
Protogate, Inc
12225 World T
San Diego, CA
February 2002
.
rade Drive, Suite R
 92128

ICP2432 User’s Guide
for OpenVMS Alpha

(DLITE Interface)

DC 900-1516D

Protogate, Inc.
12225 World Trade Drive, Suite R
San Diego, CA 92128
(858) 451-0865

ICP2432 User’s Guide for OpenVMS Alpha (DLITE Interface)
© 2002 Protogate, Inc. All rights reserved
Printed in the United States of America

This document can change without notice. Protogate, Inc. accepts no liability for any errors this
document might contain.

Freeway is a registered trademark of Simpact, Inc.
All other trademarks and trade names are the properties of their respective holders.

Contents
List of Figures 7

List of Tables 9

Preface 11

1 Product Overview 17

2 Software Installation 19

2.1 Device Driver Installation Procedure. 20

2.2 Protocol Software Installation Procedure 21

2.3 Software Installation Procedure (VMSINSTAL tape) 23

2.4 Software Installation Procedure (VMS BACKUP saveset). 27

2.5 Loading the ICP2432 Driver . 29

2.6 Loading the Protocol Software . 31

3 Programming Using the DLITE Embedded Interface 35

3.1 Overview . 35

3.2 Embedded Interface Description . 36

3.2.1 Comparison of Freeway Server and Embedded Interfaces 36

3.2.2 Embedded Interface Objectives . 37

3.3 DLITE Interface . 38

3.3.1 DLITE Limitations and Caveats . 38

3.3.1.1 Raw Operation Only. 38

3.3.1.2 No LocalAck Processing Support 38

3.3.1.3 AlwaysQIO Support . 39

3.3.1.4 Changes in Global Variable Support 39

3.3.1.5 dlInit Function No Longer Implied 40

3.3.1.6 Unsupported Functions . 40
DC 900-1516D 3

ICP2432 User’s Guide for OpenVMS Alpha (DLITE Interface)
3.3.1.7 Blocking I/O . 40

3.3.1.8 Multithreaded Support. 40

3.3.2 The Application Program’s Interface to DLITE 41

3.3.2.1 Building a DLITE Application 41

3.3.2.2 Blocking and Non-blocking I/O 41

3.3.2.3 Changes in DLI/TSI . 42

3.3.2.4 Changes in DLI Functions . 42

3.3.2.5 Callbacks . 48

3.3.2.6 DLITE Error Codes. 49

3.3.3 Configuration Files . 49

3.3.4 Logging and Tracing . 52

3.3.4.1 Common Logging Service Errors 53

3.3.4.2 General Application Error File 53

4 Application Interface 55

4.1 Device Driver Interface . 55

4.1.1 Channel Assignment . 58

4.1.2 $QIO Interface . 58

4.1.2.1 I/O Function Code . 58

4.1.2.2 I/O Status Block (IOSB) . 59

4.1.2.3 Buffer Address and Size (P1 and P2) 59

4.1.2.4 Node Numbers (P4) . 60

4.2 Supported VMS System Services . 61

4.2.1 SYS$ASSIGN . 61

4.2.2 SYS$CANCEL . 62

4.2.3 SYS$DASSGN . 62

4.2.4 SYS$QIO(W) . 63

4.2.4.1 IO$_INITIALIZE[|IO$M_NOWAIT] 65

4.2.4.2 IO$_LOADMCODE . 66

4.2.4.3 IO$_STARTMPROC . 67

4.2.4.4 IO$_STARTDATA . 68

4.2.4.5 IO$_SENSEMODE . 69

4.2.4.6 IO$_READxBLK[|IO$M_ABORT] 71

4.2.4.7 IO$_WRITExBLK[|IO$M_ABORT] 73

4.3 DLI Session Interface . 75

4.3.1 DLI Session Basics . 75
4 DC 900-1516D

Contents
4.3.2 Use Of Node Numbers (DLI) . 75

4.3.2.1 Node 1 . 76

4.3.2.2 Node 2 . 76

4.3.2.3 Nodes 3 through 126. 76

4.3.3 DLI Session Commands . 76

4.3.3.1 ATTACH Command . 77

4.3.3.2 DETACH Command. 78

4.3.3.3 TERMINATE Command . 79

4.3.4 ICP Discarded Packets . 79

4.4 Node Auto-Assignment Mode for Read Requests 79

4.5 Compatibility with Older ICP Protocols 80

4.6 Protocol Toolkit . 80

5 ICP Packet Formats 83

5.1 DLI Packet Format . 83

5.2 DLI Optional Arguments . 85

6 ICPLOAD Utility 89

6.1 ICPLOAD Components . 89

6.2 OS/Impact and Downloaded Files . 90

6.3 Get or Set the Timeout Value . 90

6.4 Using ICPLOAD.EXE . 91

6.4.1 Invoking ICPLOAD via the RUN Command 91

6.4.2 Invoking ICPLOAD as a Foreign Command 91

6.4.3 ICPLOAD Commands . 92

6.4.3.1 HELP . 94

6.4.3.2 RESET . 95

6.4.3.3 LOAD . 96

6.4.3.4 START . 97

6.4.3.5 GET. 98

6.4.3.6 SET . 99

6.5 ICPLOAD Callable Routines . 100

6.5.1 Conventions . 100

6.5.1.1 icpreset . 101

6.5.1.2 icpload . 102

6.5.1.3 icpstart . 103
DC 900-1516D 5

ICP2432 User’s Guide for OpenVMS Alpha (DLITE Interface)
Index 105
6 DC 900-1516D

List of Figures
Figure 1–1: Typical Data Communications System Configuration 18

Figure 3–1: DLI/TSI Interface in the Freeway Server Environment 36

Figure 3–2: DLITE Interface in an Embedded ICP2432 Environment. 37

Figure 3–3: DLI_ICP_DRV_INFO “C” Structure. 45

Figure 4–1: P4 Parameter Format . 60

Figure 4–2: “C” Definition of the Device Information Structure 70

Figure 5–1: “C” Definition of ICP Packet Structure 84

Figure 5–2: “C” Definition of DLI Optional Arguments Structure 86
DC 900-1516D 7

ICP2432 User’s Guide for OpenVMS Alpha (DLITE Interface)
8 DC 900-1516D

List of Tables
Table 2–1: Protocol Identifiers. 21

Table 3–1: DLITE Error Codes . 50

Table 3–2: VMS Errors Mapped to dlerrno . 51

Table 3–3: DLI Error Codes . 53

Table 5–1: Comparison of DLI_OPT_ARGS and ICP_PACKET Structures 87

Table 6–1: ICPLOAD Command Summary . 92
DC 900-1516D 9

ICP2432 User’s Guide for OpenVMS Alpha (DLITE Interface)
10 DC 900-1516D

Preface
Purpose of Document

This document describes how to use the ICP2432 intelligent communications processor

(ICP) in a peripheral component interconnect (PCI) bus computer running the VMS

operating system.

Intended Audience

This document is intended primarily for VMS system managers and applications pro-

grammers.

Organization of Document

Chapter 1 is an overview of the product.

Chapter 2 describes how to install the ICP2432 and protocol software in a VMS system.

Chapter 3 describes the VMS embedded DLITE interface. This chapter supplements the

Freeway Data Link Interface Reference Guide and is of interest primarily to programmers

who are either porting an existing application (currently operational in the Freeway

server environment) to the embedded environment (for example, the PCIbus ICP2432)

or who are developing an initial DLITE application in the embedded environment.

Chapter 4 describes the application interface to the ICP2432 device driver.

Chapter 5 describes the format of packets written to or read from the ICP.

Chapter 6 describes the ICPLOAD utility.
DC 900-1516D 11

ICP2432 User’s Guide for OpenVMS Alpha (DLITE Interface)

3/3/99 Leslie:
Temporarily
remove 1332,
1532, 1541,
and 1543
(post-layoffs)
Protogate References

The following documents provide useful supporting information, depending on the

customer’s particular hardware and software environments. Most documents are

available on-line at Protogate’s web site, www.protogate.com.

General Product Overviews

• Freeway 1100 Technical Overview 25-000-0419

• Freeway 2000/4000/8800 Technical Overview 25-000-0374

• ICP2432 Technical Overview 25-000-0420

• ICP6000X Technical Overview 25-000-0522

Hardware Support

• Freeway 1100/1150 Hardware Installation Guide DC 900-1370

• Freeway 1200 Hardware Installation Guide DC 900-1537

• Freeway 1300 Hardware Installation Guide DC 900-1539

• Freeway 2000/4000 Hardware Installation Guide DC 900-1331

• Freeway 3100 Hardware Installation Guide DC 900-2002

• Freeway 3200 Hardware Installation Guide DC 900-2003

• Freeway 3400 Hardware Installation Guide DC 900-2004

• Freeway 3600 Hardware Installation Guide DC 900-2005

• Freeway 8800 Hardware Installation Guide DC 900-1553

• Freeway ICP6000R/ICP6000X Hardware Description DC 900-1020

• ICP6000(X)/ICP9000(X) Hardware Description and Theory of
Operation

DC 900-0408

• ICP2424 Hardware Description and Theory of Operation DC 900-1328

• ICP2432 Hardware Description and Theory of Operation DC 900-1501

• ICP2432 Hardware Installation Guide DC 900-1502

Freeway Software Installation Support

• Freeway Software Release Addendum: Client Platforms DC 900-1555

• Freeway User’s Guide DC 900-1333

• Getting Started with Freeway 1100/1150 DC 900-1369

• Getting Started with Freeway 1200 DC 900-1536

• Getting Started with Freeway 1300 DC 900-1538
12 DC 900-1516D

Preface
• Getting Started with Freeway 2000/4000 DC 900-1330

• Getting Started with Freeway 8800 DC 900-1552

• Loopback Test Procedures DC 900-1533

Embedded ICP Installation and Programming Support

• ICP2432 User’s Guide for Digital UNIX DC 900-1513

• ICP2432 User’s Guide for OpenVMS Alpha DC 900-1511

• ICP2432 User’s Guide for OpenVMS Alpha (DLITE Interface) DC 900-1516

• ICP2432 User’s Guide for Windows NT DC 900-1510

• ICP2432 User’s Guide for Windows NT (DLITE Interface) DC 900-1514

Application Program Interface (API) Programming Support

• Freeway Data Link Interface Reference Guide DC 900-1385

• Freeway Transport Subsystem Interface Reference Guide DC 900-1386

• QIO/SQIO API Reference Guide DC 900-1355

Socket Interface Programming Support

• Freeway Client-Server Interface Control Document DC 900-1303

Toolkit Programming Support

• Freeway Server-Resident Application and Server Toolkit Program-
mer’s Guide

DC 900-1325

• OS/Impact Programmer’s Guide DC 900-1030

• Protocol Software Toolkit Programmer’s Guide DC 900-1338

Protocol Support

• ADCCP NRM Programmer’s Guide DC 900-1317

• Asynchronous Wire Service (AWS) Programmer’s Guide DC 900-1324

• Addendum: Embedded ICP2432 AWS Programmer’s Guide DC 900-1557

• AUTODIN Programmer’s Guide DC 908-1558

• BSC Programmer’s Guide DC 900-1340

• BSCDEMO User’s Guide DC 900-1349

• BSCTRAN Programmer’s Guide DC 900-1406

• DDCMP Programmer’s Guide DC 900-1343

• FMP Programmer’s Guide DC 900-1339
DC 900-1516D 13

ICP2432 User’s Guide for OpenVMS Alpha (DLITE Interface)

Ginni note:
Add
description.
Document Conventions

The term “ICP,” as used in this document, refers to the physical ICP2432, whereas the

term “device” refers to all of the VMS software constructs (device driver, I/O database,

and so on) that define the device to the system, in addition to the ICP2432 itself.

Program code samples are written in the “C” programming language.

Document Revision History

The revision history of the ICP2432 User’s Guide for OpenVMS Alpha (DLITE Interface),

Protogate document DC 900-1516D, is recorded below:

Customer Support

If you are having trouble with any Protogate product, call us at (858) 451-0865 Monday

through Friday between 8 a.m. and 5 p.m. Pacific time.

• Military/Government Protocols Programmer’s Guide DC 900-1602

• SIO STD-1200A (Rev. 1) Programmer’s Guide DC 908-1359

• SIO STD-1300 Programmer’s Guide DC 908-1559

• X.25 Call Service API Guide DC 900-1392

• X.25/HDLC Configuration Guide DC 900-1345

• X.25 Low-Level Interface DC 900-1307

 Revision Release Date Description

DC 900-1516A December 1998 Original release with the DLITE interface

DC 900-1516B December 1998 Minor changes throughout

DC 900-1516C March 1999 Add ICPLOADVMS.COM file (Section 2.5 on page 29)
Add new DLITE errors (Table 3–1 on page 50)

DC 900-1516D February 2002 Change contact info to Protogate. Change file prefix
from SIMPACT_ to ICP2432_. Add additional
information on software and driver installation.
14 DC 900-1516D

Preface
You can also fax your questions to us at (877) 473-0190 any time. Please include a cover

sheet addressed to “Customer Service.”

We are always interested in suggestions for improving our products. You can use the

report form in the back of this manual to send us your recommendations.
DC 900-1516D 15

ICP2432 User’s Guide for OpenVMS Alpha (DLITE Interface)
16 DC 900-1516D

Chapter
1 Product Overview
The Protogate ICP2432 data communications product allows PCIbus computers run-

ning the VMS operating system to transfer data to other computers or terminals over

standard communications circuits. The remote site need not have identical equipment.

The protocols used comply with various corporate, national, and international stan-

dards.

The ICP2432 product consists of the software and hardware required for user applica-

tions to communicate with remote sites. Figure 1–1 is a block diagram of a typical sys-

tem configuration. Application software in the VMS system communicates with the

ICP2432 by means of the Protogate-supplied device driver.

The ICP controls the communications links for the user applications. The user applica-

tion writes commands and data to the ICP in the form of packets. The user application

also reads responses and data from the ICP in the form of packets. All packets conform

to the format described in Chapter 5.
DC 900-1516D 17

ICP2432 User’s Guide for OpenVMS Alpha (DLITE Interface)
Figure 1–1: Typical Data Communications System Configuration

Host Driver
(ZJDRIVER.EXE)

User
Application

Processes ICP

Communication
link

Communication
link

P
C
I
b
u
s

•
•
•

Data links
to remote computer

or data network

3421

•
•
•

18 DC 900-1516D

Chapter
2 Software Installation
A typical software installation may contain two or more distribution media packages

(tapes, CDs, and so on). One package contains the ICP2432 VMS device driver, DLITE,

and related files. The other package may contain a specific Protogate protocol and its

related files. This chapter describes the installation procedure for both the device driver

and the protocol software for VMS systems.

The software installation procedures in this chapter refer to directory names that are

used by Protogate’s “Freeway” line of server products.

Before you install the software you must determine the type of installation media you

have. There are two types of installation media: a VMS formatted tape that uses the

VMSINSTAL utility, or a VMS BACKUP saveset taken from a CD or from the Protogate

FTP site. If you have a VMSINSTAL tape, follow the steps in Section 2.3. If you have a

BACKUP saveset, follow the steps in Section 2.4.
DC 900-1516D 19

ICP2432 User’s Guide for OpenVMS Alpha (DLITE Interface)
2.1 Device Driver Installation Procedure

The ICP2432 driver (ZJDRIVER) uses the “Freeway” directory tree for building execut-

able images even if you are not using a Freeway server. The software installation proce-

dures described in this section load the ZJDRIVER and the DLITE API into a new or

already existing Freeway directory.

The following files are placed in the FREEWAY directory:

• The [FREEWAY.CLIENT.VMS_EMB.BIN] directory contains the executable

images of the ZJDRIVER and driver utilities.

• The [FREEWAY.CLIENT.VMS_EMB.ICPLOAD] directory contains the source

code for the ICPLOAD protocol download utility.

• The [FREEWAY.CLIENT.VMS_EMB.DRIVER] directory contains the source code

for the ZJDRIVER and for the IOGEN Configuration Building Module (ICBM)

Utility.

• The [FREEWAY.CLIENT.VMS_EMB.LIB] directory contains the DLITE library

that is used when linking a VMS program that will communicate with the proto-

col software on the ICP.

Use the following procedure to install the ZJDRIVER, ICPLOAD, and DLITE software

files on your system.

Step 1: Determine the type of installation media you have. There are two types of

installation media: a VMS formatted tape that uses the VMSINSTAL utility, or a VMS

BACKUP saveset taken from a CD or from the Protogate FTP site.

Step 2: To install the driver software from a VMS formatted media using the

VMSINSTAL utility, refer to Section 2.3 on page 23. To install the driver software from

a VMS BACKUP saveset, refer Section 2.4 on page 27.
20 DC 900-1516D

2: Software Installation
2.2 Protocol Software Installation Procedure

The software installation procedures described in this section refer to file names that

include a “ppp” identifier to indicate a specific protocol. Table 2–1 shows the “ppp” iden-

tifiers for various protocols. For example, ppp_FW_2432.MEM translates to

BSC3270_FW_2432.MEM for BSC3270 or X25_FW_2432.MEM for X.25. Note that some

newer protocol releases have image names that fit within the DOS 8.3 format (for exam-

ple: X25_2432.MEM). Check the release notes in the protocol distribution kit to find

out which format is used for your protocol image.

Table 2–1: Protocol Identifiers

Protocol or Toolkit
Protocol Identifier

(ppp)

AUTODIN autodin1

1 Except for the readme and release notes, where ppp is adn.

AWS aws

BSC3270 bsc32702

2 Except for the readme, release notes, release history, and load configuration
files where ppp is bsc for both BSC3270 and BSC2780/3780.

BSC2780/3780 bsc3780b

DDCMP ddcmp

FMP fmp

ADCCP NRM nrm

Protocol Toolkit sps

Server-resident Application sra3

3 Except for the executable object for the protocol software where ppp is sps
(sps_fw_2432.mem).

STD1200A s12

Military/Government mil4

4 Except for the readme and release notes, where ppp is mgn, where n is a
Protogate-supplied product designator.

X.25/HDLC x255

5 Except for the DLI and TSI configuration files which are apidcfg and apitcfg
and the test directory where ppp is x25mgr.
DC 900-1516D 21

ICP2432 User’s Guide for OpenVMS Alpha (DLITE Interface)
The following files are in the FREEWAY directory:

• README.ppp provides general information about the protocol software

• RELNOTES.ppp provides specific information about the current release of the

protocol software

• RELHIST.ppp provides information about previous releases of the protocol soft-

ware

For older Simpact software releases prior to June 1, 1998, the executable object for the

protocol software, ppp_FW_2432.MEM, was distributed in the [FREEWAY.ICP-

CODE.ICPXXXX.PROTOCOLS] directory. For releases after June 1, 1998, this file is in

the [FREEWAY.BOOT] directory.

For software releases prior to June 1, 1998, the executable object for the system-services

module, XIO_2432.MEM, was distributed in the [FREEWAY.ICP-

CODE.ICPXXXX.OSIMPACT] directory. For releases after June 1, 1998, this file is in the

[FREEWAY.BOOT] directory. The load files provided with protocols with a release date

prior to June 1, 1998 contain a fully qualified path for the protocol and XIO image files.

Such files should be modified to remove the path to the XIO image. This allows your

system to boot the local copy of the XIO image provided in the [FREEWAY.BOOT]

directory.

Step 1: Determine the type of installation media you have. There are two types of

installation media: a VMS formatted tape that uses the VMSINSTAL utility, or a VMS

BACKUP saveset taken from a CD or from the Protogate FTP site.

Step 2: To install the protocol software from a VMS formatted media using the

VMSINSTAL utility, refer to Section 2.3 on page 23. To install the protocol software

from a VMS BACKUP saveset, refer Section 2.4 on page 27.
22 DC 900-1516D

2: Software Installation
2.3 Software Installation Procedure (VMSINSTAL tape)

The software distribution media contains several VMS BACKUP savesets. To install the

software from the distribution media onto your VMS computer, use the VMSINSTAL

utility as described in the following procedure.

Caution
Remember that installing new software overwrites the previous

software.

After the distribution media is mounted, the procedure is automated and only requires

that you respond to menu prompts. Console displays are shown in typewriter type and

your responses are shown in bold type. Follow each entry with a carriage return. The

abbreviation DDCU signifies that a device name is required.

You might find it useful to perform the installation at a hardcopy terminal. This pro-

vides a printed record that you can use for troubleshooting if needed.

Step 1: On the host computer, log in to an account that has system-manager privileges.

Step 2: Insert the distribution media into the appropriate drive.

Step 3: Run VMSINSTAL as follows to install the files from each distribution media to

your VMS computer (Vnnnn is the current software version number).

$ @SYS$UPDATE:VMSINSTAL

OpenVMS AXP Software Product Installation Procedure Vnnnn

It is today’s date at current time.

Enter a question mark (?) at any time for help.
DC 900-1516D 23

ICP2432 User’s Guide for OpenVMS Alpha (DLITE Interface)
The computer checks the following conditions:

• Are you logged in to the system manager’s account? You should install the soft-

ware from that account; however, any account with the necessary privileges is

acceptable.

• Do you have adequate account quotas for installing software? VMSINSTAL checks

for the various quota values.

• Are any users logged on the system? Problems might occur if someone tries to use

the system while you are installing a new release of the software.

Step 4: If there are potential problems with the account quotas, the computer displays:

The following account quotas may be too low.

The computer lists the account quotas that might be too low. Next, it lists any other

active processes.

If any potentially conflicting conditions are noted, the computer gives you the opportu-

nity to stop the installation by displaying the following message:

* Do you want to continue anyway [NO]?

If you answer yes, the computer asks:

Are you satisfied with the backup of your system disk [YES]?

If you answer no, the installation stops so you can save your data before restarting the

installation.

Step 5: If you proceed with the installation, the computer displays the following mes-

sage. Remember that DDCU means a device name.

* Where will the distribution volumes be mounted: DDCU:
24 DC 900-1516D

2: Software Installation
For DDCU, substitute a device name such as MUA0, MKA100, DUAl, or something sim-

ilar.

Step 6: The computer displays:

Enter the products to be processed from the first distribution

volume set.

* Products: *

Enter an asterisk (this causes all products to be installed).

Step 7: The computer displays:

* Enter installation options you wish to use (none):

Refer to Digital’s VMS Installation Guide for a list of the VMSINSTAL options and how

to enter them. Press <return> to select the standard installation options.

Step 8: The computer displays:

This installation procedure will place the files on device

SYS$SYSDEVICE.

* Is this acceptable [Y]? y

Press <return> to answer yes (this is highly recommended). If you answer no, you are

prompted to enter the name of a target disk.

Step 9: The computer displays:

This installation procedure will place the product files in

directory [FREEWAY...]

on device ddcu
DC 900-1516D 25

ICP2432 User’s Guide for OpenVMS Alpha (DLITE Interface)
* Is this acceptable [Y]? y

Remember that DDCU means a device name. Press <return> to answer yes (this is highly

recommended). If you answer no, you are prompted to enter the name of a directory.

Step 10: The computer displays:

There are no more questions. The installation will proceed.

The procedure completes automatically. Depending on the speed of your system, this

will take several minutes, then it displays:

%VMSINSTAL-I-MOVEFILES, Files will now be moved to their target directories...

Installation of Product Vnnnn completed at current time.

Step 11: The computer displays:

Enter the products to be processed from the next distribution volume set.

* Products:

If you will be installing another protocol, enter an asterisk (*) to continue. When there

are no other distribution sets, enter exit. The computer displays:

VMSINSTAL procedure done at current time.

The ICP2432 software is now installed onto your computer’s disk.
26 DC 900-1516D

2: Software Installation
2.4 Software Installation Procedure (VMS BACKUP saveset)

Some software distributions or updates from Protogate may be in the form of a ZIP file

or a VMS BACKUP saveset that does not use the VMSINSTAL utility. This section lists

the procedures to install software from this type of distribution.

Caution
Remember that installing new software overwrites the previous

version of that software.

The software distribution will usually contain three files as listed below:

• filename.BCK: a binary file containing the VMS BACKUP saveset

• filename.LOG: a text file containing a listing of the BACKUP saveset

• filename.TXT: a text file containing additional installation instuctions

• (Where filename is the name of the software distrbution.)

Always read the TXT file included in the distribution as it may contain software notes

and additional installation instructions.

If you have multiple savesets, install the driver/DLITE or DLI saveset first, then install

the protocol savesets into the same Freeway directory tree. The protocol saveset will cre-

ate the subdirectories needed for it’s specific protocol files and test programs.

Step 1: If the distribution is a ZIP file, unzip the file on a Windows PC to get the BCK,

LOG, and TXT files. If the distribution came on a CD ROM, copy the files from the VMS

distribution directory onto your Windows PC. If you have an unzip utility or a CD

ROM drive on your VMS system, you may extract the distribution files directly on your

VMS system and skip the next step.
DC 900-1516D 27

ICP2432 User’s Guide for OpenVMS Alpha (DLITE Interface)
Step 2: Use FTP in binary (image) mode to copy the saveset (BCK file) from your Win-

dows PC to your VMS system.

Step 3: Convert the saveset file to a record format that will be recognized by the VMS

BACKUP utility. To do this, use the DCL command below:

$ SET FILE /ATTR=(RFM:FIX,RAT:NONE,LRL:32256) filename.BCK

Step 4: Use the VMS BACKUP utility to restore the files on your system. You may

install the software in an already existing Freeway directory tree or create a new one with

this installation. To install the files in a top-level Freeway directory, use the following

DCL command:

$ BACKUP/NEW filename.BCK/SAVESET [000000...]

To create a Freeway directory tree as a subdirectory, use the following DCL command as

an example:

$ BACKUP/NEW filename.BCK/SAVESET [PROTOGATE.VMS072...]

The software is now installed onto your computer’s disk.
28 DC 900-1516D

2: Software Installation
2.5 Loading the ICP2432 Driver

The following procedure describes how to load the VMS device driver (ZJDRIVER) for

the ICP2432. Once the device driver is loaded on your system, it does not have to be

reloaded until the system is rebooted. The procedure also provides instruction on how

to configure your system so that the ZJDRIVER is loaded automatically during system

startup.

Step 1: Verify that you have installed one or more ICP2432 boards in your computer,

as described in the ICP2432 Hardware Installation Guide.

Step 2: Verify that you have installed the ZJDRIVER and DLITE software on your disk

drive.

Step 3: Set your default directory to the embedded “binary” subdirectory within the

Freeway directory tree as follows. DDCU: is the name of the disk device that contains

the Freeway tree:

$ SET DEF DDCU:[FREEWAY.CLIENT.VMS_EMB.BIN]

Step 4: Execute the configuration command file for the driver. This DCL command file

will link the ZJDRIVER and copy it to the proper system directory. This command file

also links the driver support programs and creates driver-related command files that are

customized for your system.

$ @ZJCONFIGURE

Step 5: Set the ICP2432_ prefix for the driver by using the SYSMAN utility. First display

the current prefix list:

$ MCR SYSMAN

SYSMAN> IO SHOW PREFIX
DC 900-1516D 29

ICP2432 User’s Guide for OpenVMS Alpha (DLITE Interface)
SYSMAN-I-OUTPUT, command execution on node GABIN

SYSMAN-I-IOPREFIX, the current prefix list is: SYS$,DECW$

The current prefix list is SYS$,DECW$. The empty string equates to the prefix SYS$.

Next set the ICP2432_ prefix:

SYSMAN> IO SET PREFIX="SYS$,DECW$,ICP2432_"

Step 6: Use autoconfigure to configure the ICP2432 cards in the system:

SYSMAN> IO AUTOCONFIGURE /SELECT=ZJ*

Step 7: Exit the SYSMAN utility:

SYSMAN> EXIT

Step 8: Check the ICP device status. Each ICP board will appear on the system as

devices ZJA0, ZJB0, etc. in the order that they were placed on the PCI bus. Use the fol-

lowing command to check that all installed ICP boards were configured and have

“online” status:

$ SHOW DEVICE ZJ

Step 9: If you prefer to use autoconfigure to automatically load ZJDRIVER as part of

the system startup (recommended), add the following line as the last line of the

SYS$MANAGER:SYCONFIG.COM file.

@[FREEWAY.CLIENT.VMS_EMB.BIN]ICP2432_ICBM_INSTALL.COM
30 DC 900-1516D

2: Software Installation
2.6 Loading the Protocol Software

The following procedure describes how to load the protocol software into the ICP2432

boards. Note that you may load and reload the protocol software as many times as you

wish without having to reload the VMS device driver (ZJDRIVER) for the ICP2432. The

procedure also provides instruction on how to configure your system so that the proto-

col software is loaded automatically at system startup.

Step 1: To download the protocol software to a single ICP, use the command file ICP-

LOADVMS.COM located in the [FREEWAY.CLIENT.VMS_EMB.BIN] directory. This

command file uses the ICPLOAD utility described in Chapter 6.

ICPLOADVMS.COM uses the script file that is placed in the [FREEWAY.BOOT] direc-

tory during protocol software installation (performed in Section 2.2). Check this direc-

tory for the script file of the protocol you wish to download.

The syntax for executing ICPLOADVMS.COM is as follows:

$ @ICPLOADVMS device_name script_file_name dlite_flag

Where the command line parameters are defined as follows:

device_name Device name of the ICP to be downloaded

(for example, ZJA0, ZJB0, …)

script_file_name Script file name placed in the [FREEWAY.BOOT]

directory during protocol software installation

(for example, fmpload, spsload, …)

dlite_flag DLITE mode select flag. If you are using the DLITE

embedded interface described in Chapter 3, set the

dlite_flag to “dlite” or “DLITE”. If you are interfacing

directly to the ZJDRIVER without DLITE (non-API

mode), then leave this field blank. For more details

on the DLITE mode, see Section 4.4 on page 79.
DC 900-1516D 31

ICP2432 User’s Guide for OpenVMS Alpha (DLITE Interface)
Note
ICPLOADVMS searches for the script file and the installed protocol

software image (for example, fmpload and FMP_FW_2432.MEM) in

the specified directory. If not found in the specified directory, then

it searches in the [FREEWAY.BOOT] directory. If the directory is

not specified, the current directory is used. If the script file can not

be found, ICPLOADVMS returns an error.

Step 2: Execute ICPLOADVMS.COM to download the protocol software onto a single

ICP2432 as shown in the example below:

$ @ICPLOADVMS ZJA0 fmpload DLITE
Processing DKA200:[FREEWAY.BOOT]FMPLOAD.
Resetting ZJA0. This will take about 15 seconds...
Loading Firmware DKA200:[FREEWAY.BOOT]XIO_2432.MEM...
Loading Firmware DKA200:[FREEWAY.BOOT]FMP_FW_2432.MEM...
Starting Firmware (DLITE) ...

Step 3: Use the ICP2432_STARTUP.COM command file located in the [FREEWAY.CLI-

ENT.VMS_EMB.BIN] directory to download multiple ICP boards or to set up to down-

load the protocol software on system startup. This file uses ICPLOADVMS.COM to load

protocol images one or more ICP boards.

Edit the ICP2432_STARTUP.COM file and modify the example lines to reflect your spe-

cific script file name and device name. Add lines for downloading multiple ICP boards.

The following example downloads the FMP protocol software to device ZJA0 using the

DLITE embedded interface (described in Chapter 3).
32 DC 900-1516D

2: Software Installation
$! Download Protocol Software
$!
$! $ICPLOADVMS device-name download-script-file dlite-flag
$!
$!
$ ICPLOADVMS ZJA0 fmpload DLITE
$

Step 4: Execute the ICP2432_STARTUP.COM file from its directory to download the

protocol(s) to the ICP board(s) you specified:

$ @ICP2432_STARTUP

Step 5: If you prefer to load the protocol software into the ICP board(s) during system

startup (rather than performing Step 2 or Step 4), you can add a line at the end of your

system startup command file (SYS$MANAGER:SYSTARTUP_VMS.COM) to run the

ICP2432_STARTUP.COM file as follows:

$ @DDCU:[FREEWAY.CLIENT.VMS_EMB.BIN]ICP2432_STARTUP
DC 900-1516D 33

ICP2432 User’s Guide for OpenVMS Alpha (DLITE Interface)
34 DC 900-1516D

Chapter

Techpubs —
Terminology
Cautions: 1)
use blocking
and non-
blocking I/O
(instead of
synchronous
and
asynchronou
s 2) use
“Raw
operation”
rather than
“Raw mode”
3 Programming Using the
DLITE Embedded Interface

3.1 Overview

This chapter primarily describes the differences between the data link interface (DLI) to

Freeway (as described in the Freeway Data Link Interface Reference Guide) and the

DLITE embedded interface in a OpenVMS system, referred to as “DLITE.” Changes to

the scope and nature of Freeway DLI support are described.

This chapter should be read by application programmers who are doing one of the fol-

lowing:

• Porting an existing application (currently operational in the Freeway environ-

ment) to the embedded environment (for example, the embedded ICP2432

PCIbus board).

• Developing an initial DLITE application in the embedded environment. You

should first read the Freeway Data Link Interface Reference Guide and have it avail-

able as your primary reference.

In addition to the Freeway Data Link Interface Reference Guide, the following Protogate

reference documents are of interest to application programmers:

• Freeway Client-Server Interface Control Document (for writing to the socket level)

• The applicable protocol-specific programmer’s guide for your application.

DLITE is a new, streamlined interface designed specifically for the embedded interface

to the ICP2432 board. The interface provides new capabilities while retaining the

majority of the “Freeway DLI” (henceforth referred to as DLI) capabilities. By using
DC 900-1516D 35

ICP2432 User’s Guide for OpenVMS Alpha (DLITE Interface)
DLITE, developers can concentrate on the communication requirements of the

ICP2432 rather than the details required by the VMS interface and the ICP2432

OpenVMS driver, thereby reducing programming complexity and development time.

DLITE can be thought of as a communications pipe to the ICP2432. It is compatible

with the existing Freeway DLI (with caveats described in Section 3.3.1 on page 38).

DLITE provides a high-level open/close/read/write interface to the ICPs. It supports

only non-blocking I/O.

3.2 Embedded Interface Description

3.2.1 Comparison of Freeway Server and Embedded Interfaces

The traditional DLI and TSI interface supports client applications communicating with

the Freeway server on a local-area network (LAN). This type of interface is shown in

Figure 3–1. In an embedded environment, the application does not access a network in

communicating with the ICP.

Figure 3–1: DLI/TSI Interface in the Freeway Server Environment

Freeway

ICP0

ICP1

ICP2

ICP3

TCP/IP

192.52.107.99 192.52.107.100

DLI
Client

Application TSI
TSI

Msg
Mux

Ethernet

WAN
Protocols

TCP/IP
Socket Interface

Client
34

00

St
an

da
rd

 B
u

s
In

du
st

ry

SRA

Shared Memory
Interface

dlicfg

DLI Text
Configuration

File

DLI Binary
Configuration File

DLI
Configuration
Preprocessor

(off-line)

TSI Text
Configuration

File

tsicfg

TSI
Configuration
Preprocessor

(off-line)

TSI Binary
Configuration File
36 DC 900-1516D

3: Programming Using the DLITE Embedded Interface
Instead, the embedded application using DLITE communicates directly with the

OpenVMS ICP2432 driver (through the VMS interface), which accesses the locally

attached ICP. This interface is shown in Figure 3–2. In this environment no Freeway-

type communications take place; it is designed specifically for the embedded system.

3.2.2 Embedded Interface Objectives

The DLITE interface was designed as a streamlined interface to the ICP2432. It supports

only Raw operation protocols, which means that the application is responsible for all

communications with the ICP. DLITE supports only non-blocking I/O.

DLITE was designed to maximize portability between existing applications. The objec-

tive was an interface that would require “no changes” when porting from a Freeway

environment to an embedded environment. While this objective has been met (for Raw

operation using non-blocking I/O), there are differences between these environments,

as well as differences in system behavior. These differences are addressed in the follow-

ing sections.

Figure 3–2: DLITE Interface in an Embedded ICP2432 Environment

DLITE
Client

Application

dlicfg

DLITE Text
Configuration

File

DLITE Binary
Configuration File

DLI
Configuration
Preprocessor

(off-line)

VMS
Interface

ICP0

ICP1

ICP2

ICP3

PCI
Driver

WAN
Protocols

35
15

P
C

Ib
u

s

VMS
DC 900-1516D 37

ICP2432 User’s Guide for OpenVMS Alpha (DLITE Interface)
3.3 DLITE Interface

The DLITE interface is described here in terms of enhanced capabilities, limitations and

caveats, the API itself, configuration files, and logging/tracing (see Section 3.3.4).

Within each context, necessary changes and any behavior differences are noted.

3.3.1 DLITE Limitations and Caveats

3.3.1.1 Raw Operation Only

DLITE supports only Raw operation. As with DLI, Raw operation means that the API

sends nothing to the ICPs except that which is provided by the application for transmis-

sion; therefore, the client application must handle all the following:

• Configuration of the ICP/Protocol

• ICP and protocol control data (using the DLI OptArgs structure accompanying

each dlRead and dlWrite request)

• I/O details of the specific protocol

Raw operation especially impacts configuration of the ICP. Whereas Normal operation

performs ICP configuration for the application using information from the DLI config-

uration file, the application using Raw operation is totally responsible for configura-

tion. The DLI configuration file does not support “protocol” parameters (in fact, their

presence results in errors during configuration file processing because they are not

allowed in Raw operation).

3.3.1.2 No LocalAck Processing Support

Local acknowledgment (LocalAck) processing is not supported. When data is written to

an ICP, the user receives an acknowledgment that the ICP did in fact receive that data

(refer to your protocol-specific programmer’s guide for details). The Freeway DLI does

support a “LocalAck” capability that hides this from the application programmer (pre-
38 DC 900-1516D

3: Programming Using the DLITE Embedded Interface
vious writes are not posted as complete until DLI receives this LocalAck, then the

LocalAck is thrown away). However, the DLITE user is responsible for receiving each

LocalAck and performing any necessary processing. The DLITE behavior is exactly the

same as when the DLI LocalAck configuration parameter is set to “no”. This generally

implies the client application should post a dlRead after each dlWrite to receive the

expected Local Ack.

3.3.1.3 AlwaysQIO Support

DLI optionally supported an “AlwaysQIO” feature (applicable only when using

non-blocking I/O), which restricted notification of completed I/O to callback invoca-

tions only. If an I/O completed immediately in the I/O request, the completion would

not be reported with the return of the dlRead or dlWrite request. Instead, notification

would be through the user-supplied callback.

DLITE always behaves as if the AlwaysQIO configuration parameter is set to “yes” (non-

blocking I/O only). Non-blocking I/O should always return with EWOULDBLOCK

while the I/O completes.

3.3.1.4 Changes in Global Variable Support

DLI maintained three global variables; dlerrno, iICPStatus, and cfgerrno. The global vari-

ables iICPStatus and cfgerrno are not supported for DLITE. The iICPStatus value simply

returned the value contained in the ICP status field, which is now available to the

DLITE application in the iICPStatus field from the OptArgs. The information in cfgerrno

is no longer available.

The dlerrno variable is still available, but has been redefined for DLITE as a function call

returning an integer (int _dlerrno()). Reference to dlerrno becomes a function call which

returns the last error. Note that this definition precludes using dlerrno as an “L-value” in

a “C” expression.
DC 900-1516D 39

ICP2432 User’s Guide for OpenVMS Alpha (DLITE Interface)
3.3.1.5 dlInit Function No Longer Implied

DLI allowed users to perform dlOpen before calling dlInit (dlInit would be invoked if

required, not a recommended practice). This results in an error when using DLITE.

Processing must be initialized using dlInit before any other service is requested.

3.3.1.6 Unsupported Functions

The following functions are not supported. Applications invoking these functions

return with the DLI_XX…XX_ERR_NEVER_INIT error.

• dlControl

• dlListen

• dlPost

• dlSyncSelect

DLITE does not support the dynamic building of the DLI configuration file if the .bin

does not currently exist. This means that DLITE expects the binary configuration file to

exist at run time in order to function properly.

3.3.1.7 Blocking I/O

DLITE supports only non-blocking I/O. Users not opting for callback routines might

wish to poll to determine I/O completion (using dlPoll).

3.3.1.8 Multithreaded Support

DLITE does not support multithreaded applications. The interface is not threadsafe.
40 DC 900-1516D

3: Programming Using the DLITE Embedded Interface
3.3.2 The Application Program’s Interface to DLITE

Except where described in the previous sections, the embedded DLITE interface does

not change the application’s interface to DLI. While the DLI interface has remained

intact, changes have been made in both the methods supporting DLI and in the under-

lying functionality.

3.3.2.1 Building a DLITE Application

The DLITE API is provided on a static library named LIBVMSEMB.OLB. The user must

include the preprocessor definitions VMS and DLITE (e.g., /DEFINE=(VMS,DLITE)

when building the application using the Protogate-supplied libraries and header

include files.

3.3.2.2 Blocking and Non-blocking I/O

As described above, DLITE does not support blocking I/O. However, some of the func-

tions are implemented in a blocking manner. The following functions will effectively

block by not returning to the application until all processing is completed for the service

requested:

• dlInit

• dlOpen

• dlClose

• dlTerm

• dlPoll

• dlBufAlloc

• dlBufFree

The following functions are non-blocking. They return to the application immediately

after the operation is queued.

• dlRead
DC 900-1516D 41

ICP2432 User’s Guide for OpenVMS Alpha (DLITE Interface)
• dlWrite

Using non-blocking I/O, a successful operation returns OK, and dlerrno has the value of

EWOULDBLOCK. The application is notified of I/O completion through the I/O com-

pletion handler (IOCH). The completed I/O operation is retrieved using a dlPoll request

for read/write complete. See Section 3.3.2.5 on page 48 for more information on call-

backs and I/O completion.

3.3.2.3 Changes in DLI/TSI

The lack of a network connection has eliminated the need for some of the client/server

communications between the current DLI and TSI. While the user buffer is not affected,

some data previously in the DLI header (i.e. the Freeway header) and the TSI header is

no longer built by the API. These changes are transparent to the user but may be noted

when examining DLITE trace files.

3.3.2.4 Changes in DLI Functions

No changes are required in the user interface to DLI. Some DLI functions have changed

in their implementation, which might affect the user’s expected behavior of the func-

tion. Changes in the affected functions are described below.

dlBufAlloc

Implementation of buffer allocation has changed. Rather than allocating buffers from a

pre-allocated buffer pool managed by TSI, buffer allocation requests presented to

DLITE (using dlBufAlloc) invoke VMS system memory services to allocate buffers

(using malloc calls). Do not assume any type of buffer initialization. Also, the size

requested in dlBufAlloc can be thought of as the size requested from the system (the

actual size is somewhat larger, which includes some DLITE overhead requirements). If

the application requests one byte for the data buffer size, it should assume only one byte

is returned.
42 DC 900-1516D

3: Programming Using the DLITE Embedded Interface
User requests are verified against the MaxBufs and MaxBufSize DLITE configuration

parameters. Requests exceeding either of these return a buffer allocation error.

Buffers allocated using dlBufAlloc are allocated with room for the ICP and Protocol

header, and a small DLITE work area prefacing the user’s data area. This area is added

to the user’s request; users do not have to account for these requirements in their buffer

request. DLITE also “tags” each buffer, and verifies the buffer was allocated using

dlBufAlloc before it frees the buffer in dlBufFree. Users can not free a buffer they allo-

cated directly from the system using dlBufFree. Buffer alignment requirements for com-

munications with the VMS ICP2432 driver are performed by dlBufAlloc. The buffer

returned is correctly aligned.

Note
The user’s buffer allocation request should be only for the user’s

data; the space required for the ICP and Protocol headers are

“silently” added to the buffer request by dlBufAlloc. If the applica-

tion is not using the DLITE buffer allocation service, it must

account for the following:

• Sixteen (16) bytes for the protocol header immediately

prefacing the data buffer

• Sixteen (16) bytes for the ICP header immediately prefacing

the protocol header

• Alignment of the buffer address on the correct boundary

dlBufFree

This service has also changed its implementation. In concert with the change in buffer

allocation, a call to dlBufFree returns the requested buffer to the VMS memory services

(using free). Where previously the user could use the buffer pointer returned with the

successful dlBufFree request (the buffer still existed in the TSI buffer pool), now that
DC 900-1516D 43

ICP2432 User’s Guide for OpenVMS Alpha (DLITE Interface)
buffer is indeed freed. Any further reference to the buffer results in unpredictable

results. Requests with a NULL buffer pointer and attempts to free a buffer not allocated

with dlBufAlloc return with a buffer deallocation error message.

dlInit

The user application must call dlInit before any other DLITE service. If dlInit does not

find the DLI configuration file, it returns the DLI_INIT_ERR_CFG_LOAD_FAILED

error. It does not try to find a DLI source configuration file and perform the configura-

tion processing in-line. The logging and tracing capabilities can fail initialization (e.g.

memory allocation or file I/O errors) without inhibiting DLITE from providing all its

other services. However, Protogate strongly discourages the operation of DLITE with-

out the log facility.

dlOpen

A session open (dlOpen) initiates communications with the VMS ICP2432 driver and

returns with the result of the operation: a session ID if successful, an error otherwise. A

successful open returns a dlerrno of EWOULDBLOCK and generates a callback. This call-

back could be delivered before the API returns from the open request and would con-

tain the correct session ID. This callback can be ignored, since the application can use

the completion of the open request to control the open operation.

dlPoll

A new poll request of DLI_P0LL_GET_DRV_INFO returns VMS driver information.

The information shown in Figure 3–3 is returned through the pStat parameter provided

by the application (the application provides a pointer to an allocated area of type

DLI_ICP_DRV_INFO). The area used to return this information must have been allo-

cated by the requesting application.
44 DC 900-1516D

3: Programming Using the DLITE Embedded Interface
Note
The DLI_POLL_TRACE_STORE poll request is not supported by

DLITE.

Cancel Processing using dlPoll (DLI_POLL_READ_CANCEL and

DLI_POLL_WRITE_CANCEL) is performed differently. The change should be transpar-

ent to existing applications. New applications can optionally take advantage of this

change.

• A request to cancel reads or writes (dlPoll request cancel read/write) cancels all

outstanding reads or writes for the session at the time the request is received. In

the Freeway DLI, these were cancelled individually, with the buffer pointer and

OptArgs pointer returned for each request.

• Cancelled I/O is considered as completed. If a user has five read requests queued

and performs a read cancel, a poll would show five reads completed.

• Cancelled I/O is returned as previously; each request is returned (with buffer

pointer and OptArgs pointer) with each poll requesting the cancel, until all are

typedef struct _DLI_ICP_DRV_INFO
{
 unsigned long Node; /* Node assigned */
 unsigned long DeviceNumber; /* Device Number (ICP) */
 unsigned long NumberOfPorts; /* Number of ports on ICP */

unsigned long BufferAlignment; /* Byte alignment requirement */
 unsigned long NumberOfChans; /* Number of Channels */
 unsigned char Version[DLI_MAX_STRING + 1];
 /* Driver version string. */
} DLI_ICP_DRV_INFO;
typedef DLI_ICP_DRV_INFO *PDLI_ICP_DRV_INFO;
#define DLI_ICP_DRV_INFO_SIZE sizeof(DLI_ICP_DRV_INFO)

Figure 3–3: DLI_ICP_DRV_INFO “C” Structure
DC 900-1516D 45

ICP2432 User’s Guide for OpenVMS Alpha (DLITE Interface)
returned. Returning the cancelled request reduces the number of I/O completions

by one.

• Because cancelled I/O is considered completed, cancelled requests are also

returned in response to requests for completed reads and writes (using dlPoll).

These requests are returned with the DLI_IO_ERR_IO_CANCELLED error code.

• This implementation of cancel processing supports those applications designed

for the Freeway DLI.

• The user application should ignore the buffer length and associated buffer data

when a cancelled I/O request is returned.

dlRead

There is no change to the dlRead function. However, because DLITE supports Raw

operation only, it does require an associated OptArgs with each I/O request. DLITE fills

in the supplied OptArgs structure with the appropriate data from the ICP and Protocol

headers associated with the read data received from the ICP. Read requests (dlRead) are

returned to the application with the supplied OptArgs structure built from the ICP and

Protocol header received with the data buffer. All the ICP and protocol information is

available in the OptArgs structure when the read buffer is returned.

Non-blocking I/O should expect an EWOULDBLOCK error upon return. A callback is

issued when the read is completed. A callback is invoked for each (both read and write)

read completion.

If the read operation is returned with an error, the data in the OptArgs structure is not

valid. The application must verify the read operation before referencing OptArgs data.
46 DC 900-1516D

3: Programming Using the DLITE Embedded Interface
Note
As with the DLI interface, read requests with a NULL buffer

pointer result in DLITE allocating and returning a read buffer. The

address of the buffer allocated is returned in the supplied buffer

pointer upon return from the call. The user that wants a DLITE

allocated buffer should ensure the buffer pointer supplied with the

dlRead call is NULL.

dlTerm

Termination processing (dlTerm) releases resources and terminates DLITE. Any active

I/O active is cancelled when dlTerm is called. Data buffers associated with the cancelled

I/O are deallocated if those buffers were allocated by DLITE (using dlBufAlloc). OptArgs

buffers are not deallocated. The application should cancel all I/O before terminating.

Note
The user application must perform a dlTerm to release system

resources.

dlWrite

As with dlRead, dlWrite requires an associated OptArgs structure with the write request.

DLITE builds the ICP and Protocol headers, which preface every application buffer (see

dlBufAlloc), from information supplied in this OptArgs structure. Specifically, DLITE

does the following for Raw operation writes:

1. ICP->usClientID = htons (OptArgs->usICPClientID);

2. ICP->usServerID = htons (OptArgs->usICPServerID);

3. ICP->usCommand = htons (OptArgs->usICPCommand);

4. ICP->usParms[0-2] = htons (OptArgs->usICPParms[0-2]);
DC 900-1516D 47

ICP2432 User’s Guide for OpenVMS Alpha (DLITE Interface)
5. DLITE adds ICP->iStatus = LittleEndian ? htons (0x4000) : htons (0);

6. DLITE adds ICP->usDataBytes = htons (BufLen + DLI_PROT_HDR_SIZE);

7. If the ICP command is an Attach, or a Write Expedite, the node ID (previously

retrieved from the VMS driver) is stored in ICP->usParam[0] (ICP->usParms[0] =

htons(Session->drvNodeID)).

8. PROT->usCommand = OptArgs->usProtCommand;

9. PROT->iModifier = OptArgs->iProtModifier;

10. PROT->usLinkID = OptArgs->usProtLinkID;

11. PROT->usCircuitID = OptArgs->usProtCircuitID;

12. PROT->usSessionID = OptArgs->usProtSessionID;

13. PROT->usSequence = OptArgs->usProtSequence;

14. PROT->usXParms[0-1] = OptArgs-> usProtXParms [0-1]);

Non-blocking I/O should expect an EWOULDBLOCK error upon return. A callback is

issued when the write is completed. A callback is invoked for each (both read and write)

write completion.

3.3.2.5 Callbacks

Callbacks represent the completion of an I/O activity; signaling the application to per-

form actions dependent on that I/O completion. In the DLITE interface, this operation

might be a dlPoll to retrieve session status to ascertain the session’s I/O state, or to

request read/write completes (using dlPoll).

Callbacks are issued in an AST context. Callbacks are delivered sequentially; they are

never reentered by another callback.
48 DC 900-1516D

3: Programming Using the DLITE Embedded Interface
There is no difference between the “main” callback and the “session” callback. They are

initiated sequentially by DLITE. For sake of efficiency, Protogate recommends the user

make use of only one.

To maintain conformity with the existing DLI, callbacks are delivered upon completion

of dlOpen processing. Although dlOpen processing does not generate a callback from the

system (i.e., an AST is not “kicked-off”) the API does, just prior to exiting the dlOpen

processing, emulate the event by placing a “callback” request in an internal callback

queue for delivery to the application.

In a similar manner, callbacks on dlClose requests are generated and delivered by the

API.

3.3.2.6 DLITE Error Codes

The error codes listed in Table 3–1 have been added to DLITE.

Selected VMS system errors are mapped into existing DLI error codes (dlerrno) so the

application can recognize the error condition and react accordingly. VMS errors are

mapped to dlerrno as described in Table 3–2.

3.3.3 Configuration Files

DLITE uses only the DLI configuration files (TSI configuration files are not used and

are not required). The DLI configuration file must specify “protocol = raw” in the session

sections. With this specification, no parameters are allowed in the protocol section.

The DLI configuration file has been changed to include parameters previously specified

in the TSI configuration file (which is no longer used). These parameters are required

to maintain conformity with those applications porting from DLI to DLITE. This file

has been changed as follows:

MaxBuffers — This parameter has been added to the “main” section. It replaces the

MaxBuffers parameter previously defined in the TSI configuration file. This value
DC 900-1516D 49

ICP2432 User’s Guide for OpenVMS Alpha (DLITE Interface)
Table 3–1: DLITE Error Codes

Value DLITE Error Code Description and Recommended Action

–10211 DLI_OPEN_ERR_ICP_INVALID_ST
ATUS

Returned by dlOpen(). The ICP has not been down-
loaded with a protocol or is in a non-operational state.

–10231 DLI_OPEN_ERR_NO_DRV_INFO An error occurred in the I/O interface while requesting
VMS driver information. Terminate the interface, verify
VMS driver installation.

–10518 DLI_READ_ERR_NO_OPTARG The application failed to provide an OptArgs structure
with the read request. Modify the application to build
and supply an OptArgs structure with each read request.

–10721 DLI_POLL_ERR_INVALID_STATE A request for driver information was made for a session
not currently open. Open the session before requesting
VMS driver information.

–10902 DLI_BUFA_ERR_SIZE_EXCEEDED An attempt was made to allocate more buffers, or a
buffer of greater size, than that defined in the DLI con-
figuration file. Modify the application to adhere to sizes
defined in the DLI configuration file.

–11003 DLI_BUFF_ERR_NONE_ALLOC An attempt was made to deallocate a buffer when none
were allocated. Modify application to account for used
buffers.

–11004 DLI_BUFF_ERR_ALREADY_FREE Returned by dlBufFree(). The buffer specified has already
been released.

–11918 DLI_WRIT_ERR_NO_OPTARG The application failed to provide an OptArgs structure
with the write request. Modify the application to build
and supply an OptArgs structure with each write
request.

–12003 DLI_IO_ERR_IO_CANCELLED The read or write request was cancelled at the request of
the user application.
50 DC 900-1516D

3: Programming Using the DLITE Embedded Interface
Table 3–2: VMS Errors Mapped to dlerrno

VMS Error Code Applicable dlerrno Codes

SS$IVMODE DLI_READ_ERR_UNBIND
DLI_WRIT_ERR_UNBIND

SS$INSFMAPREG DLI_READ_ERR_IO_FATAL
DLI_WRIT_ERR_IO_FATAL
DLI_POLL_ERR_IO_FATAL

SS$TIMEOUT DLI_READ_ERR_TIMEOUT
DLI_WRIT_ERR_TIMEOUT
DLI_POLL_ERR_READ_TIMEOU
T
DLI_POLL_ERR_WRITE_TIMEO
UT

SS$BUFFEROVF DLI_READ_ERR_OVERFLOW
DLI_POLL_ERR_OVERFLOW

SS$ACCVIO DLI_READ_ERR_INVALID_BUF
DLI_WRIT_ERR_INVALID_BUF
DLI_POLL_ERR_INVALID_REQ_
TYPE
DC 900-1516D 51

ICP2432 User’s Guide for OpenVMS Alpha (DLITE Interface)
is returned in the usMaxBufs field of the configuration parameters returned in

response to a dlPoll for system configuration. Operationally, this value limits the

number of buffers the user can have outstanding using the dlBufAlloc function. If

not explicitly defined in the DLI configuration file, the MaxBuffers parameter

defaults to 1024.

MaxBufSize — This parameter has been added to the “main” section. It replaces the

MaxBufSize parameter previously defined in the TSI configuration file. This value

is returned in the iMaxBufSize field of the configuration parameters returned in

response to a dlPoll for system configuration. Operationally, this value represents

the greatest size an application can request using dlRead, and defines the buffer

size used when a dlRead request is made without specifying a buffer (the API allo-

cates and returns this buffer to the application). If not explicitly defined in the

DLI configuration file, the MaxBufSize parameter defaults to 1024.

MaxBufSize — This parameter has been defined in the “session” section of the DLI con-

figuration file. It replaces the MaxBufSize parameter previously defined in the TSI

configuration file (“connection” section). This value is returned in the

usMaxSessBufSize field of the session parameters returned in response to a dlPoll

for session status. Operationally, this value represents the greatest size an applica-

tion can request to be written using dlWrite. If not explicitly defined in the DLI

configuration file, the MaxBufSize parameter defaults to 1024.

TSICfgName — The TSI configuration file is no longer used.

3.3.4 Logging and Tracing

The DLITE logging and tracing is similar to that supported in the Freeway environ-

ment. The Freeway maintains trace and log files internally according to the log and trace

levels defined in the DLI configuration file. Files are circular in nature and are written

to disk when the user application calls the dlTerm function.

There is no longer any need to “decode” the DLI trace file.
52 DC 900-1516D

3: Programming Using the DLITE Embedded Interface
3.3.4.1 Common Logging Service Errors

An application can encounter several errors related to logging and tracing upon initial-

ization with the dlInit function. See Table 3–3. These errors can result from the unavail-

ability of system resources such as memory or disk space. In either case, the errors are

non-fatal and the application proceeds normally; however, logging and tracing are not

activated. The application can ignore these errors (since these services are not

available).

3.3.4.2 General Application Error File

DLITE creates an application error file “_DLITERR.TXT” which contains descriptive

run-time errors. Regardless of log and trace levels defined in the DLITE configuration

file, the error file is created in the directory where the application is started. It is a circu-

lar file containing a maximum of 1000 entries.

Table 3–3: DLI Error Codes

Error Code Error Description Recommended Action

–10006 DLI_INIT_ERR_LOG_INIT_FAILE
D

dlLogInit() failed to start logging. Non-fatal
return from dlInit. Application can ignore this
error (since this service is not available).

–11701 DLI_LOGI_ERR_TRACE_OPEN_F
AILED

dlTrcInit() failed to start tracing. Non-fatal
return from dlInit. Application can ignore this
error (since this service is not available).
DC 900-1516D 53

ICP2432 User’s Guide for OpenVMS Alpha (DLITE Interface)
54 DC 900-1516D

Chapter
4 Application Interface
Programmers who prefer not to use the DLITE embedded interface (described in

Chapter 3) have the option of writing their VMS application to communicate with the

Protogate protocol software by sending and receiving formatted packets to the ICP2432

device. This is done by issuing VMS queued I/O (QIO) requests to the device driver

(ZJDRIVER) supplied by Protogate. This chapter describes the use of the VMS system

services as they apply to the Protogate device driver.

4.1 Device Driver Interface

The Protogate VMS device driver provides the interface between one or more VMS

application programs and the protocol software on the ICP2432. The VMS program

builds formatted buffers in user space which consist of one or more headers and a data

area. The headers contain information such as command and response codes that both

the program and the protocol software use to determine the type and purpose of each

packet. The Protogate VMS device driver provides a logical path to move these buffers

between AXP and ICP physical memory. The VMS program must do all the interpreta-

tion of data within the buffer.

The flow of information between the AXP and ICP generally follows a com-

mand/response sequence. For each command sent by the VMS program to the ICP, the

program receives a response from the protocol software. There are, however, exceptions

to the command/response rule due to the asynchronous nature of communications. For

instance, once a link is started, data packets from the remote end of the communication

line can be received at any time. These packets are read by the VMS program through
DC 900-1516D 55

ICP2432 User’s Guide for OpenVMS Alpha (DLITE Interface)
the QIO read path and are not associated with any command sent by the program.

Asynchronous line events such as sudden changes in modem control signals are

reported in the same way. For this reason, the VMS program should always keep a

no-wait read posted to each active link in order to handle any unexpected packets.

Protogate’s standard VMS device driver (ZJDRIVER) provides an interface to the

ICP2432 that is used by several Protogate protocols. Although this driver follows the

general design of most other Digital device drivers, there are some functions that may

be different from other drivers. The following is a list of important facts about the stan-

dard Protogate driver:

• The driver assigns one device name (for example, ZJA0) for each ICP2432 board.

The user program accesses different ICP links through this one device name by

using node numbers (described later in this section). Multiple programs can

access the same device name.

• Except for download commands, all reads and writes are directed to a node num-

ber. Multiple programs can write to the same node number on the same ICP.

However, each program accessing the same ICP should read from a different node

number.

• Successful completion of a QIO write call simply means that the client buffer

(header and data) has been copied from AXP memory to ICP memory. The VMS

program must post a separate read to receive confirmation of the command or

data.

• If the VMS program is not able to post a QIO read for an incoming message

immediately, the message is not lost; if the ICP has available memory, it holds the

packet until the read is posted.

• VMS error codes found in the I/O Status Block (IOSB) of the QIO calls are differ-

ent from protocol error codes found in the protocol header.

• The Protogate driver does not support timer functions such as timed reads.
56 DC 900-1516D

4: Application Interface
Your VMS system must have available PCIbus slots in order to use the ICP2432 boards.

After the device driver is installed in the VMS system, ICP boards appear as the device

names ZJAO, ZJBO. ZJCO, and so on.

The device driver supports the following VMS system service calls for normal program

applications:

• SYS$ASSIGN - Assign a channel

• SYS$QIO (IO$READxBLK, IO$WRITExBLK) - Read and write data

• SYS$DASSGN - Close a channel

• SYS$CANCEL - Cancel pending I/O

• SYS$QIO(IO$_READxBLK|IOM_ABORT, IO_WRITExBLK|IO$M_ABORT) -

Cancel read and write requests

• SYS$QIO(IO$_STARTDATA) - Assign a node number for read requests in node

auto-assignment mode

• SYS$QIO(IO$_SENSEMODE)- Get device driver information

The device driver supports the following VMS system service calls for ICP download

applications:

• SYS$QIO (IO$INITIALIZE) - Reset an ICP

• SYS$QIO (IO$LOADMCODE) - Download an ICP

• SYS$QIO (IO$STARTMPROC) - Start the ICP protocol software

These system services can be accessed from programs written in MACRO-32 assembly

language or any high-level language supported by Digital such as C, FORTRAN,

PASCAL, ADA, BASIC, and COBOL. The following sections describe the system

services normally used by a VMS application programmer who is interfacing to an ICP.

The system service calls are described in more detail in Section 4.2 on page 61.
DC 900-1516D 57

ICP2432 User’s Guide for OpenVMS Alpha (DLITE Interface)
4.1.1 Channel Assignment

The VMS application program must assign a channel to the device driver before any I/O

can take place. To do this, the program uses the SYS$ASSIGN system service. The

format of this system service is shown in Section 4.2.1 on page 61. Once a VMS pro-

gram assigns a channel to an ICP, it has access to all communication ports on that ICP.

A program can access more than one ICP by assigning a separate channel for each

board. Multiple VMS programs can access the same ICP board by assigning channels to

the same device name. Read and write operations for each of the programs are kept sep-

arate through the use of node numbers (described in Section 4.3.2 on page 75).

4.1.2 $QIO Interface

On VMS systems, application programs communicate with the ICP protocol software

through the use of the $QIO system service. The format of the SYS$QIO call as it relates

to the ICP device is shown in Section 4.2.4 on page 63. More detailed information on

the QIO call and parameters can be found in the VMS System Services Reference Manual.

The following sections describe parameters that have specific use with ICP protocol

applications.

4.1.2.1 I/O Function Code

The I/O function code determines whether the QIO operation is a read or a write. Use

IO$WRITEVBLK (write virtual block) when writing a buffer to the ICP and IO$READ-

VBLK (read virtual block) when reading a buffer from the ICP. No other modifiers are

required. The function codes for logical block (IO$WRITELBLK, IO$READLBLK) and

physical block (IO$WRITEPBLK, IO$READPBLK) are also supported, but are normally

not used by ICP programmers.
58 DC 900-1516D

4: Application Interface
4.1.2.2 I/O Status Block (IOSB)

The programmer should always check the status field (first word) of the I/O Status

Block (IOSB) after each QIO completion. This field returns a VMS completion code or

error code that indicates the success of the call or reason for failure. The return codes

used by the ICP device driver are described in Section 4.2.4.6 on page 71. Note that

these error codes indicate VMS errors only and are different than the protocol error

codes that are returned in the data portion of the QIO read. Protocol-specific errors are

described in the Protogate programmer’s guide for the specific protocol you are using.

The fourth word of the IOSB contains the actual number of bytes transferred for READ

operations.

4.1.2.3 Buffer Address and Size (P1 and P2)

The P1 parameter contains the address of the buffer to be transferred to the ICP for

WRITE operations or the address of a buffer to receive data from the ICP for READ

operations. The address can be an array name or pointer to a data area. The buffer con-

sists of the protocol header(s) followed by an optional data area. If a data area exists, it

must immediately follow the protocol header.

For WRITE operations, the P2 parameter equals the total size (in bytes) of the protocol

header(s) plus any data that follows the header. The size of the data area must not

exceed the maximum buffer size specified by the protocol software or a VMS buffer

overflow error occurs. For example, if the maximum ICP buffer size is set to 1024 bytes,

the maximum value of the P2 parameter would be the size of the protocol header(s)

plus 1024.

For READ operations, the P2 parameter equals the size of the program’s read buffer.

This buffer must be large enough to accept the protocol header(s) plus largest data area

expected from the ICP. Using the above example, the read buffer size would always be

header size plus 1024 bytes. When the read completes, the program can obtain the

actual number of bytes transferred from the I/O Status Block (IOSB). Since all ICP data
DC 900-1516D 59

ICP2432 User’s Guide for OpenVMS Alpha (DLITE Interface)
transfers include at least a protocol header, each buffer read from the ICP contains at

least the size of that header.

4.1.2.4 Node Numbers (P4)

Once a channel is assigned to the ICP device name, data is directed to individual ports

(links) on that ICP through the use of a node number in the P4 parameter of the QIO

call. A node number represents a logical full-duplex path to the protocol software on the

ICP. The legal values for node numbers in the ICP driver are 1 to 126. Note that this

range of numbers starts over again for each ICP device name. For example, node 1 on

ZJA0 is different from node 1 on ZJB0. The P4 parameter is a 32-bit word that contains

the read node number in the low byte and the write node number in the next byte, as

shown in Figure 4–1. As a general rule, application programs should place the desired

node number in both low bytes of the parameter (for example, 0101 hex, 0202 hex, and

so on) for all QIO transfers, read or write. The device driver uses the appropriate byte

and ignores the other.

Note
Read and write node numbers should not be confused with

PCIbus node numbers.

The protocol software on the ICP determines how the device driver node numbers are

used. Most of Protogate’s current protocol software uses node numbers to form “ses-

sion” connections through the device driver. Using this method, all writes to the ICP

use nodes 1 and 2. All reads from the ICP use nodes 3 to 126. Some Protogate protocols

Figure 4–1: P4 Parameter Format

031

read node numberunused unused write node number

23 15 7
60 DC 900-1516D

4: Application Interface
have the ability to revert to an earlier node number scheme used by Simpact’s ICP3222

and Digital’s Commserver products. This scheme connects a single node number to

each ICP port. Whatever node number scheme or protocol you use, it is transparent to

the VMS device driver. More information about protocol specifics can be found in

Chapter 5.

4.2 Supported VMS System Services

The ICP2432 device driver supports the VMS system services described in the following

sections.

4.2.1 SYS$ASSIGN

Before issuing VMS QIO calls, the application must first assign a channel to an ICP with

the VMS SYS$ASSIGN call. This call sets up an association between this channel and

the ICP on subsequent QIO calls. See the VMS system services manual for a detailed

description of SYS$ASSIGN.

Synopsis

SYS$ASSIGN (device_name, &channel [,acmode] [,mbxnam])

Parameters

device_name ICP device name (for example, ZJA0)

channel Address of the communication channel that is assigned

Note
The ICP2432 device driver does not support access mode (acmode)

and mailbox (mbxnam).
DC 900-1516D 61

ICP2432 User’s Guide for OpenVMS Alpha (DLITE Interface)
4.2.2 SYS$CANCEL

To cancel all active or pending read or write requests associated with an I/O channel, the

application issues the VMS SYS$CANCEL call. See the VMS system services manual for

a detailed description.

Synopsis

SYS$CANCEL (channel)

Parameters

channel Communication channel

4.2.3 SYS$DASSGN

To terminate its association with an ICP device, the application issues the VMS

SYS$DASSGN call for the channel associated with the ICP. See the VMS system services

manual for a detailed description of SYS$DASSGN.

Synopsis

SYS$DASSGN (channel)

Parameters

channel Communication channel
62 DC 900-1516D

4: Application Interface
4.2.4 SYS$QIO(W)

To issue VMS read or write I/O calls, the client application issues the VMS SYS$QIOW

or SYS$QIO calls (for I/O with, or without wait). See the VMS system services manual

for a detailed description of SYS$QIOW and SYS$QIO.

Synopsis

SYS$QIO(W) ([efn], channel, function [,&iosb] [,&astadr] [,astprm],
[,p1] [,p2] [,p3] [,p4] [,p5] [,p6])

Parameters

efn Event flag to be set on completion of I/O

channel Communication channel associated with a device

function Supported functions are described in Section 4.2.4.1 through

Section 4.2.4.7

iosb Address of the I/O Status Block (IOSB) fields to receive the I/O

completion status

astadr Address of an Asynchronous System Trap (AST) routine to be

executed on I/O completion

astprm Asynchronous System Trap (AST) parameter passed to the AST

routine on I/O completion

P1—P6 Optional device- and function-specific I/O request parameters

The ICP2432 device driver supports these function codes, described in the following

sections:

1. IO$_INITIALIZE[|IO$M_NOWAIT]

2. IO$_LOADMCODE
DC 900-1516D 63

ICP2432 User’s Guide for OpenVMS Alpha (DLITE Interface)
3. IO$_STARTMPROC

4. IO$_READVBLK, IO$_READLBLK, IO$_READPBLK

5. IO$_WRITEVBLK, IO$_WRITELBLK, IO$_WRITEPBLK

All functions are handled as direct I/O using DMA transfer.
64 DC 900-1516D

4: Application Interface
4.2.4.1 IO$_INITIALIZE[|IO$M_NOWAIT]

The IO$_INITIALIZE function initializes the ICP2432.

Condition Values Returned

SS$_NORMAL Initialization completed successfully

SS$_CANCEL Request canceled

SS$_CTRLERR Request not completed; a fatal error occurred

SS$_TIMEOUT Request timed out; no response from ICP

The transfer count and device-specific information of the I/O Status Block (IOSB) are

not used.

Parameters

None.

Description

If the SS$M_NOWAIT modifier is used, the driver resets the device and returns imme-

diately; it does not wait for initialization to complete.

If the SS$M_NOWAIT modifier is not used, the driver resets the device and initializes

the ICP2432 to prepare for downloading the software.
DC 900-1516D 65

ICP2432 User’s Guide for OpenVMS Alpha (DLITE Interface)

Decreased siz
above
Condition,
Parameters,
and
Description t
get
Description
on this page.
4.2.4.2 IO$_LOADMCODE

The IO$_LOADMCODE function loads a software block onto the ICP2432.

Condition Values Returned

SS$_NORMAL Request completed successfully

SS$_BADPARAM Parameter is incorrect

SS$_CANCEL Request canceled

SS$_ILLBLKNUM ICP load address is incorrect

SS$_INSFMAPREG DMA error occurred

SS$_TIMEOUT Request timed out; no response from ICP

The transfer count and device-specific information of the I/O Status Block (IOSB) are

not used.

Parameters

P1 Packet address (must be on a longword boundary)

P2 Packet size (less than 1 megabyte)

P3 0

P4 ICP load address

P5 0

P6 0

Description

The driver accesses user virtual address space (specified by the P1 parameter) to access

the packet. The packet must be set on a longword boundary. For details of the ICP load

address, see the ICP2432 Hardware Description and Theory of Operation.

e

o
66 DC 900-1516D

4: Application Interface

/3/98 Leslie:
ger says this
correct but
 will work
 better
rding (he
nts a better
m than
uto
signment”.
4.2.4.3 IO$_STARTMPROC

The IO$_STARTMPROC function starts the ICP2432 software.

Condition Values Returned

SS$_NORMAL Request completed successfully

SS$_BADPARAM Parameter is incorrect

SS$_CANCEL Request canceled

SS$_INVMODE Software was not downloaded

SS$_TIMEOUT Request timed out; no response from ICP

The transfer count and device-specific information of the I/O Status Block (IOSB) are

not used.

Parameters

P1 0

P2 0

P3 Node auto-assignment flag (0 or 1)

P4 ICP starting address

P5 0

P6 0

Description

When the P3 node auto-assignment flag is set, the driver changes the mode to assign the

node number of the read request for each channel number automatically. See

Section 4.4 on page 79 for more information about node auto-assignment. For details

of the ICP starting address, see the ICP2432 Hardware Description and Theory of Oper-

ation.

12
Ro
is
he
on
wo
wa
ter
“a
as
DC 900-1516D 67

ICP2432 User’s Guide for OpenVMS Alpha (DLITE Interface)

12/3/98 Leslie
Roger says thi
is correct but
he will work
on better
wording (he
wants a bette
term than
“auto
assignment”.
4.2.4.4 IO$_STARTDATA

The IO$_STARTDATA function sets the node number of the read request for this chan-

nel number.

Condition Value Returned

SS$_NORMAL Request completed successfully

SS$_ILLSEQIOOP Driver was not in node auto-assignment mode

SS$_INVMODE Software was not downloaded

The device-specific information of the I/O Status Block (IOSB) is set to the node num-

ber assigned by the driver.

Parameters

P1 0

P2 0

P3 0

P4 0

P5 0

P6 0

Description

The IO$_STARTDATA function must be requested after the node auto-assignment flag

in the IO$_STARTMPROC function is set. If the driver is in node auto-assignment

mode, the IO$_STARTDATA function must be requested before the IO$_READxBLK or

IO$_WRITExBLK function is requested. If the node auto-assignment flag isn’t set, the

driver returns the SS$_ILLSEQIOOP error. See Section 4.4 on page 79 for more infor-

mation about node auto-assignment.

:
s

r
68 DC 900-1516D

4: Application Interface

te to
yself: This
ragraph is
e same as
e last
ragraph of
ction
2.4.4. It that
e changed,
ange it here
o.
4.2.4.5 IO$_SENSEMODE

The IO$_SENSEMODE function returns the driver information.

Condition Value Returned

SS$_NORMAL Request completed successfully

SS$_ACCVIO Buffer does not allow write access

SS$_BADPARAM Parameter is incorrect

The transfer count of the I/O Status Block (IOSB) is set, but the device-specific infor-

mation of the IOSB is not used.

Parameters

P1 Buffer address

P2 Buffer size

P3 0

P4 0

P5 0

P6 0

Buffer Format

Figure 4–2 shows the device information structure as the driver returns the buffer.

Description

The IO$_STARTDATA function must be requested after the node auto-assignment flag

in the IO$_STARTMPROC function is set. If the driver is in node auto-assignment

mode, the IO$_STARTDATA function must be requested before the IO$_READxBLK or

IO$_WRITExBLK function is requested. If the node auto-assignment flag isn’t set, the

driver returns the SS$_ILLSEQIOOP error. See Section 4.4 on page 79 for more infor-

mation about node auto-assignment.

No
m
pa
th
th
pa
Se
4.
on
ch
to
DC 900-1516D 69

ICP2432 User’s Guide for OpenVMS Alpha (DLITE Interface)
typedef struct {
int TimeoutValue; /* Timeout value for the SingleStepDriver */

int Node; /* Node number corresponding to file handle. */
int IcpWasReset; /* ICP has been reset since handle opened. */

int DeviceNumber; /* Device number to which handle is opened. */
int NumberOfPorts; /* Number of ports on the ICP. */
int IcpState; /* Current state of the ICP. */
int BufferAlignment; /* Alignment requirement for I/O buffers. */
int NumberOfChannel; /* Number of channels open to this ICP. */

int DriverMode; /* Driver mode of node auto-assignment */

#define MAX_VERSION_LENGTH 80
unsigned char Version[MAX_VERSION_LENGTH]; /* Driver version number */

} ZJ_SENSEMODE;

Figure 4–2: “C” Definition of the Device Information Structure
70 DC 900-1516D

4: Application Interface

ecreased size
ove
ndition
d
rameters to
t P6 on this
ge.
4.2.4.6 IO$_READxBLK[|IO$M_ABORT]

The IO$_READxBLK function reads a packet from the ICP2432 firmware. The

IO$_READxBLK|IO$M_ABORT function cancels the IO$_READxBLK function already

requested on the same channel number.

Condition Values Returned

SS$_NORMAL Request completed successfully

SS$_ACCVIO Buffer does not allow write access

SS$_BADPARAM Parameter is incorrect

SS$_BUFFEROVF Received data is larger than specified buffer

SS$_CANCEL Request canceled

SS$_ILLSEQIOOP Request sequence error (must request IO$_STARTDATA before
the IO$_READxBLK request)

SS$_INSFMAPREG DMA error occurred

SS$_INVMODE Software was not downloaded

SS$_NOSUCHNODE Node number is incorrect

SS$_TIMEOUT Request timed out; no response from ICP

The transfer count of the I/O Status Block (IOSB) is set, but the device-specific infor-

mation of the IOSB is not used.

Parameters

P1 Packet address (must be on a longword boundary; only for IO$_READxBLOCK)

P2 Packet size (only for IO$_READxBLOCK)

P3 0

P4 Read and write node numbers (only for IO$_READxBLOCK)

P5 0

P6 0

D
ab
Co
an
Pa
ge
pa
DC 900-1516D 71

ICP2432 User’s Guide for OpenVMS Alpha (DLITE Interface)

12/3/98 Leslie
Roger says thi
is correct but
he will work
on better
wording (he
wants a bette
term than
“auto
assignment”.
Description

The driver accesses user virtual address space (specified by the P1 parameter) to access

the packet. The packet must be set on a longword boundary.

The read and write node numbers are used for communication between the driver and

the ICP2432. The node numbers decide the source and destination of messages. Allow-

able values are 1 through 126. The read node number of P4 is bit 0 through bit 7. The

write node number of P4 is bit 8 through bit 15. See Section 4.1.2.4 on page 60 for more

information about node numbers.

When the node auto-assignment mode is selected, the node number doesn’t have to be

set.

:
s

r
72 DC 900-1516D

4: Application Interface
4.2.4.7 IO$_WRITExBLK[|IO$M_ABORT]

The IO$_WRITExBLK function writes a packet to the ICP2432 firmware. The

IO$_WRITExBLK|IO$M_ABORT function cancels the IO$_WRITExBLK function

already requested on the same channel number.

Condition Values Returned

SS$_NORMAL Request completed successfully

SS$_ACCVIO Buffer does not allow write access

SS$_BADPARAM Parameter is incorrect

SS$_CANCEL Request canceled

SS$_ILLSEQIOOP Request sequence error (must request IO$_STARTDATA before
the IO$_WRITExBLK request)

SS$_INSFMAPREG DMA error occurred

SS$_INVMODE Software was not downloaded

SS$_NOSUCHNODE Node number is incorrect

SS$_TIMEOUT Request timed out; no response from ICP

The transfer count of the I/O Status Block (IOSB) is set, but the device-specific infor-

mation of the IOSB is not used.

Parameters

P1 Packet address (must be on a longword boundary; only for IO$_WRITExBLK)

P2 Packet size (only for IO$_WRITExBLK)

P3 0

P4 Read and write node numbers (only for IO$_WRITExBLK)

P5 0

P6 0
DC 900-1516D 73

ICP2432 User’s Guide for OpenVMS Alpha (DLITE Interface)
Description

The driver accesses user virtual address space (specified by the P1 parameter) to access

the packet. The packet must be set on a longword boundary.

The read and write node numbers are used for communication between the driver and

the ICP2432. The node numbers decide the source and destination of messages. Allow-

able values are 1 through 126. The read node number of P4 is bit 0 through bit 7. The

write node number of P4 is bit 8 through bit 15. See Section 4.1.2.4 on page 60 for more

information about node numbers.
74 DC 900-1516D

4: Application Interface
4.3 DLI Session Interface

Protogate protocols designed for use on ICP2432 boards use a session-based method of

communicating between the client application program and the protocol software on

the ICP. This method of communication allows greater flexibility in connecting TCP/IP

sockets to individual ICP ports for the Freeway line of servers. Protogate’s Data Link

Interface (DLI) library uses this session-based interface on both the Freeway server and

embedded ICP boards. If you have previously used Simpact protocols on older ICP

boards, you will find that the session-based interface differs somewhat from the older

interface. As a rule, protocol image files that begin with fw use the DLI session interface.

Inside a Freeway server, a program called msgmux manages protocol sessions for all

applications. When you use Protogate’s standard device driver with a session-based pro-

tocol image, your VMS program must take over these session management functions as

described in the following subsections.

4.3.1 DLI Session Basics

A session is made up of a logical connection to an ICP protocol. A session simply defines

a single connection or “service” to an ICP protocol. A session is started by “attaching”

to an ICP port number using a specific access mode. Sessions have different access

modes depending on the protocol. Consult your protocol programmer’s guide for

details.

4.3.2 Use Of Node Numbers (DLI)

When using DLI sessions, all writes to the ICP are performed on nodes 1 and 2. All reads

are performed on nodes 3 to 126. When using multiple programs to access the same

ICP, different read nodes are used to direct packets to the correct program. The follow-

ing subsections describe the node numbers in more detail.
DC 900-1516D 75

ICP2432 User’s Guide for OpenVMS Alpha (DLITE Interface)
4.3.2.1 Node 1

Node 1 is the primary node number to which all data is written. The VMS driver allows

multiple programs to write to the same node number. The P4 parameter in the QIO call

should be 0x0101 for all writes.

4.3.2.2 Node 2

Node 2 is the alternate write node. Its use varies per protocol. In some documents,

node 2 is referred to as the “express node” for sending priority packets to the ICP. How-

ever, for most protocols this node is treated the same as node 1. Unless your protocol

programmer’s guide says otherwise, you should not use node 2 to write data packets to

the ICP. You should use node 2 to send the TERMINATE command described in

Section 4.3.3.3 on page 79.

4.3.2.3 Nodes 3 through 126

Nodes 3 through 126 are used as “read only” nodes and are assigned for use by the

ATTACH command. Although most Protogate protocols allow multiple sessions per

node number, it is easier if your programs assign a separate node number per session.

The Freeway server assigns the next lowest available read node number for each new

connection it receives. Again, your program does not have to follow this scheme. It

would be easier to assign a fixed node number for each ICP port (or service). For exam-

ple, a session to port 0 would always use node 3, port 1 would use node 4, and so on.

4.3.3 DLI Session Commands

The following commands are used to establish and terminate sessions with Protogate

protocols on the ICP. The command codes described here are placed in the command

field of the ICP header (see Chapter 5).
76 DC 900-1516D

4: Application Interface
4.3.3.1 ATTACH Command

The ATTACH command creates a session between your program and the protocol soft-

ware on the ICP.

The following values must be placed in the ICP header of the ATTACH command:

Command field = DLI_ICP_CMD_ATTACH

Status field = hex 4000 (this tells the ICP to swap bytes for VMS systems)

Params[0] = read node number

Some protocols may require you to fill in fields in the protocol header portion of the

ATTACH command with such things as access mode and protocol type. Consult your

protocol programmer’s guide for details.

Your program can read the ATTACH response by posting a QIO read to the node num-

ber you supplied in the ATTACH command. The two most important values to read

from the ATTACH response are the status field of the ICP header and the session ID

field of the protocol header. The status field contains 0 if the ATTACH command was

successful and an error code if it was unsuccessful. If the ATTACH was successful, the

session ID field contains a number associated with this session. This number must be

placed in the session ID field of all subsequent writes to this session.
DC 900-1516D 77

ICP2432 User’s Guide for OpenVMS Alpha (DLITE Interface)
4.3.3.2 DETACH Command

The DETACH command closes an individual session between your program and the

protocol software on the ICP. The following values must be placed in the ICP header of

the ATTACH command:

ICP Header:

Command field = DLI_ICP_CMD_DETACH

Status field = hex 4000 (this tells the ICP to swap bytes for VMS systems)

Protocol Header:

Session ID field = session ID from ATTACH command

The DETACH command disassociates the protocol session ID from the session, freeing

it for use by another program. Your program can read the DETACH response from the

read node number specified in the ATTACH command for the session.
78 DC 900-1516D

4: Application Interface
4.3.3.3 TERMINATE Command

The TERMINATE command closes all sessions that use a particular read node number.

The following values must be placed in the ICP header of the ATTACH command:

Command field = DLI_ICP_CMD_TERM

Status field = hex 4000 (this tells the ICP to swap bytes for VMS systems)

Params[0] = read node number

If there are one or more sessions using a single read node number, the TERMINATE

command forces the protocol software to do implied DETACH commands to each open

session. The ICP sends a TERMINATE response to the supplied read node.

4.3.4 ICP Discarded Packets

When the protocol software on the ICP receives a packet that has an invalid protocol

session ID, it writes the packet back through node 1. For this reason, you may want to

have a separate program which reads packets from node 1 and displays the contents.

4.4 Node Auto-Assignment Mode for Read Requests

The driver supports the node auto-assignment mode for read requests on DLI session

interfaces. The driver automatically assigns the node number of the read request for

each device assigned by the SYS$ASSIGN function. The application doesn’t have to set

the node numbers in the read and write node number (P4) of the IO$_READxBLK

function.

The driver mode must be changed to use node auto-assignment. This is done by setting

the flag of IO$_STARTMPROC function.

The application must also issue the IO$_STARTDATA function to assign the node num-

ber for the device assigned by the SYS$ASSGN function.
DC 900-1516D 79

ICP2432 User’s Guide for OpenVMS Alpha (DLITE Interface)

12/3/98 Leslie
Ginni had th
first part of
the first bulle
underlined,
but no note.
Follow these steps to use the node auto-assignment:

1. Download the protocol software with set the flag of IO$_STARTMPROC function.

(When the icpload utility is used, set the /DLITE qualifier on the START com-

mand. See Section 6.4.3.4 on page 97 for more information about the START

command.)

2. The application assigns the device and gets the channel number.

3. The application issues IO$_STARTDATA to assign the node number and get it.

(See Section 4.2.4.4 on page 68 for more information about IO$_STARTDATA.)

4. The application issues IO$_READxBLK and IO$_WRITExBLK.

4.5 Compatibility with Older ICP Protocols

Protogate’s BSC and FMP protocol software for the ICP2432 now has the capability of

emulating the interface used by older ICP products such as the ICP1622, ICP3222, and

DEC Commserver. If you already have a VMS program using BSC or FMP on one of

these devices, your interface does not have to change. When you send the Set Buffer Size

command to node 1 (port 0), the BSC or FMP software automatically detects (from the

size of the packet) that you are using the older style of interface. The protocol software

then posts reads on all nodes associated with port numbers in addition to the data ack,

control, and trace nodes.

When using this method of interface, each read or write must contain the 8-byte proto-

col header and commands as described in your original BSC or FMP programmer’s

guide.

4.6 Protocol Toolkit

If you have purchased Protogate’s Protocol Toolkit for the ICP2432, the Sample Proto-

col Software (SPS) example uses the DLI session interface. The toolkit allows you to

change this to whatever style of interface you want to use, however, Protogate recom-

:
e

t
80 DC 900-1516D

4: Application Interface
mends that you use the DLI session interface so that you can also use the protocol image

in a Freeway environment.
DC 900-1516D 81

ICP2432 User’s Guide for OpenVMS Alpha (DLITE Interface)
82 DC 900-1516D

Chapter

Roger — Bil
Reid’s review
comment
was “What i
this and why
is it?” Mayb
it’s
redundant
now that we
are putting
all the packe
info in the
protocol
documents
...Leslie
5 ICP Packet Formats
This chapter describes the packet formats used by Protogate protocols. The packet

formats that are written to the ICP2432 are the same whether the ICP is attached to a

Freeway server or a PCI bus in your VMS system. Because most Protogate protocol pro-

grammer’s guides mention commands and responses as they apply to the Freeway

server, this chapter covers both Freeway and device driver use of packets.

5.1 DLI Packet Format

The OpenVMS ICP driver QIO interface provides a block-transfer interface between a

client application and the protocol software resident on the embedded ICP. From the

application’s perspective, these packets consist of message blocks composed of an ICP

header structure followed by a protocol header structure followed by an optional data

array. Figure 5–1 shows the “C” definition of this ICP packet structure.

When preparing a packet to write to the ICP, the application must initialize the

usICPCount field with the size in bytes of the PROT_HDR structure (16) plus the size of

the data array that follows it. After reading a packet from the driver, the application may

compute the size of the data array that follows the PROT_HDR structure by subtracting

16 from the value of the usICPCount field in the ICP_HDR structure.

Note that the ICP_HDR structure must be in network byte-order (Big Endian). This

means that the VMS program must swap bytes in the ICP header before writing packets

to the ICP. The VMS program must also swap bytes in the ICP header after reading each

packet from the ICP. The PROT_HDR structure remains in the client computer’s natural

byte order, which is Little Endian for AXP systems.

l

s

e

t
DC 900-1516D 83

ICP2432 User’s Guide for OpenVMS Alpha (DLITE Interface)
typedef struct _ICP_PACKET
{

ICP_HDR icp_hdr; /* Network-ordered header */
PROT_HDR prot_hdr; /* Host-ordered header */
char *data; /* Variable length data array */

} ICP_PACKET;

typedef struct _ICP_HDR
{

unsigned short usICPClientID; /* Old su_id */
unsigned short usICPServerID; /* Old sp_id */
unsigned short usICPCount; /* Size of PROT_HDR plus data */
unsigned short usICPCommand; /* ICP's command */

short iICPStatus; /* ICP's command status */
unsigned short usICPParms[3]; /* ICP's extra parameters */

} ICP_HDR;

typedef struct _PROT_HDR
{

unsigned short usProtCommand; /* Protocol command */
short iProtModifier; /* Protocol command's modifier */

unsigned short usProtLinkID; /* Protocol link ID */
unsigned short usProtCircuitID; /* Protocol circuit ID */
unsigned short usProtSessionID; /* Protocol session ID */
unsigned short usProtSequence; /* Protocol sequence */
unsigned short usProtXParms[2]; /* Protocol extra parameters */

} PROT_HDR;

Figure 5–1: “C” Definition of ICP Packet Structure
84 DC 900-1516D

5: ICP Packet Formats
5.2 DLI Optional Arguments

A program using the full DLI library interface to an ICP on a Freeway server is not

allowed to write information directly to the ICP and Protocol headers. Instead, Freeway

users place the desired values in a DLI_OPT_ARGS structure and the DLI write call

moves these values into the proper places in the ICP and Protocol headers. The same

applies to DLI read calls. Information from received packets is taken from the ICP and

protocol headers and placed in the DLI_OPT_ARGS structure where the program can

read it.

Although the DLI library is not used by programs accessing Protogate’s standard device

driver, it is mentioned here to allow embedded ICP users to see the similarity in packet

format when reading Freeway documents. Figure 5–2 shows the DLI_OPT_ARGS struc-

ture as it is used in a Freeway environment. Note that the ICP_PACKET structure differs

only slightly from the DLI_OPT_ARGS structure. The ICP_PACKET structure omits the

three Freeway server header fields (usFWPacketType, usFWCommand, and usFWStatus)

and adds one new field (usICPCount). See Table 5–1 for a comparison between the

header fields in the DLI_OPT_ARGS and ICP_PACKET structures.
DC 900-1516D 85

ICP2432 User’s Guide for OpenVMS Alpha (DLITE Interface)
typedef struct _DLI_OPT_ARGS
{

unsigned short usFWPacketType; /* Server's packet type */
unsigned short usFWCommand; /* Server's command sent or received */
unsigned short usFWStatus; /* Server's status of I/O operations */
unsigned short usICPClientID; /* Old su_id */
unsigned short usICPServerID; /* Old sp_id */
unsigned short usICPCommand; /* ICP's command */

short iICPStatus; /* ICP's command status */
unsigned short usICPParms[3]; /* ICP's extra parameters */
unsigned short usProtCommand; /* Protocol command */

short iProtModifier; /* Protocol command's modifier */
unsigned short usProtLinkID; /* Protocol link ID */
unsigned short usProtCircuitID; /* Protocol circuit ID */
unsigned short usProtSessionID; /* Protocol session ID */
unsigned short usProtSequence; /* Protocol sequence */
unsigned short usProtXParms[2]; /* Protocol extra parameters */

} DLI_OPT_ARGS;

Figure 5–2: “C” Definition of DLI Optional Arguments Structure
86 DC 900-1516D

5: ICP Packet Formats
Table 5–1: Comparison of DLI_OPT_ARGS and ICP_PACKET Structures

DLI_OPT_ARGS
field name

ICP_PACKET
field name Field Description

usFWPacketType omitted Server’s packet type

usFWCommand omitted Server’s command sent or received

usFWStatus omitted Server’s status of I/O operations

usICPClientID icp_hdr.usICPClientID Old su_id

usICPServerID icp_hdr.usICPServerID Old sp_id

omitted icp_hdr.usICPCount Size of PROT_HDR plus data

usICPCommand icp_hdr.usICPCommand ICP’s command

iICPStatus icp_hdr.iICPStatus ICP’s command status1

usICPParms[0] icp_hdr.usICPParms[0] ICP’s extra parameter

usICPParms[1] icp_hdr.usICPParms[1] ICP’s extra parameter

usICPParms[2] icp_hdr.usICPParms[2] ICP’s extra parameter

usProtCommand prot_hdr.usProtCommand Protocol command

iProtModifier prot_hdr.iProtModifier Protocol command’s modifier

usProtLinkID prot_hdr.usProtLinkID Protocol link ID

usProtCircuitID prot_hdr.usProtCircuitID Protocol circuit ID

usProtSessionID prot_hdr.usProtSessionID Protocol session ID

usProtSequence prot_hdr.usProtSequence Protocol sequence

usProtXParms[0] prot_hdr.usProtXParms[0] Protocol extra parameter

usProtXParms[1] prot_hdr.usProtXParms[1] Protocol extra parameter

omitted2 data Data array

1 For writes to the driver, iICPStatus should be 0x4000 because an AXP system is a Little Endian processor.
2 An application using Protogate’s DLI specifies data separately from the DLI_OPT_ARGS structure.
DC 900-1516D 87

ICP2432 User’s Guide for OpenVMS Alpha (DLITE Interface)
88 DC 900-1516D

Chapter

Roger — Bil
Reid’s review
comment
was “We do
not tell the
user what
this thing is.
It appears
adequate to
me, but
maybe you
can add
something
more user
friendly??
...Leslie
6 ICPLOAD Utility
This chapter describes how to use the ICPLOAD program to download the ICP-resident

application to the ICP and get or set the driver’s timeout value for the SingleStep debug-

ger (a product of Wind River, Inc.).

ICPLOAD may be used in several different ways:

• As an ordinary VMS executable image, invoked via the DCL RUN command; in

this mode, ICPLOAD prompts the user for commands

• As a DCL foreign command; in this mode, qualifiers on the foreign command line

dictate the operations to be performed

• As routines called from a user-written program; this allows user-written applica-

tions to perform the reset and download operations on an ICP without having to

code the special $QIO calls that are required

6.1 ICPLOAD Components

The following files comprise the ICPLOAD program:

ICPLOAD.EXE The program in executable form

ICPLOAD.HLB A help library that may be accessed via the ICPLOAD command

HELP

ICPLOAD.OLB An object library which includes the object modules (see

Section 6.5 on page 100)

l

”

DC 900-1516D 89

ICP2432 User’s Guide for OpenVMS Alpha (DLITE Interface)
6.2 OS/Impact and Downloaded Files

Software on the ICP2432 executes under control of Protogate’s OS/Impact operating

system. The OS/Impact system generation procedure typically creates several different

files, each of which must be downloaded to the ICP. A load address is specified for each

file; this defines the address at which each file is to be placed within the ICP’s memory.

In addition, an execution address is specified for the ICP. After all the component files

have been downloaded to the ICP, the ICP is informed of the execution address and it

transfers control to that location.

If you are using an integrated hardware/software product, the necessary files, load

addresses for each, and execution address are described in the product-specific docu-

mentation.

A download operation will only succeed if the ICP device is in the proper state to receive

it. This is normally ensured by first issuing a reset command to the ICP. If a debugging

console is connected to the ICP, there will be a brief delay before the ICP will accept the

download.

6.3 Get or Set the Timeout Value

The ICPLOAD program can be used to read the driver’s current I/O timeout value or to

set a new timeout value. When the timeout value is 0, there is no timeout. Protogate

highly recommends that you do not change the default timeout value unless you are

debugging protocol software using the SingleStep debugger.
90 DC 900-1516D

6: ICPLOAD Utility
6.4 Using ICPLOAD.EXE

6.4.1 Invoking ICPLOAD via the RUN Command

ICPLOAD.EXE may be invoked via a RUN command from VMS’s DCL prompt. It will

then prompt for its first command, as follows:

$ RUN ICPLOAD
ICPLOAD>

ICPLOAD may be executed from a command procedure, in which case it reads com-

mands from the lines in the command procedure immediately following the DCL RUN

command.

6.4.2 Invoking ICPLOAD as a Foreign Command

ICPLOAD may be invoked as a foreign command as follows:

1. Define a DCL symbol that equates to the complete file specification of

ICPLOAD.EXE, with a leading currency symbol (“$”), as follows:

$ LDICP == "$ddcu:[dire]ICPLOAD"

where ddcu:[dire] represents sufficiently qualified device and directory specifica-

tions to find the directory in which ICPLOAD.EXE resides.

2. Invoke ICPLOAD as follows:

$ LDICP icp_device [/RESET] [/TIMEOUT=[time_value]] -
[/FILE=filename] [/ADDRESS=addr] -
[/STARTUP=addr][/DLITE]

Each qualifier on the foreign command line corresponds to a command verb accepted

by ICPLOAD when it is in command mode. If multiple qualifiers are present, they will

be interpreted in the order shown above. Refer to the descriptions of the ICPLOAD

commands in Section 6.4.3 for the meanings of the various qualifiers.
DC 900-1516D 91

ICP2432 User’s Guide for OpenVMS Alpha (DLITE Interface)
In the preceding examples, the symbol LDICP was chosen arbitrarily; you can replace

this with any symbol you like.

If ICPLOAD is invoked as a foreign command without specifying any parameters or

qualifiers, the ICPLOAD> prompt will be given and the utility will operate as if it had

been invoked via a RUN command.

6.4.3 ICPLOAD Commands

The general syntax of ICPLOAD commands is similar to that of DCL commands. Each

command begins with a verb, followed by a device name parameter (except for the

HELP and EXIT commands).

Most commands allow one or more optional qualifiers. All qualifiers are global (that is,

their position within the command line is not significant). All command verbs and

qualifier names may be abbreviated to the shortest string that is unique in context; four

characters are sufficient in all cases.

Table 6–1 briefly lists the commands that are available at the ICPLOAD> prompt.

Table 6–1: ICPLOAD Command Summary

Command Action
Reference

Section

HELP Request help on ICPLOAD commands Section 6.4.3.1

RESET device Reset the ICP Section 6.4.3.2

LOAD device Download a file to the ICP Section 6.4.3.3

START device Start execution of downloaded code Section 6.4.3.4

GET device Get the driver’s current timeout value (in seconds) Section 6.4.3.5

SET device Set a new timeout value (in seconds) Section 6.4.3.6

EXIT End ICPLOAD execution, return to DCL prompt —
92 DC 900-1516D

6: ICPLOAD Utility
The usual sequence of commands for downloading an ICP is:

• RESET the device

• LOAD the files to the ICP; the ICP-resident software is usually provided in several

different files, and a separate LOAD command is required for each file

• START execution of the ICP-resident software

The following sections describe the RESET, LOAD, START, and HELP commands in

detail.

The Format paragraph shows the command with all of its parameters and required

qualifiers. All command arguments (values which must be supplied by the operator) are

represented by descriptive words in italics. These same words are used in the subsequent

descriptions of the individual parameters and qualifiers.

The Parameters paragraph gives a detailed description of each parameter. Parameters

must be typed in the order shown in the Format paragraph.

The Qualifiers paragraph gives a detailed description of each qualifier that may be spec-

ified on the command. You must include all the qualifiers shown in the Format para-

graph; the other qualifiers are optional. Qualifiers may be typed in any order.

The Description paragraph provides, where necessary, a more elaborate explanation of

the function of the command.

The Example paragraph gives one or more examples of the command’s use. Each exam-

ple is followed by a description of the exact function performed by the illustrated com-

mand.

The Foreign Command paragraph shows how to request the same operation when

ICPLOAD is invoked as a foreign command. These examples assume that the symbol

used to invoke ICPLOAD is LDICP.
DC 900-1516D 93

ICP2432 User’s Guide for OpenVMS Alpha (DLITE Interface)
6.4.3.1 HELP

This command provides help at the ICPLOAD command prompt.

Format HELP

Parameters None

Qualifiers None

Description The HELP command provides access to the help library

ICPLOAD.HLB at the ICPLOAD command prompt. Operation

is similar to that for DCL’s HELP.

The logical name ICP2432_HELPFILE must exist and must

provide a full file specification (including device and directory

name) for ICPLOAD.HLB. ICP2432_HELPFILE is defined in

simpact_startup.com.

Foreign Command None
94 DC 900-1516D

6: ICPLOAD Utility
6.4.3.2 RESET

This command performs a hardware reset of the ICP.

Format RESET device_name

Parameters device_name

This parameter specifies the ICP device to be reset.

Qualifiers None

Description The RESET command enables the ICP to be downloaded via a

subsequent LOAD command.

Your process must have the OPER privilege to use this com-

mand.

Example ICPLOAD> RESET ZJB0

This command resets the second ICP2432 in the system.

Foreign Command $ LDICP device_name /RESET
DC 900-1516D 95

ICP2432 User’s Guide for OpenVMS Alpha (DLITE Interface)
6.4.3.3 LOAD

This command transfers the ICP-resident software from a file on the client system to the

ICP.

Format LOAD device_name

Parameters device_name

This parameter specifies the ICP device to be downloaded.

Qualifiers /FILE=file_name

This qualifier specifies the name of an OS/Impact file.

/ADDRESS=address

This qualifier specifies the ICP address at which the file is to be

loaded. (If desired, you can use the DCL %X prefix to denote a

hexadecimal value.)

Description The LOAD command causes the file(s) named in the qualifiers

to be transferred to the ICP.

Your process must have the OPER privilege to use this com-

mand.

The ICP-resident software is supplied in several files. Each must

be transferred to the ICP in turn, with the appropriate

/ADDRESS qualifier.

Example ICPLOAD> LOAD ZJA0/FILE=X25.MEM/ADDR=%X40000

This command downloads the software from the X25.MEM file

to the ICP known as ZJA0.

Foreign Command $ LDICP device_name /FILE=filename/ADDRESS=address
96 DC 900-1516D

6: ICPLOAD Utility

12/3/98 Leslie
Ginni had th
first sentence
underlined,
but no note.
6.4.3.4 START

This command causes the ICP to begin execution of the downloaded software.

Format START device_name /STARTUP=address

Parameters device_name

This parameter specifies the ICP device to be started.

Qualifiers /DLITE

This qualifier specifies the driver works for node auto-assign-

ment. See Section 4.4 on page 79 for more information about

node auto-assignment.

/STARTUP=address

This qualifier specifies the starting execution address.

(If desired, you can use the DCL %X prefix to denote a hexadec-

imal value.)

Description The START command causes the ICP to begin execution of the

ICP-resident software at the specified address.

The ICP2432 can receive multiple download images, so an

explicit start request is required.

Example ICPLOAD> START ZJA0/STARTUP=%X802000

This command causes the ICP known as ZJA0 to begin execu-

tion at address 802000 (hex).

Foreign Command $ LDICP device_name /START=address

:
e
DC 900-1516D 97

ICP2432 User’s Guide for OpenVMS Alpha (DLITE Interface)
6.4.3.5 GET

This command gets the driver’s timeout value (in seconds) for the SingleStep debugger.

Format GET device_name /TIMEOUT

Parameters device_name

This parameter specifies the ICP device to get.

Qualifiers /TIMEOUT

This qualifier specifies the timeout value in seconds.

Description The GET command shows the driver’s timeout value for the

SingleStep debugger.

Example ICPLOAD> GET ZJA0 /TIMEOUT

3

The example command above shows the timeout value to be 3

seconds.

Foreign Command $ LDICP device_name /TIMEOUT
98 DC 900-1516D

6: ICPLOAD Utility
6.4.3.6 SET

This command sets the driver’s timeout value (in seconds) for the SingleStep debugger.

Format SET device_name /TIMEOUT=timeout_value

Parameters device_name

This parameter specifies the ICP device to set.

Qualifiers /TIMEOUT

This qualifier specifies the timeout value in seconds.

Description The SET command sets the driver’s timeout value for the

SingleStep debugger.

Example ICPLOAD> SET ZJA0 /TIMEOUT=5

The example command above sets the timeout value at 5

seconds.

Foreign Command $ LDICP device_name /TIMEOUT=5
DC 900-1516D 99

ICP2432 User’s Guide for OpenVMS Alpha (DLITE Interface)
6.5 ICPLOAD Callable Routines

The ICPLOAD.OLB file includes several routines that may be called by a user-written

VMS application to affect downloading of an ICP. This section describes how to use

these routines.

6.5.1 Conventions

The ICPLOAD callable routines are written in C. They may be called from any VMS

language that conforms to the Alpha Procedure Calling Standard.

Each of these routines returns either a VMS or RMS system service status code. Integer

arguments are passed by value. Character string arguments are passed by reference and

must have a terminating null byte (ASCIZ). Unused optional arguments should be zero

(passed by value) or zero-length strings (passed by reference).

When linking against ICPLOAD.OLB, the DEC C Run Time Library must be included

in the link.
100 DC 900-1516D

6: ICPLOAD Utility
6.5.1.1 icpreset

This routine causes an ICP to be reset and prepared for a download operation.

Format int icpreset (char *device);

Returns The completion status of the operation (normally

SS$_NORMAL).

Arguments device: the VMS device name of the ICP.
DC 900-1516D 101

ICP2432 User’s Guide for OpenVMS Alpha (DLITE Interface)
6.5.1.2 icpload

This routine causes a file to be downloaded to the ICP. This routine is typically used

more than once per download sequence (once for each OS/Impact component file).

Format int icpload (char *device,

char *file,

int address);

Returns The completion status of the operation; normally

SS$_NORMAL. Refer to Chapter 4 for descriptions of status

codes returned by the ICP device driver. If icpload() returns an

RMS status code, a problem was encountered when opening

one of the files specified in the argument list.

Arguments device: the VMS device name of the ICP.

file: name of the OS/Impact file.

address: starting address within ICP memory to which the file is

to be loaded.
102 DC 900-1516D

6: ICPLOAD Utility
6.5.1.3 icpstart

This routine is used to cause an ICP to begin execution of the downloaded code.

Format int icpstart(char *device, int address, int flag);

Returns The completion status of the operation; normally

SS$_NORMAL. Refer to Chapter 4 for descriptions of status

codes returned by the ICP device driver.

Arguments device: the VMS device name of the ICP.

address: starting address for execution.

flag: if set to 1, the driver is set for auto node assignment.
DC 900-1516D 103

ICP2432 User’s Guide for OpenVMS Alpha (DLITE Interface)
104 DC 900-1516D

Index
A

Always QIO support 39
Application

how to build for DLITE 41
Application interface 55
Assign a channel 61
ATTACH command 77
Audience 11
Auto-assignment mode 79

B

Blocking I/O 41
Building a DLITE application 41

C

Callable routines
ICPLOAD 100

Callbacks 48
Cancel reads and writes 62
Cancelling I/O 45
cfgerrno global variable 39
Commands

HELP 94
ICPLOAD 92
LOAD 96
RESET 95
START 97

Configuration
typical system 18

Configuration files 49
raw operation 49

Configuration parameters
MaxBuffers 49
MaxBufSize 52
TSICfgName 52
DC 900-1516D
Customer support 14

D

Data link interface, See DLI
Deassign ICP 62
DETACH command 78
Device driver 17

executable image 20
installation directories 20
installation procedure 20

Device driver interface 55
Discarded packets 79
dlBufAlloc 42
dlBufFree 43
dlerrno function 39
dlerrno global variable 39

mapped to VMS errors 51
DLI

embedded environment 37
Freeway server environment 36

DLI optional arguments 85
DLI packet formats 83
DLI session commands

ATTACH 77
DETACH 78
TERMINATE 79

DLI session interface 75
dlInit 40, 44
DLITE

application interface to 41
blocking and non-blocking I/O 41
callbacks 48
changes in DLI functions 42
DLI/TSI changes 42
error codes 49, 51
105

ICP2432 User’s Guide for OpenVMS Alpha (DLITE Interface)
building DLITE application 41
configuration files 49
download select flag 31
embedded versus Freeway 36
environment 37
function changes 42
functions 41
general error file 53
libraries 41
limitations and caveats 38

always QIO support 39
dlInit no longer implied 40
global variables 39
local ack processing 38
raw operation only 38
unsupported functions 40

logging and tracing 52
objectives 37
overview 35

dlOpen 44
dlPoll 44

cancel processing 45
driver information 44

dlRead 46
dlTerm 47
dlWrite 47

raw operation processing 47
Documents

reference 12
Download

with DLITE 31
Download protocol software

using ICP2432_STARTUP.COM 33
using ICPLOADVMS.COM 31

Downloaded files 90

E

Embedded interface, See DLITE
Errors 53

cfgerrno 39
dlerrno 39
DLITE error codes 49
global variables 39
iICPStatus 39
logging error codes 53
106
VMS errors mapped to dlerrno 51
Executable object

for system services 22

F

Files
general application errors 53
ICP2432_STARTUP.COM 33
ICPLOADVMS.COM 31

freeway directory 22
Functions

callbacks 48
changes 42
dlBufAlloc 42
dlBufFree 43
dlerrno 39
dlInit 44
dlOpen 44
dlPoll 44

cancel processing 45
driver information 44

dlRead 46
dlTerm 47
dlWrite 47

raw operation processing 47
implemented as blocking I/O 41
non-blocking I/O 41
unsupported 40

G

Global variable support 39

H

HELP command 94
History of revisions 14

I

ICBM Utility
source code 20

ICP discarded packets 79
ICP packet formats 83
ICP packet structure 84
ICP utility 89
ICP2432 installation 23, 27
ICP2432_STARTUP.COM file 33
DC 900-1516D

Index
ICPLOAD
callable routines 100
source code 20

ICPLOAD commands 92
ICPLOAD components 89
icpload routine 102
ICPLOAD.EXE 91
ICPLOADVMS.COM file 31
icpreset routine 101
icpstart routine 103
iICPStatus global variable 39
Initialize ICP 65
Installation

device driver 20
ICP2432 23, 27
protocol 21

Interface, device driver 55
I/O

blocking and non-blocking 41
cancelling 45

IO$_INITIALIZE 65
IO$_LOADMCODE 66
IO$_READxBLK 71
IO$_SENSEMODE 69
IO$_STARTDATA 68
IO$_STARTMPROC 67
IO$_WRITExBLK 73
IO$M_ABORT 71, 73
IO$M_NOWAIT 65

L

Libraries 41
LIBVMSEMB.OLB 41

Load
driver 29
protocol software 31

LOAD command 96
Load software block to ICP 66
Local ack processing 38
Logging 52

error codes 53
general error file 53

M

MaxBuffers configuration parameter 49
DC 900-1516D
MaxBufSize configuration parameter 52
Multithreaded applications 40

N

Node auto-assignment mode 79
Node numbers

node 1 76
node 2 76
node 3–126 76

Non-blocking I/O 41

O

OptArgs 39, 45, 46, 47, 50
Optional arguments, See OptArgs
OS/Impact 90
Overview of DLITE 35
Overview of product 17

P

PCIbus 17
Product

overview 17
support 14

Programming
using DLITE interface 35

Protocol installation 21
Protocol software

download
using ICP2432_STARTUP.COM 33
using ICPLOADVMS.COM 31

Protocol toolkit 80

R

Raw operation 38
configuration files 49

Read I/O calls 63
Read packet to ICP 71
README.X25 22
Reference documents 12
RELHIST.X25 22
RELNOTES.X25 22
RESET command 95
Revision history 14
Routines

ICPLOAD 100
107

ICP2432 User’s Guide for OpenVMS Alpha (DLITE Interface)
icpload 102
icpreset 101
icpstart 103

S

Session commands, DLI 76
Session interface, DLI 75
Sessions

opening ICP 44
Software installation (BACKUP saveset) 27
Software installation procedure

protocol 21
Software installation procedure (BACKUP

saveset)
ICP2432 27

Software installation procedure (VMSINSTAL)
ICP2432 23

Software installation (VMSINSTAL) 23
START command 97
Start ICP software 67
Structures

dlPoll driver information 45
Support, product 14
SYS$ASSIGN 61
SYS$CANCEL 62
SYS$DASSGN 62
SYS$QIO(W) 63

T

Technical support 14
TERMINATE command 79
Tracing 52
TSI in Freeway server environment 36
TSICfgName configuration parameter 52

V

VMS
error codes 51

W

Write I/O calls 63
Write packet to ICP 73

X–Z

XIO_2432.MEM 22
108
ZJDRIVER
installation 20
source code 20
DC 900-1516D

ICP2432 User’s Guide for OpenVMS Alpha
(DLITE Interface)

DC 900-1516D
Customer Report Form

We are constantly improving our products. If you have suggestions or problems you would

like to report regarding the hardware, software or documentation, please complete this form

and mail it to Protogate at 12225 World Trade Drive, Suite R, San Diego, CA 92128, or fax it

to (877) 473-0190.

If you are reporting errors in the documentation, please enter the section and page number.

Your Name:

Company:

Address:

Phone Number:

Product:

Problem or

Suggestion:

Protogate, Inc.
Customer Service

12225 World Trade Drive, Suite R
San Diego, CA 92128

	ICP2432 User’s Guide for OpenVMS� Alpha (DLITE Interface)
	Contents
	List of Figures
	List of Tables
	Preface
	Purpose of Document
	Intended Audience
	Organization of Document
	Protogate References
	Document Conventions
	Document Revision History
	Customer Support
	1 Product Overview
	Figure 1–1:� Typical Data Communications System Configuration
	2 Software Installation
	2.1� Device Driver Installation Procedure
	2.2� Protocol Software Installation Procedure
	Table 2–1:� Protocol Identifiers
	2.3� Software Installation Procedure (VMSINSTAL tape)
	2.4� Software Installation Procedure (VMS BACKUP saveset)
	2.5� Loading the ICP2432 Driver
	2.6� Loading the Protocol Software
	3 Programming Using the DLITE Embedded Interface
	3.1� Overview
	3.2� Embedded Interface Description
	3.2.1� Comparison of Freeway Server and Embedded Interfaces
	Figure 3–1:� �DLI/TSI Interface in the Freeway Server Environment
	Figure 3–2:� DLITE Interface in an Embedded ICP2432 Environment
	3.2.2� Embedded Interface Objectives
	3.3� DLITE Interface
	3.3.1� DLITE Limitations and Caveats
	3.3.1.1� Raw Operation Only
	3.3.1.2� No LocalAck Processing Support
	3.3.1.3� AlwaysQIO Support
	3.3.1.4� Changes in Global Variable Support
	3.3.1.5� dlInit Function No Longer Implied
	3.3.1.6� Unsupported Functions
	3.3.1.7� Blocking I/O
	3.3.1.8� Multithreaded Support
	3.3.2� The Application Program’s Interface to DLITE
	3.3.2.1� Building a DLITE Application
	3.3.2.2� Blocking and Non-blocking I/O
	3.3.2.3� Changes in DLI/TSI
	3.3.2.4� Changes in DLI Functions
	Figure 3–3:� DLI_ICP_DRV_INFO “C” Structure
	3.3.2.5� Callbacks
	3.3.2.6� DLITE Error Codes
	Table 3–1:� DLITE Error Codes
	Table 3–2:� VMS Errors Mapped to dlerrno
	3.3.3� Configuration Files
	3.3.4� Logging and Tracing
	3.3.4.1� Common Logging Service Errors
	Table 3–3:� DLI Error Codes
	3.3.4.2� General Application Error File
	4 Application Interface
	4.1� Device Driver Interface
	4.1.1� Channel Assignment
	4.1.2� $QIO Interface
	4.1.2.1� I/O Function Code
	4.1.2.2� I/O Status Block (IOSB)
	4.1.2.3� Buffer Address and Size (P1 and P2)
	4.1.2.4� Node Numbers (P4)
	Figure 4–1:� P4 Parameter Format
	4.2� Supported VMS System Services
	4.2.1� SYS$ASSIGN
	4.2.2� SYS$CANCEL
	4.2.3� SYS$DASSGN
	4.2.4� SYS$QIO(W)
	4.2.4.1� IO$_INITIALIZE[|IO$M_NOWAIT]
	4.2.4.2� IO$_LOADMCODE
	4.2.4.3� IO$_STARTMPROC
	4.2.4.4� IO$_STARTDATA
	4.2.4.5� IO$_SENSEMODE
	Figure 4–2:� “C” Definition of the Device Information Structure
	4.2.4.6� IO$_READxBLK[|IO$M_ABORT]
	4.2.4.7� IO$_WRITExBLK[|IO$M_ABORT]
	4.3� DLI Session Interface
	4.3.1� DLI Session Basics
	4.3.2� Use Of Node Numbers (DLI)
	4.3.2.1� Node 1
	4.3.2.2� Node 2
	4.3.2.3� Nodes 3 through 126
	4.3.3� DLI Session Commands
	4.3.3.1� ATTACH Command
	4.3.3.2� DETACH Command
	4.3.3.3� TERMINATE Command
	4.3.4� ICP Discarded Packets
	4.4� Node Auto-Assignment Mode for Read Requests
	4.5� Compatibility with Older ICP Protocols
	4.6� Protocol Toolkit
	5 ICP Packet Formats
	5.1� DLI Packet Format
	Figure 5–1:� “C” Definition of ICP Packet Structure
	5.2� DLI Optional Arguments
	Figure 5–2:� “C” Definition of DLI Optional Arguments Structure
	Table 5–1:� Comparison of DLI_OPT_ARGS and ICP_PACKET Structures
	6 ICPLOAD Utility
	6.1� ICPLOAD Components
	6.2� OS/Impact and Downloaded Files
	6.3� Get or Set the Timeout Value
	6.4� Using ICPLOAD.EXE
	6.4.1� Invoking ICPLOAD via the RUN Command
	6.4.2� Invoking ICPLOAD as a Foreign Command
	6.4.3� ICPLOAD Commands
	Table 6–1:� ICPLOAD Command Summary
	6.4.3.1� HELP
	6.4.3.2� RESET
	6.4.3.3� LOAD
	6.4.3.4� START
	6.4.3.5� GET
	6.4.3.6� SET
	6.5� ICPLOAD Callable Routines
	6.5.1� Conventions
	6.5.1.1� icpreset
	6.5.1.2� icpload
	6.5.1.3� icpstart
	Index

