96

Figure A–15: Detach Link Menu . 97

Figure A–16: Advanced Options Menu . 98

Figure C–1: Example Logger Configuration File . 102

Figure C–2: CreateFile Code Example Segment . 103

Figure C–3: Structure service_buf “C” Definition . 104

Figure C–4: OPEN_FILE Code Example Segment . 105

Figure C–5: CLOSE_FILE Code Example Segment 106

Figure C–6: WRITE_FILE Code Example Segment 106

Figure D–1: Sample Output from DDCMP Blocking Multithreaded Program 111

Figure D–2: Sample Output from DDCMP Non-Blocking Multithreaded Program . . 112
8 DC 900-1514E

List of Tables
Table 2–1: Protocol Identifiers . 24

Table 3–1: DLITE Error Codes . 52

Table 3–2: NT Errors Mapped to dlerrno . 53

Table 3–3: DLI Error Codes . 57

Table 3–4: Windows NT Error Codes . 58

Table 4–1: ICP2432 Driver Control Codes . 64

Table 4–2: ICP_Driver_Info Structure Fields . 66

Table A–1: Download a Protocol to the ICP. 83

Table A–2: Protocol Diagnostics Menu Selections 86

Table D–1: Sample Program File Names. 107
DC 900-1514E 9

ICP2432 User’s Guide for Windows NT 4.0 and NT 5.0 (Windows 2000) (DLITE Interface)
10 DC 900-1514E

Preface
Purpose of Document

This document describes how to use the ICP2432 intelligent communications proces-

sor in a peripheral component interconnect (PCI) bus computer running the

Windows NT 4.0 or 5.0 (Windows 2000) operating system.

Intended Audience

This document is intended primarily for Windows NT system managers and applica-

tions programmers. Application programmers can use Protogate’s data link interface

(DLI) embedded module to interface to the ICP2432 device driver. This embedded DLI

interface is called DLITE. The interface provides dlInit, dlOpen, dlClose, dlWrite,

dlRead, and related functions for accessing the ICP2432. Refer to Chapter 3 for details.

Organization of Document

Chapter 1 is an overview of the product.

Chapter 2 describes how to install the ICP2432 software in a Windows NT system. This

chapter is of interest primarily to system managers.

Chapter 3 describes the Windows NT embedded DLITE interface. This chapter supple-

ments the Freeway Data Link Interface Reference Guide and is of interest primarily to

programmers who are either porting an existing application (currently operational in

the Freeway server environment) to the embedded environment (for example, the
DC 900-1514E 11

ICP2432 User’s Guide for Windows NT 4.0 and NT 5.0 (Windows 2000) (DLITE Interface)

/23/99
inni: Made
537 and
539 FW 1200
nd 1300
ardware

nstallation
nly. Made
542 and
541
ardware
aintenance

nly. Added
543, FW
800
aintenance,

nd 1532, FW
100/1150
aintenance.
PCIbus ICP2432) or who are developing an initial DLITE application in the embedded

environment.

Chapter 4 describes the Win32 interface to the ICP2432 device driver.

Appendix A describes Protogate’s ICPTool for Windows NT which supports the soft-

ware installation procedure in Chapter 2 and provides a graphical user interface to the

ICP command-line tools.

Appendix B describes debug support.

Appendix C is the user’s guide for the DLITE Windows NT Logger System Service. This

appendix supplements the logging and tracing information in Chapter 3.

Appendix D describes the multithreaded sample programs.

Protogate References

The following documents provide useful supporting information, depending on the

customer’s particular hardware and software environments. Most documents are

available on-line at Protogate’s web site, www.protogate.com.

General Product Overviews

• Freeway 1100 Technical Overview 25-000-0419

• Freeway 2000/4000/8800 Technical Overview 25-000-0374

• ICP2432 Technical Overview 25-000-0420

• ICP6000X Technical Overview 25-000-0522

Hardware Support

• Freeway 3400 Hardware Installation Guide DC 900-2004

• ICP2432 Hardware Description and Theory of Operation DC 900-1501

• ICP2432B Hardware Description and Theory of Operation DC 900-2006

• ICP2432 Hardware Installation Guide DC 900-1502

• ICP2432B Hardware Installation Guide DC 900-2009

12 DC 900-1514E

Preface

Freeway Software Installation Support

• Freeway User’s Guide DC 900-1333

• Loopback Test Procedures DC 900-1533

Embedded ICP Installation and Programming Support

• ICP2432 User’s Guide for Digital UNIX DC 900-1513

• ICP2432 User’s Guide for OpenVMS Alpha DC 900-1511

• ICP2432 User’s Guide for OpenVMS Alpha (DLITE Interface) DC 900-1516

• ICP2432 User’s Guide for Windows NT (DLITE Interface) DC 900-1514

Application Program Interface (API) Programming Support

• Freeway Data Link Interface Reference Guide DC 900-1385

• Freeway Transport Subsystem Interface Reference Guide DC 900-1386

Socket Interface Programming Support

• Freeway Client-Server Interface Control Document DC 900-1303

Toolkit Programming Support

• Freeway Server-Resident Application and Server Toolkit Program-
mer’s Guide

DC 900-1325

• OS/ProtogateProgrammer’s Guide DC 900-2008

• Protocol Software Toolkit Programmer’s Guide DC 900-2007
DC 900-1514E 13

ICP2432 User’s Guide for Windows NT 4.0 and NT 5.0 (Windows 2000) (DLITE Interface)

Document Conventions

The term “ICP,” as used in this document, refers to the physical ICP2432, whereas the

term “device” refers to all of the Windows NT software constructs (device driver, I/O

database, and so on) that define the device to the system, in addition to the ICP2432

itself.

Physical “ports” on the ICPs are logically referred to as “links.” However, since port and

link numbers are always identical (that is, port 0 is the same as link 0), this document

uses the term “link.”

Program code samples are written in the “C” programming language.

Protocol Support

• ADCCP NRM Programmer’s Guide DC 900-1317

• Asynchronous Wire Service (AWS) Programmer’s Guide DC 900-1324

• Addendum: Embedded ICP2432 AWS Programmer’s Guide DC 900-1557

• AUTODIN Programmer’s Guide DC 908-1558

• BSC Programmer’s Guide DC 900-1340

• BSCDEMO User’s Guide DC 900-1349

• BSCTRAN Programmer’s Guide DC 900-1406

• Military/Government Protocols Programmer’s Guide DC 900-1602

• SIO STD-1200A (Rev. 1) Programmer’s Guide DC 908-1359

• SIO STD-1300 Programmer’s Guide DC 908-1559

• X.25 Call Service API Guide DC 900-1392

• X.25/HDLC Configuration Guide DC 900-1345

• X.25 Low-Level Interface DC 900-1307
14 DC 900-1514E

Preface
Document Revision History

The revision history of the ICP2432 User’s Guide for Windows NT 4.0 and NT 5.0 (Win-

dows 2000) (DLITE Interface), Protogate document DC 900-1514E, is recorded below:

Customer Support

If you are having trouble with any Protogate product, call us at (858) 451-0865 Monday

through Friday between 8 a.m. and 5 p.m. Pacific time.

You can also fax your questions to us at (877) 473-0190 any time. Please include a cover

sheet addressed to “Customer Service.”

We are always interested in suggestions for improving our products. You can use the

report form in the back of this manual to send us your recommendations.

Revision Release Date Description

DC 900-1514A October 1998 Original release

DC 900-1514B November 1998 Minor modifications and clarifications to Chapter 3
Added Appendix D, “Multithreaded Sample Programs”

DC 900-1514C December 1998 Add dlControl alternative (Section 3.3.2.6 on page 41)
Minor changes throughout

DC 900-1514D February 1999 Modify Chapter 2 and Appendix D for Military/Gov-
ernment protocols
Add new DLITE errors (Table 3–1 on page 52)
Minor changes to Chapter 4

DC 900-1514E January 2003 Modify the document to reflect the taking over of the
document by Protogate, Inc.
Modify as required to indicate NT 5.0 (Windows 2000)
support as well as the use of InstallShield Express.
Modify as required to indicate support of the new
ICP2432B as well as the old ICP2432.
DC 900-1514E 15

ICP2432 User’s Guide for Windows NT 4.0 and NT 5.0 (Windows 2000) (DLITE Interface)
16 DC 900-1514E

Chapter
1 Product Overview
The Protogate ICP2432 data communications product allows PCIbus computers run-

ning the Windows NT operating system to transfer data to other computers or termi-

nals over standard communications circuits. The remote site need not have identical

equipment. The protocols used comply with various corporate, national, and interna-

tional standards.

The ICP2432 product consists of the software and hardware required for user applica-

tions to communicate with remote sites. Figure 1–1 is a block diagram of a typical sys-

tem configuration. Application software in the Windows NT system communicates

with the ICP2432 by means of the Protogate-supplied device driver.

The ICPTool program, supplied with the product, downloads the ICP-resident software

to the ICP2432. Protogate’s ICPTool for Windows NT (described in Chapter 2 and

Appendix A) supports the software installation process and provides a graphical user

interface to download protocols and run diagnostic test programs.

The ICP controls the communications links for the user applications. The user applica-

tion programs can use Protogate’s data link interface (DLI) to read and write data to the

ICP2432 for transmission to or receipt from the communications links, and can change

the link configuration parameters. See Chapter 3.
DC 900-1514E 17

ICP2432 User’s Guide for Windows NT 4.0 and NT 5.0 (Windows 2000) (DLITE Interface)
Figure 1–1: Typical Data Communications System Configuration

User
Application

Process

ICPTool
Program

Host
Driver

(ICP2432.sys) ICP

Communication
link

Communication
link

P
C
I
b
u
s

•
•
•

Data links to
remote computer
or data network

3296

•
•
•

DLITE
18 DC 900-1514E

Chapter

12/15/98
Leslie: Bill
Reid asked
“Chapter 2
goes directly
from loadin
the driver
product to
loading a
protocol.
What
happened to
running the
built in
diagnostics
to determin
if the driver
and card are
installed
correctly?” I
forwarded
this question
via Email to
Richard.
2 Software Installation
This chapter describes Protogate’s ICP2432 software installation procedure for

Windows NT 4.0 and NT 5.0 (Windows 2000).

2.1 Memory Requirements

Protogate recommends that you have at least 32 megabytes of system memory for the

ICP2432 product for NT 4.0 and 64 megabytes for NT 5.0.

2.2 ICP2432 Software Installation Procedure

Step 1: If you are using NT 4.0, you can install one or more ICP2432 boards in your

computer, as described in the ICP2432B Hardware Installation Guide before loading the

software. If you are using NT 5.0 (Windows 2000), it is easier to install the cards after-

wards so that the Plug And Play manager will have the required ICP2432.inf file.

Step 2: Insert the proper ICP2432 for Windows NT... CD-ROM into your

Windows NT computer. There are different CDs for NT 4.0 and NT 5.0.

Step 3: If you don’t have “auto start” enabled, start the installation by opening the

index.html program on the installation CD-ROM. Click the line “Embedded ICP Soft-

ware ...” on the “home page” of the CD. On the new page that has been linked to, click

the line “InstallShield for Windows NT - Intel”. Then the startup information,

shown in Figure 2–1, is displayed. It is recommend that the installer run from its cur-

rent location (i.e. the CD).

g

e

DC 900-1514E 19

ICP2432 User’s Guide for Windows NT 4.0 and NT 5.0 (Windows 2000) (DLITE Interface)

tarticp.pcx a
00%
Note
If you install another ICP2432 board later, you do not have to run

the setup.exe program again.

Figure 2–1: Startup Information for Embedded ICP2432

t
20 DC 900-1514E

2: Software Installation

2432install.
 at 100%
Step 4: Click “Yes” when the “Authenticode...” window is displayed and click “Next”

when the “Welcome to...” window is displayed.

Step 5: The next window defines the installation directory in which to install the dis-

tribution software (Figure 2–2). The default directory is C:\. The software directory

installed under C:\ is freeway. All system files are installed in the Windows NT system

home directory (for example, C:\WinNT\system32). If the default directory is accept-

able, click Next. To install the software in a different directory, click “Change...”.

Figure 2–2: Installation Directory for Embedded ICP2432

icp
tif
DC 900-1514E 21

ICP2432 User’s Guide for Windows NT 4.0 and NT 5.0 (Windows 2000) (DLITE Interface)
Step 6: Select the desired installation directory and click “ok” (Figure 2–3).

Step 7: After completion of Step 6, the installation script updates and inserts keys

into the system registry.

Step 8: When the installation is complete, a “...Completed” window is displayed, click

“Finish”.

Step 9: The Restart Windows menu (Figure 2–4) provides two options, to restart

your computer now or later. If you are running NT 4.0, click “Yes”. If you are running

NT 5.0 (Windows 2000), click “No” and “Shutdown” your system via the “Start -> Shut-

down...” menu so that you can install the ICP2432s. After you have booted up NT 5.0

Figure 2–3: Program Folder
22 DC 900-1514E

2: Software Installation

tart.tif at
0%
and all of the ICPs have been found, reboot the system so that the ICP number will be

as expected. ICP numbering under NT 4.0 starts with Bus 0 and goes up, while NT 5.0

starts with the highest bus number and works down.

Note
Remove the installation CD before restarting your computer. Also

note that the CD has the freeway directory on its root directory. In

the freeway\lib\emb\nt\tools are the sources and build environ-

ment required for ICPTool and the loaders.

Figure 2–4: Restart Windows

res
10
DC 900-1514E 23

ICP2432 User’s Guide for Windows NT 4.0 and NT 5.0 (Windows 2000) (DLITE Interface)

ee the file
ppptable”: to
dd
nformation
s appendices
re added.
2.3 Protocol or Toolkit Software Installation Procedure

The ppp variables mentioned throughout this section specify the particular protocol

you are using. Refer to Table 2–1.

The following files are in the freeway directory:

• readme.ppp provides general information about the protocol software

• relnotes.ppp provides specific information about the current release of the pro-

tocol software

• relhist.ppp provides information about previous releases of the protocol soft-

ware

The load file, pppload, is in the freeway\boot directory.

Table 2–1: Protocol Identifiers

Protocol or Toolkit Protocol Identifier (pppppppppppp)

ADCCP NRM nrm

AWS aws

BSC3270 bsc3270a

a Except for the readme, release notes, release history, and load configuration
files where ppp is bsc. For example, bscload is used for BSC3270 and
BSC2780/3780.

BSC2780/3780 bsc3780a

DDCMP ddcmpb

b Except for the readme, release notes, and release history configuration files
where ppp is ddc.

FMP fmp

Military/Government milc

c Some Military/Government files use the identifier “mgn” where n is a Proto-
gate-supplied product designator.

Protocol Toolkit sps

STD1200A s12

X.25/HDLC x25d

d Except for the test directory where ppp is x25mgr.

24 DC 900-1514E

2: Software Installation
The executable object for protocol software is in the freeway\boot directory.

The executable object for the system-services module for protocol software other than

protocol toolkit (xio_2432.mem) is in the freeway\boot directory. The executable object

for the system-services module for the protocol toolkit (xio_2432.mem) is in the free-

way\icpcode\os_sds\icp2432 directory.

Source code for the loopback tests is in the freeway\client\nt_dlite\ppp1 directory.

Step 1: Insert the protocol installation diskette or CD-ROM into your Windows NT

computer.

Step 2: Start the installation by running the setup.exe program on the installation

diskette or CD-ROM. Click Next when the startup information, as shown in the FMP

example in Figure 2–5, is displayed.

1. The Military/Government protocols use the freeway\client\test\mil directory.
DC 900-1514E 25

ICP2432 User’s Guide for Windows NT 4.0 and NT 5.0 (Windows 2000) (DLITE Interface)

tartfmp.pcx
t 100%
Figure 2–5: Startup Information for FMP
26 DC 900-1514E

2: Software Installation

pinstall.tif
 100%
Step 3: The installation script prompts for an installation directory in which to

install the distribution software (Figure 2–6). The default directory is C:\. All system

files are installed in the Windows NT system home directory (for example,

C:\WinNT\system32). If the default directory is acceptable, click Next. To install the soft-

ware in a different directory, click Browse.

Figure 2–6: Installation Directory for FMP

fm
at
DC 900-1514E 27

ICP2432 User’s Guide for Windows NT 4.0 and NT 5.0 (Windows 2000) (DLITE Interface)

0/20/98: Bill
ays that
makes in not

will be
ombined in
ext X.25
elease to

makefile.ent.
Step 4: Using any text editor, edit the load file (freeway\boot\pppload) for your pro-

tocol. Uncomment the lines associated with ICP2432. Do not change the memory loca-

tions (such as 40120000) for the LOAD commands.

Note
If you are installing the X.25 protocol, you must build the CS API
files. A make file is included that performs this operation.

From the freeway\lib\cs_api directory, enter the following com-
mand. The newly created file will be placed in the freeway\
client\[int_nt_emb or axp_nt_emb]\bin directory.

nnnnmmmmaaaakkkkeeee ----ffff mmmmaaaakkkkeeeeffffiiiilllleeee....eeeennnntttt

Dynamic link libraries must reside in the current working direc-
tory or in a directory specified in your “PATH” environment vari-
able. Do one of the following:

Add \freeway\client\[int_nt_emb or axp_nt_emb]\lib to your
path.

or

Copy the .dll files from \freeway\client\[int_nt_emb or
axp_nt_emb]\lib to your bin directory or to another directory in
your path.

Continue the installation at Step 5 below.

Step 5: From the freeway\client\nt_dlite\ppp2 directory, enter the following

command:

nnnnmmmmaaaakkkkeeee

2. The Military/Government protocols use the freeway\client\test\mil directory.

e
28 DC 900-1514E

2: Software Installation

hanged
acing for
p 6 and
th figures to
t all on this
ge.

n.tif at
0%

ain.tif at
0%
The newly created files are placed in the freeway\client\[int_nt_emb or

axp_nt_emb]\bin directory.

Step 6: Select “Start ➝ Programs ➝ Protogate ICP2432 ➝ Protogate ICPTool” (or

just double click on the Protogate ICPTool icon shown in Figure 2–7), then select

Download Protocol from the ICPTool Main Menu (Figure 2–8) to display the Protocol

Download Menu (Figure 2–9).

Figure 2–7: Protogate ICPTool Icon

Figure 2–8: ICPTool Main Menu

I c
sp
ste
bo
ge
pa

ico
10

m
10
DC 900-1514E 29

ICP2432 User’s Guide for Windows NT 4.0 and NT 5.0 (Windows 2000) (DLITE Interface)

ownload.tif
t 100%
Figure 2–9: Protocol Download Menu
30 DC 900-1514E

2: Software Installation
Step 7: Select the protocol you wish to download in the List of Protocol Download

Scripts, then select Download to ICP. Note that the ICP type, ICP2432A or ICP2432B,

the ICP’s Bus number, and slot number are displayed in the upper left hand corner of

the window.

Step 8: When the protocol is downloaded successfully, click OK, then OK again to exit

Protocol Download, and Quit in the ICPTool Main Menu.

Step 9: Go to the freeway\client\[int_nt_emb or axp_nt_emb]\bin directory. Run

the loopback test as described in Appendix D.
DC 900-1514E 31

ICP2432 User’s Guide for Windows NT 4.0 and NT 5.0 (Windows 2000) (DLITE Interface)
32 DC 900-1514E

Chapter

Techpubs —
Terminology
Cautions: 1)
use blocking
and non-
blocking I/O
(instead of
synchronous
and
asynchronou
s 2) use
“Raw
operation”
rather than
“Raw mode”
3 Programming Using the
DLITE Embedded Interface

3.1 Overview

This chapter primarily describes the differences between the data link interface (DLI) to

Freeway (as described in the Freeway Data Link Interface Reference Guide) and the

DLITE embedded interface in a Windows NT system, referred to as “DLITE.” Changes

to the scope and nature of Freeway DLI support are described.

This chapter should be read by application programmers who are doing one of the fol-

lowing:

• Porting an existing application (currently operational in the Freeway environ-

ment) to the embedded environment (for example, the embedded ICP2432

PCIbus board).

• Developing an initial DLITE application in the embedded environment. You

should first read the Freeway Data Link Interface Reference Guide and have it avail-

able as your primary reference.

In addition to the Freeway Data Link Interface Reference Guide, the following Protogate

reference documents are of interest to application programmers:

• Freeway Client-Server Interface Control Document (for writing to the socket level)

• The applicable protocol-specific programmer’s guide for your application.

DLITE is a new, streamlined interface designed specifically for the embedded interface

to the ICP2432 board. The interface provides new capabilities while retaining the
DC 900-1514E 33

ICP2432 User’s Guide for Windows NT 4.0 and NT 5.0 (Windows 2000) (DLITE Interface)
majority of the “Freeway DLI” (henceforth referred to as DLI) capabilities. By using

DLITE, developers can concentrate on the communication requirements of the

ICP2432 rather than the details required by the Win32 interface and the ICP2432 NT

driver, thereby reducing programming complexity and development time. DLITE can

be thought of as a communications pipe to the ICP2432. It is compatible with the exist-

ing Freeway DLI (with caveats described in Section 3.3.2 on page 39). DLITE provides

a high-level open/close/read/write interface to the ICPs. It supports both blocking and

non-blocking I/O. The DLITE interface is thread-safe and supports multiple threads

requesting its services.
34 DC 900-1514E

3: Programming Using the DLITE Embedded Interface
3.2 Embedded Interface Description

3.2.1 Comparison of Freeway Server and Embedded Interfaces

The traditional DLI and TSI interface supports client applications communicating with

the Freeway server on a local-area network (LAN). This type of interface is shown in

Figure 3–1. In an embedded environment, the application does not access a network in

communicating with the ICP.

Figure 3–1: DLI/TSI Interface in the Freeway Server Environment

Freeway

ICP0

ICP1

ICP2

ICP3

TCP/IP

192.52.107.99 192.52.107.100

DLI
Client

Application TSI
TSI

Msg
Mux

Ethernet

WAN
Protocols

TCP/IP
Socket Interface

Client

34
00

St
an

da
rd

 B
u

s
In

du
st

ry

SRA

Shared Memory
Interface

dlicfg

DLI Text
Configuration

File

DLI Binary
Configuration File

DLI
Configuration
Preprocessor

(off-line)

TSI Text
Configuration

File

tsicfg

TSI
Configuration
Preprocessor

(off-line)

TSI Binary
Configuration File
DC 900-1514E 35

ICP2432 User’s Guide for Windows NT 4.0 and NT 5.0 (Windows 2000) (DLITE Interface)
Instead, the embedded application using DLITE communicates directly with the Win-

dows NT ICP2432 driver (through the Win32 interface), which accesses the locally

attached ICP. This interface is shown in Figure 3–2. In this environment no Freeway-

type communications take place; it is designed specifically for the embedded system.

3.2.2 Embedded Interface Objectives

The DLITE interface was designed as a streamlined interface to the ICP2432 supporting

a multithreaded application. It supports only Raw operation protocols, which means

that the application is responsible for all communications with the ICP.

DLITE was designed to maximize portability between existing applications. The objec-

tive was an interface that would require “no changes” when porting from a Freeway

environment to an embedded environment. While this objective has been met (for Raw

operation), there are differences between these environments, as well as differences in

system behavior. These differences are addressed in the following sections.

Figure 3–2: DLITE Interface in an Embedded ICP2432 Environment

DLITE
Client

Application

dlicfg

DLITE Text
Configuration

File

DLITE Binary
Configuration File

DLI
Configuration
Preprocessor

(off-line)

Win32
API

ICP0

ICP1

ICP2

ICP3

PCI
Driver

WAN
Protocols

34
01

P
C

Ib
u

s

Windows
NT 4.x
36 DC 900-1514E

3: Programming Using the DLITE Embedded Interface
3.3 DLITE Interface

The DLITE interface is described here in terms of enhanced capabilities, limitations and

caveats, the API itself, configuration files, and logging/tracing (see Section 3.3.1

through Section 3.3.5). Within each context, necessary changes and any behavior dif-

ferences are noted.

3.3.1 DLITE Enhancements

3.3.1.1 Multithread Support

DLITE supports a multithread application interface which is thread-safe for both

blocking I/O and non-blocking I/O. Sample multithread programs are provided, as

described in Appendix D.

Caution
Users are not protected from the misuse of threads.

Multithread support is accomplished by serializing access to shared processing and

eliminating or otherwise guaranteeing integrity of global data.

Access is serialized to the following services so that only a single thread can be in the ser-

vice at any one time:

• dlInit

• dlOpen

• dlClose

• dlTerm
DC 900-1514E 37

ICP2432 User’s Guide for Windows NT 4.0 and NT 5.0 (Windows 2000) (DLITE Interface)
The following functions allow application threads concurrent access to the degree spec-

ified:

• dlRead — read requests block if another read for the same session is currently

being serviced

• dlWrite — write requests block if another write for the same session is currently

being serviced

• dlBufAlloc — multiple thread concurrent access

• dlBufFree — multiple thread concurrent access

• dlPoll — request dependent

• Read complete — blocks at session level

• Write complete — blocks at session level

• Read cancel — blocks at session level

• Write cancel — blocks at session level

• Session status — multiple thread concurrent access

• System configuration — multiple thread concurrent access

• Driver information — multiple thread concurrent access

• Trace control — multiple thread concurrent access
38 DC 900-1514E

3: Programming Using the DLITE Embedded Interface
3.3.2 DLITE Limitations and Caveats

3.3.2.1 Raw Operation Only

DLITE supports only Raw operation. As with DLI, Raw operation means that the API

sends nothing to the ICPs except that which is provided by the application for transmis-

sion; therefore, the client application must handle all the following:

• Configuration of the ICP/Protocol

• ICP and protocol control data (using the DLI OptArgs structure accompanying

each dlRead and dlWrite request)

• I/O details of the specific protocol

Raw operation especially impacts configuration of the ICP. Whereas Normal operation

performs ICP configuration for the application using information from the DLI config-

uration file, the application using Raw operation is totally responsible for configura-

tion. The DLI configuration file does not support “protocol” parameters (in fact, their

presence results in errors during configuration file processing because they are not

allowed in Raw operation).

3.3.2.2 No LocalAck Processing Support

Local acknowledgment (LocalAck) processing is not supported. When data is written to

an ICP, the user receives an acknowledgment that the ICP did in fact receive that data

(refer to your protocol-specific programmer’s guide for details). The Freeway DLI does

support a “LocalAck” capability that hides this from the application programmer (pre-

vious writes are not posted as complete until DLI receives this LocalAck, then the

LocalAck is thrown away). However, the DLITE user is responsible for receiving each

LocalAck and performing any necessary processing. The DLITE behavior is exactly the

same as when the DLI LocalAck configuration parameter is set to “no”. This generally

implies the client application should post a dlRead after each dlWrite to receive the

expected Local Ack.
DC 900-1514E 39

ICP2432 User’s Guide for Windows NT 4.0 and NT 5.0 (Windows 2000) (DLITE Interface)
3.3.2.3 AlwaysQIO Support

DLI optionally supported an “AlwaysQIO” feature (applicable only when using

non-blocking I/O), which restricted notification of completed I/O to callback invoca-

tions only. If an I/O completed immediately in the I/O request, the completion would

not be reported with the return of the dlRead or dlWrite request. Instead, notification

would be through the user-supplied callback.

DLITE always behaves as if the AlwaysQIO configuration parameter is set to “yes” (non-

blocking I/O only). Non-blocking I/O should always return with EWOULDBLOCK while the

I/O completes (via Win32 Overlapped I/O).

3.3.2.4 Changes in Global Variable Support

DLI maintained three global variables; dlerrno, iICPStatus, and cfgerrno. The global

variables iICPStatus and cfgerrno are not supported for DLITE. The iICPStatus value

simply returned the value contained in the ICP status field, which is now available to the

DLITE application in the iICPStatus field from the OptArgs. The information in

cfgerrno is no longer available.

The dlerrno variable is still available, but has been redefined for DLITE as a function

call returning an integer (int _dlerrno()). Reference to dlerrno becomes a function

call which returns the last error for the thread making the call. Note that this definition

precludes using dlerrno as an “L-value” in a “C” expression.

3.3.2.5 dlInit Function No Longer Implied

DLI allowed users to perform dlOpen before calling dlInit (dlInit would be invoked if

required, not a recommended practice). This results in an error when using DLITE.

Processing must be initialized using dlInit before any other service is requested.
40 DC 900-1514E

3: Programming Using the DLITE Embedded Interface
3.3.2.6 Unsupported Functions

The following functions are not supported. Applications invoking these functions

return with the DLI_XX…XX_ERR_NEVER_INIT error.

• dlControl (see note below and Figure 3–3)

• dlListen

• dlPost

• dlSyncSelect

DLITE does not support the dynamic building of the DLI configuration file if the .bin

does not currently exist. This means that DLITE expects the binary configuration file to

exist at run time in order to function properly.

Note
Any previous application which used dlControl to perform a pro-

grammatic download to the ICP must use an alternate method.

The Figure 3–3 code fragment illustrates the DownloadICP()

function. The application must link with the icpdnld.dll and

icpdnld.lib libraries, which are found in the bin and lib directo-

ries of c:\freeway\client\[int_nt_emb or axp_nt_emb], respec-

tively.

3.3.3 The Application Program’s Interface to DLITE

Except where described in the previous sections, the embedded DLITE interface does

not change the application’s interface to DLI. While the DLI interface has remained

intact, changes have been made in both the methods supporting DLI and in the under-

lying functionality.
DC 900-1514E 41

ICP2432 User’s Guide for Windows NT 4.0 and NT 5.0 (Windows 2000) (DLITE Interface)
3.3.3.1 Building a DLITE Application

The DLITE API library for NT (Intel) is dliteint.lib and the associated DLL is

dliteint.dll. For the Alpha processor, the names are dliteant.lib and dliteant.dll

respectively. The user must include the preprocessor definitions “WINNT” and

“DLITE” (e.g., /D “WINNT” and /D “DLITE”) when building the application using the

Protogate-supplied libraries and include header files.

3.3.3.2 Blocking and Non-blocking I/O

Implementation of non-blocking I/O has changed in some of the services. In summary,

the following functions use blocking I/O, regardless of the session’s definition of the

asyncIO parameter in the DLI configuration file. These functions do not return to the

application until all processing is completed for the service requested:

• dlInit

• dlOpen

• dlClose

• dlTerm

#include "c:\\freeway\\include\\icpdnld.h"

DWORD result; /* return code 0=success */
char buff[80]; /* ICP Error Msg Buffer */

result = DownloadICP(
"//./icp1", /* ICP Device Name */
"c:\\freeway\\boot\\bscload.txt", /* Full Path of Download Script File */
buff, /* Error Msg Buffer */
80, /* Error Msg Buffer Size */
NULL, /* Report Buffer */
0); /* Report Buffer Size */

if (result)
 printf("\nDownloadICP Error =%d %s", result, buff);

Figure 3–3: Code Fragment Example to Download ICP
42 DC 900-1514E

3: Programming Using the DLITE Embedded Interface
• dlPoll

• dlBufAlloc

• dlBufFree

The following functions use non-blocking I/O when requested by the application (that

is, when the asyncIO configuration parameter is set to “yes”). They return to the appli-

cation immediately after the operation is queued.

• dlRead

• dlWrite

Using non-blocking I/O, a successful operation returns OK, and dlerrno has the value of

EWOULDBLOCK. The application is notified of I/O completion through the I/O completion

handler (IOCH). The completed I/O operation is retrieved using a dlPoll request for

read/write complete. See Section 3.3.3.5 on page 50 for more information on callbacks

and I/O completion.

Using blocking I/O, the dlRead and dlWrite functions return ERROR if unsuccessful;

otherwise, they return the number of bytes transferred (not including the ICP and

Protocol Header inserted by DLITE).

3.3.3.3 Changes in DLI/TSI

The lack of a network connection has eliminated the need for some of the client/server

communications between the current DLI and TSI. While the user buffer is not

affected, some data previously in the DLI header (i.e. the Freeway header) and the TSI

header is no longer built by the API. These changes are transparent to the user but may

be noted when examining DLITE trace files.
DC 900-1514E 43

ICP2432 User’s Guide for Windows NT 4.0 and NT 5.0 (Windows 2000) (DLITE Interface)
3.3.3.4 Changes in DLI Functions

No changes are required in the user interface to DLI. Some DLI functions have changed

in their implementation, which might affect the user’s expected behavior of the func-

tion. Changes in the affected functions are described below.

dlBufAlloc

Implementation of buffer allocation has changed. Rather than allocating buffers from a

pre-allocated buffer pool managed by TSI, buffer allocation requests presented to

DLITE (using dlBufAlloc) invoke NT system memory services to allocate buffers

(using malloc calls). Do not assume any type of buffer initialization. Also, the size

requested in dlBufAlloc can be thought of as the size requested from the system (the

actual size is somewhat larger, which includes some DLITE overhead requirements). If

the application requests one byte for the data buffer size, it should assume only one byte

is returned.

User requests are verified against the MaxBufs and MaxBufSize DLITE configuration

parameters. Requests exceeding either of these return a buffer allocation error.

Buffers allocated using dlBufAlloc are allocated with room for the ICP and Protocol

header, and a small DLITE work area prefacing the user’s data area. This area is added

to the user’s request; users do not have to account for these requirements in their buffer

request. DLITE also “tags” each buffer, and verifies the buffer was allocated using

dlBufAlloc before it frees the buffer in dlBufFree. Users can not free a buffer they allo-

cated directly from the system using dlBufFree. Buffer alignment requirements for

communications with the NT driver are performed by dlBufAlloc. The buffer returned

is correctly aligned.
44 DC 900-1514E

3: Programming Using the DLITE Embedded Interface
Note
The user’s buffer allocation request should be only for the user’s

data; the space required for the ICP and Protocol headers are

“silently” added to the buffer request by dlBufAlloc. If the applica-

tion is not using the DLITE buffer allocation service, it must

account for the following:

• Sixteen (16) bytes for the protocol header immediately

prefacing the data buffer

• Sixteen (16) bytes for the ICP header immediately prefacing

the protocol header

• Alignment of the buffer address on the correct boundary

dlBufFree

This service has also changed its implementation. In concert with the change in buffer

allocation, a call to dlBufFree returns the requested buffer to the NT memory services

(using free). Where previously the user could use the buffer pointer returned with the

successful dlBufFree request (the buffer still existed in the TSI buffer pool), now that

buffer is indeed freed. Any further reference to the buffer results in unpredictable

results. Requests with a NULL buffer pointer and attempts to free a buffer not allocated

with dlBufAlloc return with a buffer deallocation error message.

dlClose

A close request (dlClose) for a specific session blocks until all other threads have exited

that same session’s close (dlClose), read (dlRead), and write (dlWrite) request. This

might cause the close thread to block on a blocking I/O request (only for the same ses-

sion) which is blocked and waiting on its timeout. Users can circumvent this problem

by assuring all I/O is cancelled prior to the close request. Close processing waits for all

the closed session’s threads to complete before returning to the application.
DC 900-1514E 45

ICP2432 User’s Guide for Windows NT 4.0 and NT 5.0 (Windows 2000) (DLITE Interface)
dlInit

The user application must call dlInit before any other DLITE service. If dlInit does

not find the DLI configuration file, it returns the DLI_INIT_ERR_CFG_LOAD_FAILED error.

It does not try to find a DLI source configuration file and perform the configuration

processing in-line. The logging and tracing capabilities can fail initialization (e.g. the

log_server is not installed) without inhibiting DLITE from providing all its other ser-

vices. However, Protogate strongly discourages the operation of DLITE without the log

facility.

dlOpen

A session open (dlOpen) initiates communications with the NT driver. In both blocking

and non-blocking I/O, dlOpen returns with the result of the operation: a session ID if

successful, an error otherwise. A successful open of a non-blocking operation returns a

dlerrno of EWOULDBLOCK and generates a callback. This callback could be delivered

before the API returns from the open request and would contain the correct session ID.

This callback can be ignored, since the application can use the completion of the open

request to control the open operation.

dlPoll

A new poll request of DLI_P0LL_GET_DRV_INFO returns NT driver information. The

information shown in Figure 3–4 is returned through the pStat parameter provided by

the application (the application provides a pointer to an allocated area of type

DLI_ICP_DRV_INFO). The area used to return this information must have been allocated

by the requesting application.

Note
The DLI_POLL_TRACE_STORE and DLI_POLL_TRACE_WRITE poll

requests are not supported by DLITE.
46 DC 900-1514E

3: Programming Using the DLITE Embedded Interface
Cancel Processing using dlPoll (DLI_POLL_READ_CANCEL and DLI_POLL_WRITE_CANCEL)

is performed differently. The change should be transparent to existing applications.

New applications can optionally take advantage of this change.

• A request to cancel reads or writes (dlPoll request cancel read/write) cancels all

outstanding reads or writes for the session at the time the request is received. In

the Freeway DLI, these were cancelled individually, with the buffer pointer and

OptArgs pointer returned for each request.

• Cancelled I/O is considered as completed. If a user has five read requests queued

and performs a read cancel, a poll would show five reads completed.

• Cancelled I/O is returned as previously; each request is returned (with buffer

pointer and OptArgs pointer) with each poll requesting the cancel, until all are

returned. Returning the cancelled request reduces the number of I/O completions

by one.

• Because cancelled I/O is considered completed, cancelled requests are also

returned in response to requests for completed reads and writes (using dlPoll).

These requests are returned with the DLI_IO_ERR_IO_CANCELLED error code.

typedef struct _DLI_ICP_DRV_INFO
{
 unsigned long Node; /* Node assigned */
 unsigned long DeviceNumber; /* Device Number (ICP) */
 unsigned long NumberOfPorts; /* Number of ports on ICP */
 unsigned long BufferAlignment; /* Byte alignment requirement */
 unsigned long NumberOfIcps; /* Number of ICPs installed */
 unsigned char Version[DLI_MAX_STRING + 1];
 /* Driver version string. */
} DLI_ICP_DRV_INFO;
typedef DLI_ICP_DRV_INFO *PDLI_ICP_DRV_INFO;
#define DLI_ICP_DRV_INFO_SIZE sizeof(DLI_ICP_DRV_INFO)

Figure 3–4: DLI_ICP_DRV_INFO “C” Structure
DC 900-1514E 47

ICP2432 User’s Guide for Windows NT 4.0 and NT 5.0 (Windows 2000) (DLITE Interface)
• This implementation of cancel processing supports those applications designed

for the Freeway DLI.

• The user application should ignore the buffer length and associated buffer data

when a cancelled I/O request is returned.

dlRead

There is no change to the dlRead function. However, because DLITE supports Raw

operation only, it does require an associated OptArgs with each I/O request. DLITE fills

in the supplied OptArgs structure with the appropriate data from the ICP and Protocol

headers associated with the read data received from the ICP. Read requests (dlRead) are

returned to the application with the supplied OptArgs structure built from the ICP and

Protocol header received with the data buffer. All the ICP and protocol information is

available in the OptArgs structure when the read buffer is returned.

Non-blocking I/O should expect an EWOULDBLOCK error upon return. A callback is issued

when the read is completed. A callback is invoked for each (both read and write) read

completion.

If the read operation is returned with an error, the data in the OptArgs structure is not

valid. The application must verify the read operation before referencing OptArgs data.

Note
As with the DLI interface, read requests with a NULL buffer

pointer result in DLITE allocating and returning a read buffer. The

address of the buffer allocated is returned in the supplied buffer

pointer upon return from the call. This is true for both blocking

and non-blocking I/O. The user that wants a DLITE allocated

buffer should ensure the buffer pointer supplied with the dlRead

call is NULL.
48 DC 900-1514E

3: Programming Using the DLITE Embedded Interface
dlTerm

Termination processing (dlTerm) releases resources and terminates DLITE. Any active

I/O active is cancelled when dlTerm is called. Data buffers associated with the cancelled

I/O are deallocated if those buffers were allocated by DLITE (using dlBufAlloc).

OptArgs buffers are not deallocated. The application should cancel all I/O before termi-

nating.

The dlTerm function sleeps for 1–2 seconds (not including any time required in the can-

celling of active I/O) to allow threads which might have been active previous to the ter-

mination request to exit.

dlWrite

As with dlRead, dlWrite requires an associated OptArgs structure with the write request.

DLITE builds the ICP and Protocol headers, which preface every application buffer (see

dlBufAlloc), from information supplied in this OptArgs structure. Specifically, DLITE

does the following for Raw operation writes:

1. ICP->usClientID = htons (OptArgs->usICPClientID);

2. ICP->usServerID = htons (OptArgs->usICPServerID);

3. ICP->usCommand = htons (OptArgs->usICPCommand);

4. ICP->usParms[0-2] = htons (OptArgs->usICPParms[0-2]);

5. DLITE adds ICP->iStatus = LittleEndian ? htons (0x4000) : htons (0);

6. DLITE adds ICP->usDataBytes = htons (BufLen + DLI_PROT_HDR_SIZE);

7. If the ICP command is an Attach, or a Write Expedite, the node ID (previously

retrieved from the NT driver) is stored in ICP->usParam[0] (ICP->usParms[0] =

htons(Session->drvNodeID)).
DC 900-1514E 49

ICP2432 User’s Guide for Windows NT 4.0 and NT 5.0 (Windows 2000) (DLITE Interface)
8. PROT->usCommand = OptArgs->usProtCommand;

9. PROT->iModifier = OptArgs->iProtModifier;

10. PROT->usLinkID = OptArgs->usProtLinkID;

11. PROT->usCircuitID = OptArgs->usProtCircuitID;

12. PROT->usSessionID = OptArgs->usProtSessionID;

13. PROT->usSequence = OptArgs->usProtSequence;

14. PROT->usXParms[0-1] = OptArgs-> usProtXParms [0-1]);

Non-blocking I/O should expect an EWOULDBLOCK error upon return. A callback is issued

when the write is completed. A callback is invoked for each (both read and write) write

completion.

3.3.3.5 Callbacks

Callbacks occur only in those sessions configured for non-blocking I/O. They represent

the completion of an I/O activity; signaling the application to perform actions depen-

dent on that I/O completion. In the DLITE interface, this operation might be a dlPoll

to retrieve session status to ascertain the session’s I/O state, or to request read/write

completes (using dlPoll). Blocking I/O applications receive their I/O upon return from

the dlRead or dlWrite function.

Callbacks are issued in the context of their own thread. Only one callback thread exists

in each DLITE process. Callbacks are delivered sequentially; they are never reentered by

another callback.
50 DC 900-1514E

3: Programming Using the DLITE Embedded Interface
Caution
As the callback operates in the context of its own thread, the appli-

cation must protect itself with data referenced by its callback pro-

cessing and processing of other, concurrent, threads.

There is no difference between the “main” callback and the “session” callback. They are

initiated sequentially by DLITE. For sake of efficiency, Protogate recommends the user

make use of only one.

To maintain conformity with the existing DLI, callbacks are delivered upon completion

of dlOpen processing. Although dlOpen processing does not generate a callback from the

system (i.e., an I/O completion port thread is not “kicked-off”) the API does, just prior

to exiting the dlOpen processing, emulate the event by placing a “callback” request in an

internal callback queue for delivery to the application.

In a similar manner, callbacks on dlClose requests are generated and delivered by the

API.

The callback thread runs at a higher priority. This ensures that callbacks do not backup

on the delivery queue. This backup would occur when the application processes more

than one I/O completion event in the callback routine (e.g., processing more than one

read/write compete in a single invocation of the application callback routine). At a

higher priority, the application callback processing can process as many (or as few) as

design dictates without regard to a queue backup.
DC 900-1514E 51

ICP2432 User’s Guide for Windows NT 4.0 and NT 5.0 (Windows 2000) (DLITE Interface)
3.3.3.6 DLITE Error Codes

The error codes listed in Table 3–1 have been added to DLITE.

Table 3–1: DLITE Error Codes

Value DLITE Error Code Description and Recommended Action

–10211 DLI_OPEN_ERR_ICP_INVALID_STATUS Returned by dlOpen(). The ICP has not been down-
loaded with a protocol or is in a non-operational state.

–10231 DLI_OPEN_ERR_NO_DRV_INFO An error occurred in the I/O interface while requesting
NT driver information. Terminate the interface, verify
NT driver installation.

–10232 DLI_OPEN_ERR_NO CMPLT_PORT An error occurred while requesting an I/O completion
port from the system. Terminate and try re-establishing
the application.

–10518 DLI_READ_ERR_NO_OPTARG The application failed to provide an OptArgs structure
with the read request. Modify the application to build
and supply an OptArgs structure with each read request.

–10721 DLI_POLL_ERR_INVALID_STATE A request for driver information was made for a session
not currently open. Open the session before requesting
NT driver information.

–10902 DLI_BUFA_ERR_SIZE_EXCEEDED An attempt was made to allocate more buffers, or a
buffer of greater size, than that defined in the DLI con-
figuration file. Modify the application to adhere to sizes
defined in the DLI configuration file.

–11003 DLI_BUFF_ERR_NONE_ALLOC An attempt was made to deallocate a buffer when none
were allocated. Modify application to account for used
buffers.

–11004 DLI_BUFF_ERR_ALREADY_FREE Returned by dlBufFree(). The buffer specified has
already been released.

–11918 DLI_WRIT_ERR_NO_OPTARG The application failed to provide an OptArgs structure
with the write request. Modify the application to build
and supply an OptArgs structure with each write
request.

–12003 DLI_IO_ERR_IO_CANCELLED The read or write request was cancelled at the request
of the user application.
52 DC 900-1514E

3: Programming Using the DLITE Embedded Interface
All NT system errors are mapped into existing DLI error codes (dlerrno) so the appli-

cation can recognize the error condition and react accordingly. All NT errors are

returned from calls to GetLastError() when a NT service fails. NT errors are mapped

to dlerrno as described in Table 3–2.

Table 3–2: NT Errors Mapped to dlerrno

NT Value NT Error Code Applicable dlerrno Codes

1
8

87
998

1117

ERROR_INVALID_FUNCTION
ERROR_NOT_ENOUGH_MEMORY
ERROR_INVALID_PARAMETER
ERROR_NOACCESS
ERROR_IO_DEVICE

DLI_POLL_ERR_IO_FATAL
DLI_READ_ERR_INTERNAL_DLI_ERROR
DLI_WRIT_ERR_INTERNAL_DLI_ERROR

5 ERROR_ACCESS_DENIED DLI_READ_ERR_UNBIND
DLI_WRIT_ERR_UNBIND

22 ERROR_BAD_COMMAND DLI_READ_ERR_IO_FATAL
DLI_WRIT_ERR_IO_FATAL
DLI_POLL_ERR_IO_FATAL

170
121

ERROR_BUSY
ERROR_SEM_TIMEOUT

DLI_READ_ERR_TIMEOUT
DLI_WRIT_ERR_TIMEOUT
DLI_POLL_ERR_READ_TIMEOUT
DLI_POLL_ERR_WRITE_TIMEOUT

234 ERROR_MORE_DATA DLI_READ_ERR_OVERFLOW
DLI_POLL_ERR_OVERFLOW

995 ERROR_OPERATION_ABORTED DLI_READ_ERR_INTERNAL_DLI_ERROR
DLI_WRIT_ERR_INTERNAL_DLI_ERROR
DLI_POLL_ERR_IO_FATAL

1784 ERROR_INVALID_USER_BUFFER DLI_READ_ERR_INVALID_BUF
DLI_WRIT_ERR_INVALID_BUF
DLI_POLL_ERR_INVALID_REQ_TYPE
DC 900-1514E 53

ICP2432 User’s Guide for Windows NT 4.0 and NT 5.0 (Windows 2000) (DLITE Interface)
3.3.4 Configuration Files

DLITE uses only the DLI configuration files (TSI configuration files are not used and

are not required). The DLI configuration file must specify “protocol = raw” in the ses-

sion sections. With this specification, no parameters are allowed in the protocol section.

The DLI configuration file has been changed to include parameters previously specified

in the TSI configuration file (which is no longer used). These parameters are required

to maintain conformity with those applications porting from DLI to DLITE. This file

has been changed as follows:

MaxBuffers — This parameter has been added to the “main” section. It replaces the

MaxBuffers parameter previously defined in the TSI configuration file. This value

is returned in the usMaxBufs field of the configuration parameters returned in

response to a dlPoll for system configuration. Operationally, this value limits the

number of buffers the user can have outstanding using the dlBufAlloc function.

If not explicitly defined in the DLI configuration file, the MaxBuffers parameter

defaults to 1024.

MaxBufSize — This parameter has been added to the “main” section. It replaces the

MaxBufSize parameter previously defined in the TSI configuration file. This value

is returned in the iMaxBufSize field of the configuration parameters returned in

response to a dlPoll for system configuration. Operationally, this value repre-

sents the greatest size an application can request using dlRead, and defines the

buffer size used when a dlRead request is made without specifying a buffer (the

API allocates and returns this buffer to the application). If not explicitly defined

in the DLI configuration file, the MaxBufSize parameter defaults to 1024.

MaxBufSize — This parameter has been defined in the “session” section of the DLI con-

figuration file. It replaces the MaxBufSize parameter previously defined in the TSI

configuration file (“connection” section). This value is returned in the

usMaxSessBufSize field of the session parameters returned in response to a dlPoll

for session status. Operationally, this value represents the greatest size an applica-
54 DC 900-1514E

3: Programming Using the DLITE Embedded Interface
tion can request to be written using dlWrite. If not explicitly defined in the DLI

configuration file, the MaxBufSize parameter defaults to 1024.

TSICfgName — The meaning of the TSI configuration file name (no longer required)

defined in the DLI “main” section is now used to define the location of the

log/trace service. A value of “.” (single period within quotes) signifies the current

client machine. Also see Section 3.3.5.1 on page 56. Both the log file name and

trace file names are modified by appending the current process ID to the supplied

name.

3.3.5 Logging and Tracing

The DLITE logging and tracing is very different from that supported in the Freeway

environment. The Freeway created and formatted trace and log files internally, whereas

DLITE uses a pipe to send packets to a Windows NT Logger System Service. The service

is a utility, LOG_SRV, which logs events such as errors and trace records to disk files. The

service communicates with client applications through a well-known named pipe.

Named pipes allow applications to be distributed among several NT systems on the

same LAN.

There is no longer any need to “decode” the DLI trace file. Both trace and log data are

immediately available for viewing, even when the application is generating the data.

Data is sent to this service in one direction, the API does not know the status of the

operation. The service can be installed in any client available on the network to the

application machine.

The logger service application, LOG_SRV, and its configuration file, LS_CFG, reside in the

directory:

freeway\client\[int_nt_emb or axp_nt_emb]\bin

The user’s application can also make use of the service to write custom log files. For

more information, see Appendix C.
DC 900-1514E 55

ICP2432 User’s Guide for Windows NT 4.0 and NT 5.0 (Windows 2000) (DLITE Interface)
3.3.5.1 Logger Service Parameters in the DLI Configuration File

Since DLITE no longer requires a TSI Configuration File, the TSICfgName parameter has

been redefined to define the “server name” where the Logger System Service is installed.

The name is used to construct the pipe name to the service. In most cases, the name “.”

(with quotation marks) is used to specify “this” server. However, the dot in the pipe

name may be replaced with the network name of the server containing the system ser-

vice, e.g.

TSICfgName = “MyServer”

Using the name allows the application to be placed on a different NT system on the

same LAN and still communicate with the service.

TSICfgName — Specifies the server name where the Logger System Service is installed.

(The TSI Configuration File is not applicable with DLITE.) Also see Section 3.3.4

on page 54.

Caution
If the user neglects to define the TSICfgName with an appropriate

server name, an NT System Error 53 (ERROR_BAD_NETPATH) occurs

notifying the user the network path was not found.

LogName — A fully qualified path and file name of the file to store the DLI logging infor-

mation.

TraceName — A fully qualified path and file name of the file to store the DLI trace infor-

mation.

Note
If the user neglects to define a fully qualified path, files will be

deposited into the “c:\winnt\system32” directory.
56 DC 900-1514E

3: Programming Using the DLITE Embedded Interface
3.3.5.2 Common Logging Service Errors

An application can encounter several errors related to logging and tracing upon initial-

ization with the dlInit function. See Table 3–3 and Table 3–4. These errors can result

from the unavailability of the Windows NT Logger System Service, either because the

service has not been installed or has not been started. In either case, the errors are non-

fatal and the application proceeds normally; however, logging and tracing are not acti-

vated. The application can ignore these errors (since these services are not available).

Note
The Windows NT Logger System Service records severe errors to

the Windows NT system event log. Messages can be viewed using

the Windows Event Viewer program.

Table 3–3: DLI Error Codes

Error Code Error Description Recommended Action

–10006 DLI_INIT_ERR_LOG_INIT_FAILED dlLogInit() failed to start logging. Non-fatal
return from dlInit. Application can ignore
this error (since this service is not available).

–11701 DLI_LOGI_ERR_TRACE_OPEN_FAILED dlTrcInit() failed to start tracing. Non-fatal
return from dlInit. Application can ignore
this error (since this service is not available).
DC 900-1514E 57

ICP2432 User’s Guide for Windows NT 4.0 and NT 5.0 (Windows 2000) (DLITE Interface)
3.3.5.3 General Application Error File

DLITE creates an application error file “_DLITERR.TXT” which contains descriptive run-

time errors. Regardless of log and trace levels defined in the DLITE configuration file,

the error file is created in the directory where the application is started. It is a circular

file containing a maximum of 1000 entries.

Table 3–4: Windows NT Error Codes

NT Error
Code Error Description Recommended Action

2 ERROR_FILE_NOT_FOUND Logging Service not installed or started. Install LOG_SRV
application.

53 ERROR_BAD_NETPATH DLI parameter TSICfgName specifies an invalid Logging
Server Name. Specify either “.” or the Server Name. Rebuild
the DLI bin file using DLICFG.EXE.

109 ERROR_PIPE_BROKEN The Logging Service has terminated abnormally. This can
occur if the application attempts to open more pipes than
specified in the LS_CFG file.

231 ERROR_PIPE_BUSY The Logging Service is unable to process the request.
Increase max_buffers in the LS_CFG file.

233 ERROR_PIPE_NOT_CONNECTED The Logging Service is unable to establish a pipe connec-
tion to the specified trace/log file.
58 DC 900-1514E

Chapter
4 Programming Using the
Win32 Interface
Protogate’s API layers are designed to free developers from the often-difficult program-

ming details of an operating system and the interface details of the protocol software on

the ICP. Protogate’s API layers take care of tasks such as queuing I/O requests, buffer

allocation (with properly aligned I/O buffers), building protocol headers, endian trans-

lation, session management, and others. Using the DLITE interface described in

Chapter 3 allows developers to concentrate more on their specific applications rather

than the difficult communication and programming details associated with transfer-

ring data from one system to the next via a wide-area network. Protogate strongly

encourages users to implement their applications using the DLITE interface; however,

users who wish to bypass Protogate’s API layers and use the Win32 system services

directly may do so, although many services provided by the DLITE will need to be

“reinvented” in the user application. This chapter provides the information necessary

to build Win32 applications.

4.1 Function Mappings

This section describes how a user application interfaces with the ICP2432 device driver

using Win32 system calls. It is not intended to be a Win32 tutorial; users who bypass

Protogate’s API layers are assumed to already know how to write Win32 applications,

the purpose of the individual Win32 functions, and the programming issues that arise.

This section merely lists the Win32 functions used to communicate with the ICP (via

the device driver) and the actions performed.
DC 900-1514E 59

ICP2432 User’s Guide for Windows NT 4.0 and NT 5.0 (Windows 2000) (DLITE Interface)
4.1.1 Opening the ICP

Before a user application can perform any I/O transaction with the ICP, a handle to the

ICP must be obtained. This is done by opening the ICP using the CreateFile Win32

system service.

One of the parameters to the CreateFile function is a device name having the form

\\.\IcpX, where ‘X’ represents the device number (1, 2, …).1 CreateFile returns a han-

dle to the ICP2432. After the handle is obtained, it is used in other Win32 system service

calls, such as ReadFile or WriteFile.

Note that normal Windows NT file access control is in effect when the device is opened.

For example, if an application sets the dwDesiredAccess parameter for CreateFile to

GENERIC_READ and then later attempts to perform a write request to the ICP, the write

request will fail. Access control is especially important when considering the value to

use for the dwSharedMode parameter, since users will most likely wish to have multiple

sessions to the ICP open simultaneously.

A typical call to CreateFile would look like this:

 HANDLE hFile;
 ...
 hFile = CreateFile("\\\\.\\Icp1",
 GENERIC_READ | GENERIC_WRITE,
 FILE_SHARE_READ | FILE_SHARE_WRITE,
 NULL,
 OPEN_EXISTING,
 FILE_ATTRIBUTE_NORMAL | FILE_FLAG_OVERLAPPED,
 NULL);

When CreateFile returns, hFile contains the handle to the ICP. Note also that over-

lapped I/O is being requested in the above example.2 For non-overlapped I/O, remove

the FILE_FLAG_OVERLAPPED flag from the call.

1. Due to Windows NT requirements, device numbers begin at one instead of zero.
60 DC 900-1514E

4: Programming Using the Win32 Interface
4.1.2 Reading Data

The ReadFile Win32 function is called by a user application to receive data from the

ICP2432. One of the parameters to this function is the file handle that was returned

from CreateFile. The handle must have been opened with GENERIC_READ access. The

user buffer address and buffer size are also passed to ReadFile.

A typical call to ReadFile would look like this:

 char Buffer[1024];
 DWORD BytesReceived;
 HANDLE hFile;
 BOOLEAN Status;
 ...
 Status = ReadFile(hFile,
 Buffer,
 1024,
 &BytesReceived,
 NULL); // Assume non-overlapped operation.

The final parameter must point to an OVERLAPPED structure if the handle was originally

opened using the FILE_FLAG_OVERLAPPED flag in CreateFile.

It should be noted that direct I/O (as opposed to buffered I/O) is used to exchange data

with the ICP. This means that when an I/O request is made, the physical page frames for

the user buffer are locked in memory and become temporarily non-pageable until the

ICP satisfies the request (which could be at a much later time). Hence, if a user applica-

tion uses large I/O buffers and/or has a high number of outstanding read requests,

memory resources are being used up and some system degradation might occur due to

an increased number of page faults. When the I/O request is satisfied, the pages become

unlocked and can be paged by Windows NT in the normal manner.

2. Overlapped I/O is the Win32 term used to describe non-blocking I/O (also called asynchronous I/O).
When an overlapped I/O request is issued, the executing thread does not block, but continues executing
concurrently with the I/O. When overlapped I/O is used, it is up to the user application to synchronize with
I/O completion before processing the data. This is usually done by associating an event object with the I/O
request and using the Win32 function WaitForSingleObject or WaitForMultipleObjects to wait for the
event(s) to enter the signalled state.
DC 900-1514E 61

ICP2432 User’s Guide for Windows NT 4.0 and NT 5.0 (Windows 2000) (DLITE Interface)
4.1.3 Writing Data

The WriteFile Win32 function is called by a user application to send data to the ICP.

One of the parameters to this function is the file handle that was returned from

CreateFile. The handle must have been opened with GENERIC_WRITE access. The user

buffer address and requested transfer size are also passed to WriteFile.

A typical call to WriteFile would look like this:

 char Buffer[1024];
 DWORD BytesWritten;
 HANDLE hFile;
 BOOLEAN Status;
 ...
 Status = WriteFile(hFile,
 Buffer,
 1024,
 &BytesWritten,
 NULL); // Assume non-overlapped operation.

The final parameter must point to an OVERLAPPED structure if the handle was originally

opened using the FILE_FLAG_OVERLAPPED flag in CreateFile.

Caution
For proper communication with the ICP, as well as efficient data

transfer over the 32-bit data path of the PCIbus, the ICP requires

user I/O buffers to be aligned on a longword boundary. In addi-

tion, the Windows NT operating system itself may impose addi-

tional alignment requirements. User applications are responsible

for meeting all alignment requirements; the Windows NT I/O

Manager does not correct alignment discrepancies during a DMA

transfer. The alignment requirement for a particular ICP may be

determined by using the IOCTL_ICP_GET_DRIVER_INFO device con-

trol request (Section 4.1.5).
62 DC 900-1514E

4: Programming Using the Win32 Interface
4.1.4 Cancelling I/O

I/O requests may be cancelled using the Win32 CancelIo function. 3 This function takes

one parameter; a file handle obtained from CreateFile. Using CancelIo automatically

implies the use of overlapped I/O. That is, a thread that issues a non-overlapped I/O

request blocks on the ReadFile or WriteFile call until the I/O completes; and if the

thread is blocked, it cannot call CancelIo. A typical call to CancelIo looks like this:

HANDLE hFile;
BOOLEAN Status;
...
Status = CancelIo(hFile);

The CancelIo function cancels all I/O requests – both reads and writes – that were

issued by the calling thread for the handle specified. If two or more threads have dupli-

cate handles (for example, when one thread creates a second thread, and the second

thread inherits the first thread’s handles), only the I/O requests issued by the calling

thread are cancelled for the given handle; any other I/O requests for the handle are still

active. One implication of this is that a thread cannot use CancelIo to unblock a second

thread that is waiting for a non-overlapped I/O request to complete.

4.1.5 Device Control

User applications might sometimes need to communicate directly to the device driver

(rather than the ICP) to obtain information or perform other control functions. The

DeviceIoControl Win32 function makes special requests directly to the driver. Again,

the handle returned by CreateFile is necessary as a parameter to this function. In addi-

tion, a control code is passed in the dwIoControlCode parameter. This control code tells

the driver which special function to perform. The control codes recognized by the

ICP2432 driver are given in Table 4–1, and defined in the Icp2432Nt.h header file that

is included on the product installation media.

3. CancelIo is a new Win32 function as of Windows NT release 4.0.
DC 900-1514E 63

ICP2432 User’s Guide for Windows NT 4.0 and NT 5.0 (Windows 2000) (DLITE Interface)
4.1.5.1 Cancelling I/O Requests

The IOCTL_ICP_CANCEL_xxx (where xxx is either READS or WRITES) control codes are used

to cancel I/O requests that were issued by the file handle indicated in the

DeviceIoControl call. No input or output buffers need to be specified in the function

call when one of these control codes is used. The following example shows how to can-

cel all read requests issued for a handle:

DWORD Dummy;
HANDLE hFile;
OVERLAPPED Overlap;
BOOLEAN Status;
...
Status = DeviceIoControl(hFile,
 IOCTL_ICP_CANCEL_READS,
 NULL,
 0,
 NULL,
 0,
 &Dummy, // Not used, but required.
 &Overlap);

The final parameter must point to a valid OVERLAPPED structure. Threads using

non-overlapped I/O block until a request completes, and therefore cannot cancel I/O

requests.

Table 4–1: ICP2432 Driver Control Codes

IOCTL Code Description

IOCTL_ICP_CANCEL_READS Cancel all pending read requests for a given file handle

IOCTL_ICP_CANCEL_WRITES Cancel all pending write requests for a given file handle

IOCTL_ICP_GET_DRIVER_INFO Get internal information from the driver

IOCTL_ICP_INIT_ICP Reset the ICP

IOCTL_ICP_INIT_PROC Inform the ICP to execute its INIT routine

IOCTL_ICP_SET_DNL_TARGET_ADDR Set ICP target address of next download block

IOCTL_ICP_WRITE_EXPEDITE Send a high-priority request to the ICP
64 DC 900-1514E

4: Programming Using the Win32 Interface
Note that the IOCTL_ICP_CANCEL_xxx functions have different semantics than the

CancelIo Win32 function. The CancelIo function cancels I/O requests based on a par-

ticular thread/handle combination; the IOCTL functions supplied by Protogate cancel

all I/O requests of a particular type (reads or writes) for a particular handle, regardless

of who issued the requests.

The IOCTL_ICP_CANCEL_WRITES function cancels all pending write requests for a given

file handle, including any expedited writes (see Section 4.1.5.3).

Caution
The IOCTL_ICP_CANCEL_xxx functions are supplied by Protogate

for backward compatibility with device drivers prior to version

1.1-0. Protogate does not guarantee that these functions will be

supported in future releases, and recommends that the CancelIo

function be used to cancel I/O requests.

4.1.5.2 Obtaining Internal Driver Information

The IOCTL_ICP_GET_DRIVER_INFO control code is used to retrieve information from the

driver. The application supplies an output buffer large enough to hold an

ICP_Driver_Info structure, which is defined in the Icp2432Nt.h header file and has the

format shown in Figure 4–1. Table 4–2 describes the ICP_Driver_Info structure fields.

The possible ICP states are given in Figure 4–2 and also defined in the Icp2432Nt.h

header file.
DC 900-1514E 65

ICP2432 User’s Guide for Windows NT 4.0 and NT 5.0 (Windows 2000) (DLITE Interface)
Figure 4–1: ICP_Driver_Info Structure

Table 4–2: ICP_Driver_Info Structure Fields

Field Description

Node Driver’s internal node number corresponding to the file handle used in
the DeviceIoControl request (Section 4.2.3 describes node numbers)

IcpWasReset TRUE if the ICP has been reset since the handle was open

DeviceNumber Device number of the ICP to which the handle is opened

NumberOfPorts Number of ports (links) on the ICP (2, 4, or 8) and Bus #, Slot # and
the Memory Mapped flag for ICP2432As. ICP2432Bs are always Mem-
ory Mapped

IcpState Current state of the ICP (see Figure 4–2)

BufferAlignment The device’s alignment requirement for user I/O buffers. For example,
a value of four is returned if buffers must be aligned on a longword
boundary, eight is returned for quadword alignment, and so on

NumberOfOpenHandles Number of distinct handles open to this particular ICP

NumberOfIcps Total number of ICP2432s in the system recognized by the driver

Version A NULL-terminated string specifying the driver version number

typedef struct _ICP_Driver_Info
{

/* Handle-specific items. */
ULONG Node;
BOOLEAN IcpWasReset;

/* Items about the ICP to which the handle is opened. */
ULONG DeviceNumber;
ULONG NumberOfPorts; // also Bus #, Slot #, Mem-Map
ICP_State IcpState;
ULONG BufferAlignment;
ULONG NumberOfOpenHandles;

/* Driver-wide global information. */
ULONG NumberOfIcps;

/* Driver-specific items. */
UCHAR Version[MAX_VERSION_LENGTH];

} ICP_Driver_Info, *PICP_Driver_Info;
66 DC 900-1514E

4: Programming Using the Win32 Interface
The following excerpt shows how to obtain the driver information:

DWORD BytesReturned;
 ICP_Driver_Info DriverInfo;
 HANDLE hFile;
 BOOLEAN Status;
 ...
 Status = DeviceIoControl(hFile,
 IOCTL_ICP_GET_DRIVER_INFO,
 NULL,
 0,
 &DriverInfo,
 sizeof(DriverInfo),
 &BytesReturned,
 NULL); // Assume non-overlapped operation.

When the function completes, DriverInfo contains the driver information.

4.1.5.3 Expedited Write Requests

The IOCTL_ICP_WRITE_EXPEDITE control code is used to send an “expedited” message to

the ICP. The device driver sends expedited write requests to the ICP before any normal

write requests (that is, requests that were posted with WriteFile). Multiple expedited

write requests are sent to the ICP in the order in which they are received by the driver,

but always before any normal writes that the driver has queued. The following segment

shows how to make an expedited write request:

Figure 4–2: IcpState Field Definitions

typedef enum
{
 ICP_State_Unknown, // Unknown state. ICP is unusable.
 ICP_State_POST, // RESET# asserted. POSTs active.
 ICP_State_Reset, // POSTs complete. ICP is reset.
 ICP_State_Download, // ICP is in download mode.
 ICP_State_Init, // ICP is executing INIT procedure.
 ICP_State_Ready // Normal operation.
} ICP_State, *PICP_State;
DC 900-1514E 67

ICP2432 User’s Guide for Windows NT 4.0 and NT 5.0 (Windows 2000) (DLITE Interface)
char Bfr[1024];
DWORD BytesWritten;
HANDLE hFile;
OVERLAPPED Overlap;
BOOLEAN Status;
...
Status = DeviceIoControl(hFile,
 IOCTL_ICP_WRITE_EXPEDITE,
 Bfr,
 1024,
 NULL,
 0,
 &BytesWritten,
 &Overlap);

The above example uses overlapped I/O. An application using non-overlapped I/O

probably has no need to make expedited write requests because only one write request

will be active at any given time (that is, the thread blocks during the write). However, if

multiple threads share a single file handle, there is nothing to stop one of the threads

from making expedited write requests using non-overlapped I/O (for example, one of

the threads might be a “control” thread whose messages have precedence over those of

the other threads).

Care must be taken when using expedited writes because an expedited write is a global

entity to the driver. That is, an expedited write is sent before all normal write requests

that the driver has queued, not just before normal writes for the specified handle. For

example, if five processes, each with a unique handle open to the ICP, simultaneously

issue write requests to an ICP, and one of those requests is an expedited write, the expe-

dited write preempts the requests of the other processes and is sent to the ICP first. 4

Additionally, there is a greater amount of overhead associated with expedited writes

than with normal writes, and expedited writes are less efficient and require more system

resources. Developers should use the expedited write capability judiciously.

4. Requests cannot be queued “exactly” at the same time, of course, so it is possible that the driver may
have started sending a normal write request to the ICP before receiving the expedited write request from
the user application. Once in progress, however, a normal write request cannot be preempted. The expe-
dited write will be the next request sent to the ICP.
68 DC 900-1514E

4: Programming Using the Win32 Interface
Not all Protogate protocols recognize expedited write requests, and will treat them the

same as normal write requests. Some protocols that do recognize expedited writes also

associate special characteristics with them in addition to the high-priority nature (for

example, expedited writes may not be subject to flow control). Consult the program-

mer’s guide for your particular protocol to determine whether expedited writes are sup-

ported and what attributes are given to them by the protocol software. Regardless of

how the protocol software treats expedited writes, the ICP2432 device driver does not

assign any special characteristics to them other than to send them to the ICP before any

normal writes that are queued.

4.1.5.4 Support for ICP Initialization

The remaining control codes – IOCTL_ICP_INIT_ICP, IOCTL_ICP_INIT_PROC, and

IOCTL_ICP_SET_DNL_TARGET_ADDR – are used to initialize the ICP and are beyond the

scope of this document. The IcpTool utility provided by Protogate on the distribution

media should be used to initialize an ICP.

Note
Customers who have a genuine need to dynamically reinitialize an

ICP from within their application should contact Protogate Cus-

tomer Support as described on page 15 for information on using

the IcpDnld.dll dynamic link library provided on the distribution

media.

4.1.6 Closing A Handle

A user application terminates a session with the ICP by closing the associated file han-

dle. The CloseHandle function is used to close a handle to the ICP.

A typical call to CloseHandle would look like:
DC 900-1514E 69

ICP2432 User’s Guide for Windows NT 4.0 and NT 5.0 (Windows 2000) (DLITE Interface)
 HANDLE hFile;
 BOOLEAN Status;
 ...
 Status = CloseHandle(hFile);

4.2 Driver Features and Capabilities

The ICP2432 device driver provides the following capabilities:

• Support for downloading an application system to the ICP

• Communication with ICP-resident tasks

• Multiplexed I/O (multiple active requests per device)

• Error logging

4.2.1 Download Support

Before applications can use the ICP, it must be downloaded; that is, the ICP-resident

application system must be copied to the ICP’s memory, then executed. This procedure

must occur whenever the ICP is reset. The ICP2432 device driver provides the services

necessary to reset and download the ICPs.

Note
User applications normally do not have to worry about download-

ing the ICP. The ICPTool program supplied with the ICP2432 takes

care of downloading the ICP with the appropriate software.

4.2.2 Communication With ICP-Resident Tasks

A Windows NT application controls the ICP by communicating with the protocol soft-

ware that is executing on the ICP. It accomplishes this by opening a “session” with the

ICP. In normal ICP operation (that is, after the download sequence has completed),

user applications communicate with the ICP software by making read and write
70 DC 900-1514E

4: Programming Using the Win32 Interface
requests. Creating a file handle opens a data path to the ICP and its software, and the

first command sent by the application to the ICP software is usually an “attach” com-

mand, which opens a session to a particular link on the ICP. The commands and

responses recognized by the ICP software are described in the Programmer’s Guide for

the particular protocol executing on the ICP.

4.2.3 Multiplexed I/O

Whenever a file handle is created (not duplicated, but created), a new data path is made

with the ICP. File handles can be thought of as being associated with a logical channel to

the ICP (what is known as a node internally to the driver). All nodes share one physical

interface to the ICP. At any given moment, there is at most one command being sent to

the ICP (because there is only one physical channel), but there can be any number of

pending I/O requests active. Requests are queued on their associated node until such

time when the ICP completes the request. User applications using non-overlapped I/O,

have at most one I/O request pending on a given node; whereas any number of reads or

writes can be pending on a node when overlapped I/O is used.

I/O requests on a given node always complete sequentially.5 However, I/O requests

complete randomly on a global device-wide basis; that is, if Process A issues a read

request and Process B then issues a read request, there is no guarantee that Process A’s

request will complete before Process B’s request (assuming the two processes are using

distinct file handles to the ICP).

4.2.4 Error Logging

When the ICP2432 driver detects an error, it creates an entry in the Windows NT sys-

tem event log. The system event log can be viewed by opening the Event Viewer

(Start–>Programs–>Administrative Tools (Common)–>Event Viewer) and selecting

5. At least within the type of request. That is, all read requests on a node complete sequentially in the order
in which they were issued, and all write requests on a node complete sequentially, but the combined set of
reads and writes does not necessarily complete in the order issued.
DC 900-1514E 71

ICP2432 User’s Guide for Windows NT 4.0 and NT 5.0 (Windows 2000) (DLITE Interface)
Log–>System from the menu bar. Figure 4–3 shows a sample event log displayed in the

Event Viewer.

The “Source” column identifies the source of the log message. As shown in Figure 4–3,

error messages from the ICP2432 driver are identified by the string “ICP2432.” The icon

at the beginning of each line indicates the severity of the event; an ‘i’ indicates an infor-

mational message, an exclamation point indicates a warning message, and a stop sign

indicates an error message. Double-clicking on a line gives further details about the

event, as shown in Figure 4–4.

The “Description” field in the Event Detail describes the event, and the severity is indi-

cated in the “Type” field. Depending on the event, the ICP2432 driver might dump

internal information along with the event notification. This information (which is for

Protogate internal use only) is displayed in the “Data” field of the Event Detail (begin-

ning at offset 0028).

Figure 4–3: Sample Event Log Displayed in the Event Viewer

33
20
72 DC 900-1514E

4: Programming Using the Win32 Interface
Figure 4–4: Log Message Event Detail

33
21
DC 900-1514E 73

ICP2432 User’s Guide for Windows NT 4.0 and NT 5.0 (Windows 2000) (DLITE Interface)
4.3 I/O Completion Status

The ICP2432 driver is responsible for setting the completion status of any I/O request

that it processes.6 If a Win32 I/O function returns an error, the GetLastError or

GetOverlappedResult function can be used by the application to obtain the error code

that indicates the reason for the failure. Because the meaning of a Win32 error code can

sometimes be obscured when it is translated from the original status code returned to

the I/O Manager by the driver, this section describes the error responses that user appli-

cations might encounter and their cause. Note that this is a subset of all possible error

returns, because other Windows NT components can also fail an I/O request.

4.3.1 Successful Completion

The following success codes are returned by the driver.

EEEERRRRRRRROOOORRRR____IIIIOOOO____PPPPEEEENNNNDDDDIIIINNNNGGGG

The request requires additional processing and is pending. Only applications

using overlapped I/O see this completion code.

NNNNOOOO____EEEERRRRRRRROOOORRRR or EEEERRRRRRRROOOORRRR____SSSSUUUUCCCCCCCCEEEESSSSSSSS

These are two names for the same completion code and indicate that a request

completed successfully.

4.3.2 Error Completion

The following error codes are returned by the driver.

EEEERRRRRRRROOOORRRR____AAAACCCCCCCCEEEESSSSSSSS____DDDDEEEENNNNIIIIEEEEDDDD

The requesting handle is stale (that is, the ICP has been reset since the handle was

opened). The handle must be closed (with CloseHandle).

6. Not all I/O requests necessarily reach the ICP2432 driver; other Windows NT components such as the
I/O Manager can fail an I/O request without passing it to the driver.
74 DC 900-1514E

4: Programming Using the Win32 Interface
EEEERRRRRRRROOOORRRR____BBBBAAAADDDD____CCCCOOOOMMMMMMMMAAAANNNNDDDD

A read request or an expedited write request was issued while the ICP was not in

normal operating mode. Reads and expedited writes cannot be requested until

the ICP has been initialized.

A write request was issued while the ICP was not in normal operating mode or

download mode.

A cancel request was issued while the ICP was not in normal operating mode.

Requests may not be cancelled until the ICP has been initialized.

An IOCTL_ICP_INIT_PROC request was issued while the ICP was not in download

mode. User applications should never encounter this scenario because ICPs are

initialized with Protogate-supplied utilities only.

An IOCTL_ICP_SET_DNL_TARGET_ADDR request was issued while the ICP was not in

download mode. User applications should never encounter this scenario because

ICPs are initialized with Protogate-supplied utilities only.

EEEERRRRRRRROOOORRRR____BBBBUUUUSSSSYYYY

An attempt was made to open a handle to the ICP during board initialization

while a handle was already open. The device driver forces exclusive access to the

ICP during initialization to prevent collisions between two or more threads that

might attempt to initialize the ICP concurrently.

A read request or an IOCTL_ICP_CANCEL_READS request was issued while a read

cancel operation was in progress.

A write request, expedited write request, or IOCTL_ICP_CANCEL_WRITES request

was issued while a write cancel operation was in progress.

An IOCTL_ICP_INIT_PROC request was issued while the ICP was writing a down-

load block or there was already an initialization request in progress. User applica-
DC 900-1514E 75

ICP2432 User’s Guide for Windows NT 4.0 and NT 5.0 (Windows 2000) (DLITE Interface)
tions should never encounter these scenarios because ICPs are initialized with

Protogate-supplied utilities only.

An IOCTL_ICP_SET_DNL_TARGET_ADDR request was issued while the target address

was already set. User applications should never encounter this scenario because

ICPs are initialized with Protogate-supplied utilities only.

EEEERRRRRRRROOOORRRR____FFFFIIIILLLLEEEE____NNNNOOOOTTTT____FFFFOOOOUUUUNNNNDDDD

The device driver did not find any ICP2432s in the system. User applications will

never see this error because it can only occur when the driver is initially loaded

into the system.

EEEERRRRRRRROOOORRRR____IIIINNNNVVVVAAAALLLLIIIIDDDD____FFFFUUUUNNNNCCCCTTTTIIIIOOOONNNN

An DeviceIoControl function call was made with an unrecognized control code.

A request to write a download block was issued before the target address was set

or while a download write was already in progress. User applications should never

encounter these scenarios because ICPs are initialized with Protogate-supplied

utilities only.

EEEERRRRRRRROOOORRRR____IIIINNNNVVVVAAAALLLLIIIIDDDD____PPPPAAAARRRRAAAAMMMMEEEETTTTEEEERRRR

A filename was specified with the device name in CreateFile (for example,

\\.\Icp1\Filename). ICPs are not storage devices, and therefore a filename can-

not be specified when opening a handle to the device.

A NULL buffer pointer was used in an I/O request.

An IOCTL_ICP_GET_DRIVER_INFO request was made with a NULL output buffer

pointer.

An IOCTL_ICP_INIT_PROC or IOCTL_ICP_SET_DNL_TARGET_ADDR request was made

with a NULL input buffer pointer, or a value of zero was supplied. User applica-
76 DC 900-1514E

4: Programming Using the Win32 Interface
tions should never encounter these scenarios because ICPs are initialized with

Protogate-supplied utilities only.

EEEERRRRRRRROOOORRRR____IIIINNNNVVVVAAAALLLLIIIIDDDD____UUUUSSSSEEEERRRR____BBBBUUUUFFFFFFFFEEEERRRR

An invalid buffer size was used in an I/O request. Buffers must be at least large

enough to contain the headers recognized by the protocol software. The one

exception to this is the download block, which may be a minimum of one byte in

length. The maximum buffer size allowed by the driver is 65K, which is the max-

imum amount of data that the ICP can transfer in a single DMA operation. The

Windows NT kernel can also impose additional restrictions on the maximum

buffer size. Kernel-imposed restrictions are defined by the maximum number of

mapping registers that it allocates for a single DMA transaction. Because there is

a one-to-one correspondence between mapping registers and virtual memory

pages, the system’s page size also influences the maximum buffer size allowed by

the kernel.

An IOCTL_ICP_GET_DRIVER_INFO request was made with an output buffer that was

too small to hold the information.

An IOCTL_ICP_INIT_PROC or IOCTL_ICP_SET_DNL_TARGET_ADDR request was made

with an input buffer that was too small to hold the information required by the

driver. User applications should never encounter these scenarios because ICPs are

initialized with Protogate-supplied utilities only.

EEEERRRRRRRROOOORRRR____IIIIOOOO____DDDDEEEEVVVVIIIICCCCEEEE

The file object pointer passed from the I/O Manager to the device driver does not

correspond to any active node. This is an internal driver error.

No work queue entry was found for an I/O Request Packet (IRP) that the I/O

Manager was attempting to cancel. This is an internal driver error.

The ICP negatively acknowledged a driver command. This is an internal driver

error, or possibly an indication of a hardware error in the system.
DC 900-1514E 77

ICP2432 User’s Guide for Windows NT 4.0 and NT 5.0 (Windows 2000) (DLITE Interface)
The ICP did not finish its power-on tests within the allotted time from reset, or a

failure was detected during the tests. Both of these are indications of a bad ICP.

User applications should never encounter these scenarios because ICPs are initial-

ized with Protogate-supplied utilities only.

The ICP sent an unrecognized command after the protocol software was initial-

ized. This indicates a bad ICP or possible system hardware problems. User appli-

cations should never encounter this scenario because ICPs are initialized with

Protogate-supplied utilities only.

EEEERRRRRRRROOOORRRR____MMMMOOOORRRREEEE____DDDDAAAATTTTAAAA

A user buffer for a read request was too small to hold the amount of data that the

ICP wanted to supply. The user buffer contains partial data (filled to capacity),

but the remaining data is lost.

EEEERRRRRRRROOOORRRR____NNNNOOOOAAAACCCCCCCCEEEESSSSSSSS

An I/O buffer was misaligned.

EEEERRRRRRRROOOORRRR____NNNNOOOOTTTT____EEEENNNNOOOOUUUUGGGGHHHH____MMMMEEEEMMMMOOOORRRRYYYY

The driver could not allocate non-pageable system memory.

An attempt was made to open a handle to the ICP, but all nodes in the driver were

already allocated.

An adapter object could not be allocated for a device. User applications will never

see this error because it can only occur when the driver is initially loaded.

EEEERRRRRRRROOOORRRR____OOOOPPPPEEEERRRRAAAATTTTIIIIOOOONNNN____AAAABBBBOOOORRRRTTTTEEEEDDDD

The I/O request was cancelled. A request can be cancelled for various reasons. For

example, an application may have explicitly issued a cancel request via the

CancelIo function or the DeviceIoControl function (with a control code of

IOCTL_ICP_CANCEL_xxx). Another reason could be that the board was reset, either

explicitly when the user reinitialized the ICP or implicitly when the driver
78 DC 900-1514E

4: Programming Using the Win32 Interface
detected an unrecoverable error (such as the board not responding to a com-

mand). Additionally, the I/O Manager may attempt to cancel I/O requests in

response to a thread being terminated abnormally. However, this last scenario can

only occur in applications that share file handles (and I/O requests) among mul-

tiple threads.

EEEERRRRRRRROOOORRRR____RRRREEEESSSSOOOOUUUURRRRCCCCEEEE____DDDDAAAATTTTAAAA____NNNNOOOOTTTT____FFFFOOOOUUUUNNNNDDDD

The driver could not find resource information (such as the interrupt vector, base

address, and so on) for an ICP2432. User applications will never see this error

because it can only occur when the driver is initially loaded.

EEEERRRRRRRROOOORRRR____SSSSEEEEMMMM____TTTTIIIIMMMMEEEEOOOOUUUUTTTT

The ICP did not respond to the driver within the allotted time. This usually

implies that the board has crashed.
DC 900-1514E 79

ICP2432 User’s Guide for Windows NT 4.0 and NT 5.0 (Windows 2000) (DLITE Interface)
80 DC 900-1514E

Appendix
A ICPTool for Windows NT
n.tif at
0%
This appendix describes the features of the Protogate ICPTool program for

Windows NT. ICPTool provides a graphical user interface to download protocol soft-

ware to the ICP2432 and run the diagnostic test programs. ICPTool is installed with the

ICP2432 product software.

A.1 ICPTool Main Menu

To start the ICPTool program, select “Start ➝ Programs ➝ Protogate ICP2432 ➝ Pro-

togate ICPTool” (or just double click on the Protogate ICPTool icon shown in

Figure A–1).

The ICPTool Main Menu (Figure A–2) allows you to:

• download a protocol onto the ICP (Section A.1.1)

• run any protocol diagnostic test (Section A.1.2)

• do advanced configuration (Section A.1.3).

Figure A–1: Protogate ICPTool Icon

ico
10
DC 900-1514E 81

ICP2432 User’s Guide for Windows NT 4.0 and NT 5.0 (Windows 2000) (DLITE Interface)

main.tif at
00%

bout.tif at
00%
Select About ICP to display ICP information similar to Figure A–3.

Figure A–2: ICPTool Main Menu

Figure A–3: ICP Information
82 DC 900-1514E

A: ICPTool for Windows NT

Techpubs —
“Have Disk”
is a common
Windows NT
term.
A.1.1 Download Protocol

Select Download Protocol from the ICPTool Main Menu to display the Protocol Down-

load Menu (Figure A–4). If your system contains more than one ICP2432 board, select

the ICP to be downloaded. Select a download script from the List of Protocol Down-

load Scripts (which are stored in <installation directory>\freeway\boot).

Table A–1 summarizes the download selections.

Within the Protocol script currently downloaded box, if no protocol is currently

loaded on the ICP, the message <None> is displayed. If there is no information from the

driver, the message Not available is displayed for the Number of links.

Table A–1: Download a Protocol to the ICP

Button Selected Action

Download to ICP After you make a selection from the List of Protocol Download Scripts, the
protocol software is downloaded to the ICP

Have Disk Allows you to specify the location of a user-defined protocol download
script to be loaded. A browser window appears to locate the download
script file.

Download upon
reboot

If you want the protocol to be automatically downloaded to the ICP upon
future reboot, select this button. The script specified in “Protocol scripts
currently downloaded” will be set in “Protocol script to be loaded upon
Reboot.”

Clear If you do not want to load the download script specified in “Protocol script
to be loaded upon Reboot” upon reboot, select this button.

DC 900-1514E 83

ICP2432 User’s Guide for Windows NT 4.0 and NT 5.0 (Windows 2000) (DLITE Interface)

ownload.tif
t 100%; also
n chapter 2.
Figure A–4: Protocol Download Menu

84 DC 900-1514E

A: ICPTool for Windows NT

nldsucc.pcx
 100%
A.1.1.1 Download Protocol Confirmation

A successful Download to ICP request is confirmed by the Protocol Download Confirma-

tion. An example is shown in Figure A–5. Click OK.

A.1.1.2 Specifying a Protocol Download Script

If you select Have Disk from the Protocol Download Menu, a browser window appears to

locate the user-defined download script file, which is then used to download a protocol

to the selected ICP.

Note
Specify the name of the .mem file in the download script file. All

.mem files are in the boot directory.

After download completion, the Protocol Download Confirmation (Figure A–5) is

displayed. Click OK.

Figure A–5: Protocol Download Confirmation

dw
at
DC 900-1514E 85

ICP2432 User’s Guide for Windows NT 4.0 and NT 5.0 (Windows 2000) (DLITE Interface)
A.1.2 Protocol Diagnostics

Select Protocol Diagnostics from the ICPTool Main Menu to display the Protocol Diag-

nostics Menu (Figure A–6). A List of Protocol Diagnostics is provided.

A.1.2.1 Run Protocol Diagnostics

To run the diagnostic tests, highlight the desired entries in the list and select Run Diag-

nostics. Table A–2 summarizes the menu selections.

The List of Protocol Diagnostics varies depending on your system configuration. The

Generic Diagnostics test is always included with the ICPTool product. If you select the

Generic Diagnostics test, Section A.1.2.2 on page 88 explains the menu sequence.

Table A–2: Protocol Diagnostics Menu Selections

Button Selected Action

Run Diagnostics The tests highlighted in the List of Protocol Diagnostics are run.
The results are displayed in a report window.

Select All All tests in the list are highlighted.
86 DC 900-1514E

A: ICPTool for Windows NT

gnostics.tif
 100%
Figure A–6: Protocol Diagnostics Menu

dia
at
DC 900-1514E 87

ICP2432 User’s Guide for Windows NT 4.0 and NT 5.0 (Windows 2000) (DLITE Interface)

enericmsg.ti
t 84% to get
t on this page
A.1.2.2 Generic Diagnostic (Loopback) Test

Caution
This is a loopback test, so make sure you have the loopback cable

connected on the ICP. This diagnostic only works with the

ICPToolLoad protocol script.

When you select Generic Diagnostics (Loopback test) from the Protocol Diagnostics

Menu (Figure A–6 on page 87), a warning message appears (Figure A–7) asking you to

make sure the ICPToolLoad protocol script has been downloaded to the ICP. If you click

“Yes” when asked if you want to continue, the Generic Diagnostic Main Menu appears as

shown in Figure A–8. You can run the test with the default configuration

(Section A.1.2.3) or control the entire test process interactively using the button selec-

tions from the Generic Diagnostic Main Menu (Section A.1.2.4 through

Section A.1.2.9).

Note
You can select Run Default to verify the ICP hardware and software

installation.

Figure A–7: Generic Diagnostic Warning

f

88 DC 900-1514E

A: ICPTool for Windows NT

neric.tif at
0%
Figure A–8: Generic Diagnostic Main Menu

ge
10
DC 900-1514E 89

ICP2432 User’s Guide for Windows NT 4.0 and NT 5.0 (Windows 2000) (DLITE Interface)
A.1.2.3 Default Configuration Menu

When you select Run Default from the Generic Diagnostic Main Menu, the Default Con-

figuration Menu appears as shown in Figure A–9. You can run the generic test with the

displayed defaults or you can reconfigure parameters prior to running the default test

(pulldown menus are provided for some parameters). Select Run Test when you are

ready to run the test.

Note
The menus in Section A.1.2.4 through Section A.1.2.9 allow you to

control the entire generic test interactively using the button selec-

tions from the Generic Diagnostic Main Menu (page 89).
90 DC 900-1514E

A: ICPTool for Windows NT

fault.tif at
%

Figure A–9: Default Configuration Menu

de
90
DC 900-1514E 91

ICP2432 User’s Guide for Windows NT 4.0 and NT 5.0 (Windows 2000) (DLITE Interface)

ttach.tif at
00%
A.1.2.4 Attach Link Menu

Figure A–10: Attach Link Menu
92 DC 900-1514E

A: ICPTool for Windows NT

nfiglure.tif
 100%
A.1.2.5 Configure Link Menu

Figure A–11: Configure Link Menu

co
at
DC 900-1514E 93

ICP2432 User’s Guide for Windows NT 4.0 and NT 5.0 (Windows 2000) (DLITE Interface)

nable.tif at
00%
A.1.2.6 Enable Link Menu

Figure A–12: Enable Link Menu
94 DC 900-1514E

A: ICPTool for Windows NT

ddata.tif at
0%
A.1.2.7 Send Data Menu

Figure A–13: Send Data Menu

sen
10
DC 900-1514E 95

ICP2432 User’s Guide for Windows NT 4.0 and NT 5.0 (Windows 2000) (DLITE Interface)

isable.tif at
00%
A.1.2.8 Disable Link Menu

Figure A–14: Disable Link Menu
96 DC 900-1514E

A: ICPTool for Windows NT

tach.tif at
0%
A.1.2.9 Detach Link Menu

Figure A–15: Detach Link Menu

de
10
DC 900-1514E 97

ICP2432 User’s Guide for Windows NT 4.0 and NT 5.0 (Windows 2000) (DLITE Interface)

dvanced.pcx
t 100%
A.1.3 Advanced Options

Select Advanced Options from the ICPTool Main Menu to display the Advanced Options

Menu (Figure A–16). Click Yes to automatically start the ICP2432 driver upon reboot.

Click Uninstall to uninstall the ICP2432 software.

Figure A–16: Advanced Options Menu

98 DC 900-1514E

Appendix
B Debug Support for
ICP-resident Software
Protogate’s Protocol Toolkit product allows users to develop ICP-resident protocol soft-

ware. During software development, application programmers will probably need to

set breakpoints to halt program execution while examining data structures and pro-

gram flow. However, the Windows NT device driver for the ICP2432 uses a watchdog

timer when sending commands to the ICP, so hitting a breakpoint in the debugger can

cause the host driver to time out, resulting in the ICP being reset (and all pending I/O

requests on the host to be completed with an error code of Error_Operation_Aborted).

To allow developers to set breakpoints without having the ICP reset by the host driver,

Protogate ships two versions of the driver. During product installation, a copy of each

version is placed in the C:\freeway\client\int_nt_emb\bin directory (for Intel) or the

C:\freeway\client\axp_nt_emb\bin directory (for Alpha). Icp2432.sys is the “pro-

duction” version and is also installed in the system drivers directory during installation.

Icp2432_Dbg.sys is the “debug” version and must be installed manually. The difference

between the two versions is that watchdog timers are disabled in the debug version.

To substitute the debug version for the production version, the following steps must be

performed on the host machine:

1. Close the Event Viewer if it is currently open.

2. Delete Icp2432.sys from the %SystemRoot%\System32\Drivers directory

(%SystemRoot% usually translates to C:\WINNT).

3. Copy Icp2432_Dbg.sys from the C:\freeway\client\int_nt_emb\bin or

axp_nt_emb\bin directory into %SystemRoot\System32\Drivers.
DC 900-1514E 99

ICP2432 User’s Guide for Windows NT 4.0 and NT 5.0 (Windows 2000) (DLITE Interface)
4. Rename the new copy (in the system drivers directory) from Icp2432_Dbg.sys to

Icp2432.sys.

5. Reboot the host machine.

ICP-resident software may now be debugged without worry. One thing needs to be

noted, however. When the watchdog timers are disabled, if the ICP software crashes,

hangs, or does anything abnormal so that it cannot respond to the host driver, then the

host driver is hung; it cannot be stopped, nor can it be used any further. The host

machine must be restarted when this occurs (select Restart from the Start ➝ Shutdown

icon and click the OK button).

After development of the ICP-resident software has completed, the procedure given

above may be followed to reinstall the production version of the driver, with the follow-

ing adjustments:

1. Omit Step 2.

2. In Step 3, change Icp2432_Dbg.sys to Icp2432.sys.

3. Omit Step 4. (Step 3 overwrites the debug version of the driver, which is why

Step 2 and Step 4 may be omitted)
100 DC 900-1514E

Appendix
C DLITE Logger
Windows NT System
Service User’s Guide
C.1 Introduction

The Windows NT Logger System Service is a software module, which logs events such

as errors and DLITE formatted records to disk files. The service communicates with cli-

ent applications through a well-known named pipe. Named pipes allow applications to

be distributed among several NT systems on the same LAN.

There is a one-to-one relationship between a pipe and a particular logging file. A single

pipe instance can not have more than one file open at any one time.

The service supports two types of logging files: circular and unlimited-length files. Cir-

cular files have a maximum number of records. When a circular file reaches its maxi-

mum number of records, it starts writing over records at the top of the file, which

means that if all of the records are not of the same size, the current record might only

partially overwrite an existing record. In the context of this paragraph, a record is one

record from the client application, in other words, an entire DLITE formatted record is

considered one record regardless of the number of lines actually written to the file.

Unlimited-length files support records of varying lengths, and the file size is limited

only by the amount of available disk space. This type of file should be used with caution

since it could fill a disk.
DC 900-1514E 101

ICP2432 User’s Guide for Windows NT 4.0 and NT 5.0 (Windows 2000) (DLITE Interface)
C.2 Starting the Service

The Logger System Service can be installed as an NT system service or run as a console

application. To start the service type the following:

log_srv install — to install as an NT system service

log_srv uninstall — to uninstall the system service

log_srv console — to run as a console application

After the logger has been installed as an NT system service, it can be started automati-

cally or manually. To start, stop or set the service to run automatically at system boot-

up, go to the Services icon in the Control Panel and select the desired option for the

log_srv service.

C.3 Configuring the Service

The logger service can be configured by the user supplying a configuration file “ls_cfg”.

The logger uses the WIN32 function SearchPath() to find the configuration file in the

current directory or in the system path. Figure C–1 is an example configuration file. For

information on DLITE logging, see Section 3.3.5 on page 55.

#
Logger System Service configuration
#
default values:
max_pipe_connections = 25 --> # application client connections
max_data_size = 1024 --> max SERVICE_BUF data size (see log_srv.h)
max_buffers = 250 --> max number of communication buffers
#
#
max_pipe_connections 3
max_data_size 256
max_buffers 15

Figure C–1: Example Logger Configuration File
102 DC 900-1514E

C: DLITE Logger Windows NT System Service User’s Guide
C.4 Connecting to the Service

Client applications connect to the service by calling the CreateFile NT library func-

tion, as shown in Figure C–2.

The dot in the pipe name can be replaced with the network name of the server running

the logger system service, e.g.

“\\\\MyServer\\pipe\\log_srv”

Using the name allows the application to be placed on a different NT system on the

same LAN and still communicate with the service.

Note
A portion of the pipe name, “\\pipe\\log_srv”, is fixed and can-

not be changed. Only the server name portion, “MyServer”, can be

changed to define the location of the logging service.

Code Example Segment
...

HANDLE PipeHandle;

PipeHandle = CreatFile(
“\\\\.\\pipe\\log_srv”, // address of name of the pipe
GENERIC_WRITE, // access, write mode
0, // share mode
NULL, // address of security descriptor
OPEN_EXISTING, // how to create
0, // file attributes
NULL);

Figure C–2: CreateFile Code Example Segment
DC 900-1514E 103

ICP2432 User’s Guide for Windows NT 4.0 and NT 5.0 (Windows 2000) (DLITE Interface)
C.5 Packet Exchanges

The following is a list of all of the possible packet exchange commands from an appli-

cation to the Logger System Service. There are no packet exchanges from the logger ser-

vice to a client application.

OPEN_FILE — this packet is used to open a file for logging

CLOSE_FILE — this packet is used to close an opened file and its pipe

WRITE_FILE — this packet is used for a direct write to an opened file

C.6 Client Structures

The service_buf structure shown in Figure C–3 can be used by an application for pass-

ing packets to the logger service.

typedef struct service_buf
{

int comand; /* command to perform (OPEN_FILE…FORMAT_FILE) */
union
{

struct open_file open_file; /* structure for the OPEN_FILE command */
char buffer[1]; /* FORMAT_FILE/WRITE_FILE command */

} data;
}SERVICE_BUF;

struct open_file
{

int file_size /* maximum file size in records for circular files */
char filename[1]; /* fully qualified file name MUST be null terminated/

};

Figure C–3: Structure service_buf “C” Definition
104 DC 900-1514E

C: DLITE Logger Windows NT System Service User’s Guide
Note
1. The file_size field is set to zero (0) for an unlimited-length file.

The number of records is the number of WRITE_FILE packets. A

WRITE_FILE packet is equivalent to a line or record in the file.

2. The [1] size for char strings is a place holder only

C.7 Packet Examples

OPEN_FILE

This command is sent to the service to open a file associated with the pipe. The file

name must be a fully qualified file name; this means it contains the drive and path.

An example code segment (error checking left out for simplicity) is shown in

Figure C–4.

Note
The value sizeof(SERVICE_BUF) contains the extra byte for the

filename NULL.

SERVICE_BUF *buf;
char *fname = “c:\freeway\logs\error.log”;

buf = (SERVICE_BUF *)malloc(sizeof(SERVICE_BUF) + strlen(fname));
buf->command = OPEN_FILE;
buf->file_size = 20000;
strncpy(buf->data.open_file.filename, fname, strlen(fname)+1);
WriteFile(PipeHandle, (void)buf, sizeof(SERVICE_BUF) + strlen(fname),

&bytes_written, &overlapped);

Figure C–4: OPEN_FILE Code Example Segment
DC 900-1514E 105

ICP2432 User’s Guide for Windows NT 4.0 and NT 5.0 (Windows 2000) (DLITE Interface)
CLOSE_FILE

This command is sent to the service to close the file associated with the pipe. It also

closes the pipe. The application should still call CloseHandle.

An example code segment (error checking left out for simplicity) is shown in

Figure C–5.

WRITE_FILE

This command is sent to the service to write a record to the file associated with the pipe.

An example code segment (error checking left out for simplicity) is shown in

Figure C–6.

SERVICE_BUF *buf;
buf = (SERVICE_BUF *)malloc(sizeof(SERVICE_BUF));
buf->command = CLOSE_FILE;
WriteFile(PipeHandle, (void)buf, sizeof(SERVICE_BUF), &bytes_written,

&overlapped);
CloseHandle(PipeHandle);

Figure C–5: CLOSE_FILE Code Example Segment

SERVICE_BUF *buf;
char *message = “Hello World”;
int length;
length = sizeof(int) + strlen(message) + 1;
buf = (SERVICE_BUF *)malloc(length);
buf->command = WRITE_FILE;
strcpy(buf->data.buffer, message);

WriteFile(PipeHandle, (void *)buf, length, &bytes_written, &overlapped);

Figure C–6: WRITE_FILE Code Example Segment
106 DC 900-1514E

Appendix
D Multithreaded Sample
Programs
This appendix describes the multithreaded sample programs for Windows NT,

including the following:

• an overview of the programs

• a description of how to install the hardware needed for the programs

• instructions on how to run the programs

• sample screen displays from the programs

Table D–1 shows the sample program file names for each protocol.

Table D–1: Sample Program File Names

Protocol Blocking Program Non-blocking Program

ADCCP NRM nrmsync.exe nrmasync.exe

AWS awssync.exe awsasync.exe

BSC 3270 327sync.exe 327async.exe

BSC 2780/3780 378sync.exe 378async.exe

DDCMP ddcsync.exe ddcasync.exe

FMP fmpsync.exe fmpasync.exe

Military/Government Refer to the Military/Government Protocols Programmer’s Guide

Protocol Toolkit spssync.exe spsasync.exe

STD1200A s12sync.exe s12async.exe
DC 900-1514E 107

ICP2432 User’s Guide for Windows NT 4.0 and NT 5.0 (Windows 2000) (DLITE Interface)
D.1 Overview of the Test Program

The multithreaded sample programs are placed in the freeway\client\[int_nt_emb or

axp_nt_emb]\bin directory during the installation procedures.

Note
Earlier Protogate terminology used the term “synchronous” for

blocking I/O and “asynchronous” for non-blocking I/O. Some

parameter names reflect the previous terminology.

Two high-level test programs (shown in Table D–1) written in C are supplied with each

protocol. The programs are interactive; they prompt you for all the information needed

to run the test. The test communicates with the ICP through the embedded DLITE

interface (described in Chapter 3).

The multithreaded sample programs perform the following functions:

• Configure the link-level control parameters such as baud rates, clocking, and

protocol

• Enable and disable links

• Initiate the transmission and reception of data on the serial lines

You can use these programs to verify that the installed devices and cables are function-

ing correctly. You can also use them as templates for designing client applications that

use the embedded DLITE interface.
108 DC 900-1514E

D: Multithreaded Sample Programs
D.2 Hardware Setup for the Test Programs

Select a pair of adjacent ports to test. Ports are looped back in the following pairs: (0,1),

(2,3), (4,5), and so on. Install a two-headed loopback cable between each pair of ports

to be tested. You can test up to eight ports by using more cables; however, you must start

with ports 0 and 1. For example, in Step 2 below you are asked how many ports you

want to test. If you answer “6”, you must install cables between ports (0,1), (2,3), and

(4,5).

Note
The loopback cable is only used during testing, not during normal

operation.

D.3 Running the Test Program

Step 1: Change to the directory that contains the sample program: freeway\client\

[int_nt_emb or axp_nt_emb]\bin. Enter one of the sample test commands shown in

Table D–1 (for example, ddcsync or awsasync) at the system prompt:

Step 2: The following prompts are displayed:

How many ports do you want to run on? (2 - 8):

Enter the number of ports on which to run the test.

How many messages do you want to send?:

Enter the number of messages to send.

What window size do you want?:

For the non-blocking (asynchronous) program only, enter the window size.

Verbose print? (Y/N):

If you want verbose print, which traces the program flow through debug mes-

sages, enter “y”.
DC 900-1514E 109

ICP2432 User’s Guide for Windows NT 4.0 and NT 5.0 (Windows 2000) (DLITE Interface)
Step 3: After you answer the last prompt, the test starts. It displays a spinner to indi-

cate that it is running or a series of debug messages which trace the program flow if you

selected verbose print in Step 2. If no errors are shown, your installation is verified.

Step 4: Remove the loopback cable and configure the cables for normal operation.

D.4 Sample Output from Test Program

Figure D–1 shows the screen display from a sample DDCMP blocking program

(ddcsync). Figure D–2 shows the screen display from a sample DDCMP non-blocking

program (ddcasync). The screen display for other protocols is similar. Output displayed

by the program is shown in typewriter type and your responses are shown in bold

type. Each entry is followed by a carriage return.
110 DC 900-1514E

D: Multithreaded Sample Programs
C:ddddddddccccssssyyyynnnncccc
How many ports do you want to run on? (2 - 8) : 8888
How many messages do you want to send? : 222200000000
Verbose print? (Y/N) : nnnn

starting threads and opening DLI sessions
writer for port0 started
reader for port1 started
writer for port2 started
reader for port3 started
writer for port4 started
reader for port5 started
writer for port6 started
reader for port7 started
5 seconds elapsed
 port0 sent 200 packets
 port2 sent 200 packets
 port4 sent 200 packets
 port6 sent 200 packets
-----WRITER FOR port0 COMPLETED
-----WRITER FOR port2 COMPLETED
-----WRITER FOR port4 COMPLETED
-----WRITER FOR port6 COMPLETED
 port1 received 200 packets
-----READER FOR port1 COMPLETED
 port3 received 200 packets
-----READER FOR port3 COMPLETED
 port5 received 200 packets
-----READER FOR port5 COMPLETED
 port7 received 200 packets
-----READER FOR port7 COMPLETED
Program Completed.

Figure D–1: Sample Output from DDCMP Blocking Multithreaded Program
DC 900-1514E 111

ICP2432 User’s Guide for Windows NT 4.0 and NT 5.0 (Windows 2000) (DLITE Interface)
C:ddddddddccccaaaassssyyyynnnncccc
How many ports do you want to run on? (2 - 8) : 8888
How many messages do you want to send? : 222200000000
What window size do you want? : 2222
Verbose print? (Y/N) : nnnn

starting threads and opening DLI sessions
writer for port0 started
reader for port1 started
writer for port2 started
reader for port3 started
writer for port4 started
reader for port5 started
writer for port6 started
reader for port7 started
5 seconds elapsed
 port3 received 200 packets
 port5 received 200 packets
 port7 received 200 packets
 port1 received 200 packets
 port2 sent 200 packets
 port4 sent 200 packets
 port6 sent 200 packets
 port0 sent 200 packets
-----WRITER FOR port2 COMPLETED
-----WRITER FOR port4 COMPLETED
-----WRITER FOR port6 COMPLETED
-----WRITER FOR port0 COMPLETED
-----READER FOR port3 COMPLETED
-----READER FOR port5 COMPLETED
-----READER FOR port7 COMPLETED
-----READER FOR port1 COMPLETED
Program Completed.

Figure D–2: Sample Output from DDCMP Non-Blocking Multithreaded Program
112 DC 900-1514E

Index
A

Advanced options menu 98
Always QIO support 40
Application

how to build for DLITE 42
Asynchronous I/O 61
Asynchronous sample output

ddcasync 112
Attach link menu 92
Audience 11

B

Blocking I/O 42
Blocking sample output

ddcsync 111
Buffered I/O 61
Buffers

longword boundary alignment 62
Building a DLITE application 42

C

Callbacks 50
caution 51

CancelIo function 63, 64
Cancelling I/O 47, 63, 64
Caution

buffer alignment on longword boundary 62
callback processing 51
misuse of threads 37
TSICfgName parameter 56

cfgerrno global variable 40
Client structures

NT logger service 104
CloseHandle function 69
Closing a handle 69
DC 900-1514E
Codes
see Control codes
see Error codes
see Success codes

Configuration
default menu 91
NT logger service 102
TSICfgName parameter

caution 56
typical system 18

Configuration files 54
logger service parameters 56
ls_cfg for logging 55, 102
raw operation 54

Configuration parameters
LogName 56
MaxBuffers 54
MaxBufSize 54
TraceName 56
TSICfgName 55, 56

Configure link menu 93
Connect

NT logger service 103
Control codes 64

IOCTL_ICP_CANCEL_READS 64
IOCTL_ICP_CANCEL_WRITES 64
IOCTL_ICP_GET_DRIVER_INFO 64, 65
IOCTL_ICP_INIT_ICP 64, 69
IOCTL_ICP_INIT_PROC 64, 69
IOCTL_ICP_SET_DNL_TARGET_ADDR 6

4, 69
IOCTL_ICP_WRITE_EXPEDITE 64, 67

CreateFile function 60
file handles 71

Customer support 15
113

ICP2432 User’s Guide for Windows NT 4.0 and NT 5.0 (Windows 2000) (DLITE Interface)
D

Data
reading 61
writing 62

Data link interface, See DLI
Data send menu 95
ddcasync

sample output 112
ddcsync

sample output 111
Default configuration menu 91
Detach link menu 97
Device control 63
Device driver 17, 59

control codes 64
error logging 71
features and capabilities 70
ICP-resident task communication 70
ICPTool download support 70
multiplexed I/O 71
version number 66

DeviceIoControl function 63
Diagnostics generic test main menu 89
Diagnostics protocol test 86
Diagnostics test menu 87
Direct I/O 61
Disable link menu 96
dlBufAlloc 44
dlBufFree 45
dlClose 45
dlerrno function 40
dlerrno global variable 40

mapped to NT errors 53
DLI

embedded environment 36
Freeway server environment 35

dlInit 40, 46
DLITE

application interface to 41
blocking and non-blocking I/O 42
callbacks 50
changes in DLI functions 44
DLI/TSI changes 43
error codes 52, 53

building DLITE application 42
114
configuration files 54
embedded versus Freeway 35
enhancements 37

multithread support 37
environment 36
function changes 44
functions 42, 43
general error file 58
libraries 42
limitations and caveats 39

always QIO support 40
dlInit no longer implied 40
global variables 40
local ack processing 39
raw operation only 39
unsupported functions 41

logger user’s guide 101
logging and tracing 55
objectives 36
overview 33

dliteant.dll 42
dliteant.lib 42
dliteint.dll 42
dliteint.lib 42
dlOpen 46
dlPoll 46

cancel processing 47
driver information 46

dlRead 48
dlTerm 49
dlWrite 49

raw operation processing 49
DMA transfer 62
Documents

reference 12
Download protocol 83
Download protocol confirmation menu 85
Download protocol menu 30, 84
Download protocol scripts 30, 84
Download script

have disk option 85
Download support (ICPTool)

device driver 70
DC 900-1514E

Index
E

Embedded interface, See DLITE
Enable link menu 94
Error codes

ERROR_ACCESS_DENIED 74
ERROR_BAD_COMMAND 75
ERROR_BUSY 75
ERROR_FILE_NOT_FOUND 76
ERROR_INVALID_FUNCTION 76
ERROR_INVALID_PARAMETER 76
ERROR_INVALID_USER_BUFFER 77
ERROR_IO_DEVICE 77
ERROR_MORE_DATA 78
ERROR_NOACCESS 78
ERROR_NOT_ENOUGH_MEMORY 78
ERROR_OPERATION_ABORTED 78
ERROR_RESOURCE_DATA_NOT_FOUND

79
ERROR_SEM_TIMEOUT 79

Error logging 71
message detail 73
sample event log 72

Errors 58
cfgerrno 40
dlerrno 40
DLITE error codes 52
global variables 40
iICPStatus 40
logging error codes 57
NT errors mapped to dlerrno 53
NT logging error codes 58

Event viewer 71
error logging 57
log message detail 73
sample event log 72

Expedited write requests 67

F

Features
device driver 70

File handles 71
closing 69
opening 60
see also CloseHandle function
see also CreateFile function
DC 900-1514E
Files
download scripts 83
general application errors 58
ICP2432 software installation directory 21
Icp2432.h 63, 65
protocol software installation directory 27
system files installation directory 21, 27
toolkit software installation directory 27
user-defined download script file 85

freeway directory 24
Function mappings 59
Functions

blocking I/O 42
callbacks 50
CancelIo 63, 64
changes 44
CloseHandle 69
CreateFile 60

file handles 71
NT logger service 103

DeviceIoControl 63
dlBufAlloc 44
dlBufFree 45
dlClose 45
dlerrno 40
dlInit 46
dlOpen 46
dlPoll 46

cancel processing 47
driver information 46

dlRead 48
dlTerm 49
dlWrite 49

raw operation processing 49
GetLastError 53, 74
GetOverlappedResult 74
non-blocking I/O 43
ReadFile 61
SearchPath 102
unsupported 41
WaitForMultipleObjects 61
WaitForSingleObject 61
WriteFile 62
115

ICP2432 User’s Guide for Windows NT 4.0 and NT 5.0 (Windows 2000) (DLITE Interface)
G

Generic diagnostic main menu 89
GetLastError function 53, 74
GetOverlappedResult function 74
Global variable support 40

H

Have disk option
protocol download script 83, 85

Header files
Icp2432.h 63, 65

History of revisions 15

I

ICP
closing session 69
multiple sessions 60
opening session 60

ICP information menu 82
ICP initialization, support 69
ICP states

definitions 67
ICP_Driver_Info structure 65, 66

field descriptions 66
Icp2432.h header file 63, 65
ICP-resident tasks

communication 70
ICPTool download support 70
ICPTool main menu 29, 82
ICPTool program

how to use 81
iICPStatus global variable 40
Install

logger service 102
Installation directory for embedded ICP2432

menu 21
Installation directory for FMP menu 27
Installation of software

ICP2432 19
protocol 24

I/O
asynchronous 61
blocking and non-blocking 42
buffered 61
cancelling 47
116
completion status 74
control codes 64
direct 61
longword alignment of buffers 62
multiplexed 71
non-blocking 61
non-overlapped 71
overlapped 71
Windows NT I/O Manager 74

I/O requests
cancelling 64

L

Libraries 42
Link attach menu 92
Link configuration menu 93
Link detach menu 97
Link disable menu 96
Link enable menu 94
Load file 24
Local ack processing 39
Logging 55

error codes 57, 58
general error file 58
logger service parameters 56
ls_cfg file 55
See alsoWindows NT logger service

Logical channel 71
LogName configuration parameter 56
Longword boundary buffer alignment 62

M

MaxBuffers configuration parameter 54
MaxBufSize configuration parameter 54
Memory requirements 19
Menus

attach link 92
configure link 93
default configuration 91
detach link 97
disable link 96
enable link 94
generic diagnostic main menu 89
ICP information 82
ICPTool main menu 29, 82
DC 900-1514E

Index
installation directory for embedded
ICP2432 21

installation directory for FMP 27
protocol diagnostics 87
protocol download 30, 84
protocol download confirmation 85
restart Windows 23
send data 95
startup information for embedded

ICP2432 20
startup information for FMP 26

Military/Government protocols 24, 107
Multiplexed I/O 71
Multithread support 37

caution 37
sample programs 107

N

Node numbers 66, 71
Non-blocking I/O 42, 61
Non-blocking sample output

ddcasync 112
Non-overlapped I/O 71

O

Opening the ICP 60
OptArgs 40, 47, 48, 49, 52
Optional arguments, See OptArgs
Overlapped I/O 71
Overview of DLITE 33
Overview of product 17

P

Packet examples
CLOSE_FILE 106
NT logger service 105
OPEN_FILE 105
WRITE_FILE 106

Packet exchanges
NT logger service 104

Page faults 61
PCIbus 17
Product

overview 17
support 15
DC 900-1514E
Programming
using DLITE interface 33
using the Win32 interface 59

Protocol diagnostics 86
Protocol diagnostics menu 87
Protocol download 83
Protocol download confirmation menu 85
Protocol download menu 30, 84
Protocol download scripts 30, 84

R

Raw operation 39
configuration files 54

ReadFile function 61
Reading data 61
readme.ppp 24
Reference documents 12
relhist.ppp 24
relnotes.ppp 24
Restart Windows menu 23
Revision history 15

S

Sample programs
multithread support 107

SearchPath function 102
Send data menu 95
Sessions

closing ICP 45, 69
multiple 60
opening ICP 46, 60, 70

Software installation procedure
ICP2432 19
protocol 24

Source code for the loopback tests 25
Startup information for embedded ICP2432

menu 20
Startup information for FMP menu 26
States

ICP 67
signalled state 61

Status, I/O completion 74
Structures

dlPoll driver information 47
ICP_Driver_Info 65, 66
117

ICP2432 User’s Guide for Windows NT 4.0 and NT 5.0 (Windows 2000) (DLITE Interface)
ICP_Driver_Info field descriptions 66
logger service_buf 104

Success codes
ERROR_IO_PENDING 74
ERROR_SUCCESS 74
NO_ERROR 74

Support for ICP initialization 69
Support, product 15
Synchronous sample output

ddcsync 111
System registry keys 22
System services

see Functions

T

Technical support 15
TraceName configuration parameter 56
Tracing 55
TSI in Freeway server environment 35
TSICfgName configuration parameter 55, 56

caution 56

U

Uninstall
logger service 102

V

Version number
device driver 66

W

WaitForMultipleObjects function 61
WaitForSingleObject function 61
Win32 interface 59
Windows NT

error codes 53
logger system service 55, 57
logging errors 58

Windows NT logger service 101
client structures 104
CLOSE_FILE 106
configuring the service 102
connect to the service 103
install 102
ls_cfg file 102
118
OPEN_FILE 105
packet examples 105
packet exchanges 104
run console application 102
starting the service 102
uninstall 102
WRITE_FILE 106

WriteFile function 62
Writing data 62
DC 900-1514E

ICP2432 User’s Guide for Windows NT 4.0 and
NT 5.0 (Windows 2000) (DLITE Interface)

DC 900-1514E

PROTOGATE
Customer Report Form

We are constantly improving our products. If you have suggestions or problems you would

like to report regarding the hardware, software or documentation, please complete this form

and mail it to Protogate at 12225 World Trade Drive, Suite R, San Diego, CA 92128, or fax it

to (877)473-0190

If you are reporting errors in the documentation, please enter the section and page number.

Your Name:

Company:

Address:

Phone Number:

Product:

Problem or

Suggestion:

FM 100-0026A

Protogate, Inc.
Customer Service

12225 World Trade Drive, Suite R
San Diego, CA 92128

ICP2432 User’s Guide for Windows NT 4.0 and
NT 5.0 (Windows 2000) (DLITE Interface)

DC 900-1514E

PROTOGATE

	ICP2432 User’s Guide for Windows NT�® 4.0 and NT�® 5.0 (Windows 2000®) (DLITE Interface)
	Contents
	List of Figures
	List of Tables
	Preface
	Purpose of Document
	Intended Audience
	Organization of Document
	Protogate References
	Document Conventions
	Document Revision History
	Customer Support
	1 Product Overview
	Figure 1–1:� Typical Data Communications System Configuration
	2 Software Installation
	2.1� Memory Requirements
	2.2� ICP2432 Software Installation Procedure
	Figure 2–1:� Startup Information for Embedded ICP2432
	Figure 2–2:� Installation Directory for Embedded ICP2432
	Figure 2–3:� Program Folder
	Figure 2–4:� Restart Windows
	2.3� Protocol or Toolkit Software Installation Procedure
	Table 2–1:� Protocol Identifiers
	Figure 2–5:� Startup Information for FMP
	Figure 2–6:� Installation Directory for FMP
	Figure 2–7:� Protogate ICPTool Icon
	Figure 2–8:� �ICPTool Main Menu
	Figure 2–9:� Protocol Download Menu
	3 Programming Using the DLITE Embedded Interface
	3.1� Overview
	3.2� Embedded Interface Description
	3.2.1� Comparison of Freeway Server and Embedded Interfaces
	Figure 3–1:� �DLI/TSI Interface in the Freeway Server Environment
	Figure 3–2:� DLITE Interface in an Embedded ICP2432 Environment
	3.2.2� Embedded Interface Objectives
	3.3� DLITE Interface
	3.3.1� DLITE Enhancements
	3.3.1.1� Multithread Support
	3.3.2� DLITE Limitations and Caveats
	3.3.2.1� Raw Operation Only
	3.3.2.2� No LocalAck Processing Support
	3.3.2.3� AlwaysQIO Support
	3.3.2.4� Changes in Global Variable Support
	3.3.2.5� dlInit Function No Longer Implied
	3.3.2.6� Unsupported Functions
	Figure 3–3:� Code Fragment Example to Download ICP
	3.3.3� The Application Program’s Interface to DLITE
	3.3.3.1� Building a DLITE Application
	3.3.3.2� Blocking and Non-blocking I/O
	3.3.3.3� Changes in DLI/TSI
	3.3.3.4� Changes in DLI Functions
	Figure 3–4:� DLI_ICP_DRV_INFO “C” Structure
	3.3.3.5� Callbacks
	3.3.3.6� DLITE Error Codes
	Table 3–1:� DLITE Error Codes
	Table 3–2:� NT Errors Mapped to dlerrno
	3.3.4� Configuration Files
	3.3.5� Logging and Tracing
	3.3.5.1� Logger Service Parameters in the DLI Configuration File
	3.3.5.2� Common Logging Service Errors
	Table 3–3:� DLI Error Codes
	Table 3–4:� Windows NT Error Codes
	3.3.5.3� General Application Error File
	4 Programming Using the Win32 Interface
	4.1� Function Mappings
	4.1.1� Opening the ICP
	4.1.2� Reading Data
	4.1.3� Writing Data
	4.1.4� Cancelling I/O
	4.1.5� Device Control
	Table 4–1:� ICP2432 Driver Control Codes
	4.1.5.1� Cancelling I/O Requests
	4.1.5.2� Obtaining Internal Driver Information
	Figure 4–1:� �ICP_Driver_Info Structure
	Table 4–2:� �ICP_Driver_Info Structure Fields
	Figure 4–2:� IcpState Field Definitions
	4.1.5.3� Expedited Write Requests
	4.1.5.4� Support for ICP Initialization
	4.1.6� Closing A Handle
	4.2� Driver Features and Capabilities
	4.2.1� Download Support
	4.2.2� Communication With ICP-Resident Tasks
	4.2.3� Multiplexed I/O
	4.2.4� Error Logging
	Figure 4–3:� Sample Event Log Displayed in the Event Viewer
	Figure 4–4:� Log Message Event Detail
	4.3� I/O Completion Status
	4.3.1� Successful Completion
	4.3.2� Error Completion
	A ICPTool for Windows�NT
	A.1� ICPTool Main Menu
	Figure A–1:� Protogate ICPTool Icon
	Figure A–2:� ICPTool Main Menu
	Figure A–3:� ICP Information
	A.1.1� Download Protocol
	Table A–1:� Download a Protocol to the ICP
	Figure A–4:� Protocol Download Menu
	A.1.1.1� Download Protocol Confirmation
	Figure A–5:� Protocol Download Confirmation
	A.1.1.2� Specifying a Protocol Download Script
	A.1.2� Protocol Diagnostics
	A.1.2.1� Run Protocol Diagnostics
	Table A–2:� Protocol Diagnostics Menu Selections
	Figure A–6:� Protocol Diagnostics Menu
	A.1.2.2� Generic Diagnostic (Loopback) Test
	Figure A–7:� Generic Diagnostic Warning
	Figure A–8:� Generic Diagnostic Main Menu
	A.1.2.3� Default Configuration Menu
	Figure A–9:� Default Configuration Menu
	A.1.2.4� Attach Link Menu�
	Figure A–10:� Attach Link Menu
	A.1.2.5� Configure Link Menu�
	Figure A–11:� Configure Link Menu
	A.1.2.6� Enable Link Menu�
	Figure A–12:� Enable Link Menu
	A.1.2.7� Send Data Menu�
	Figure A–13:� Send Data Menu
	A.1.2.8� Disable Link Menu�
	Figure A–14:� Disable Link Menu
	A.1.2.9� Detach Link Menu�
	Figure A–15:� Detach Link Menu
	A.1.3� Advanced Options
	Figure A–16:� Advanced Options Menu
	B Debug Support for ICP�resident Software
	C DLITE Logger Windows NT System Service User’s Guide
	C.1� Introduction
	C.2� Starting the Service
	C.3� Configuring the Service
	Figure C–1:� Example Logger Configuration File
	C.4� Connecting to the Service
	Figure C–2:� CreateFile Code Example Segment
	C.5� Packet Exchanges
	C.6� Client Structures
	Figure C–3:� Structure service_buf “C” Definition
	C.7� Packet Examples
	Figure C–4:� OPEN_FILE Code Example Segment
	Figure C–5:� CLOSE_FILE Code Example Segment
	Figure C–6:� WRITE_FILE Code Example Segment
	D Multithreaded Sample Programs
	Table D–1:� Sample Program File Names
	D.1� Overview of the Test Program
	D.2� Hardware Setup for the Test Programs
	D.3� Running the Test Program
	D.4� Sample Output from Test Program
	Figure D–1:� Sample Output from DDCMP Blocking Multithreaded Program �
	Figure D–2:� Sample Output from DDCMP Non-Blocking Multithreaded Program �
	Index

