

Protogate, Inc
12225 World T
San Diego, CA

November 19
Preliminary
June 11, 2002
.
rade Drive, Suite R
 92128

PROTOGATE

Freeway ®

Protocol Software Toolkit
Programmer’s Guide

DC 900-2007A

97

Protogate, Inc.
12225 World Trade Drive, Suite R
San Diego, CA 92128
(858) 451-0865

Freeway Protocol Software Toolkit Programmer’s Guide
© 2002 Protogate, Inc. All rights reserved
Printed in the United States of America

This document can change without notice. Protogate, Inc. accepts no liability for any errors this
document might contain.

CrossCodeC is a trademark of Software Development Systems Incorporated.
DECnet is a trademark of Digital Equipment Corporation.
Ethernet is a trademark of Xerox Corporation.
Freeway is a registered trademark of Simpact, Inc.
Freeway Embedded is a trademark of Simpact, Inc.
PTBUG is a trademark of Performance Technologies Incorporated.
SingleStep is a trademark of Software Development Systems, Incorporated.
UNIX is a registered trademark of X/Open Company Limited.
VMEbus is a trademark of Motorola Incorporated.
VMS is a trademark of Digital Equipment Corporation.
VxWorks is a trademark of Wind River Systems Incorporated.
Windows and Windows NT are registered trademarks of Microsoft Corporation.

Contents
Preface 13

1 Introduction 19

1.1 Freeway Overview . 19

1.1.1 Freeway Server Product . 19

1.1.2 Freeway Embedded Product . 21

1.2 Freeway Environments . 23

1.2.1 Freeway Server Client-Server Environment 23

1.2.1.1 Establishing Freeway Server Internet Addresses 23

1.2.2 Freeway Embedded Client-Service Environment 24

1.2.3 Defining the DLI and TSI Configuration 25

1.2.4 Application Operations . 25

1.2.4.1 Opening a Freeway Session 25

1.2.4.2 Exchanging Data with the Remote Application. 25

1.2.4.3 Closing a Freeway Session . 25

1.3 Protocol Toolkit Overview . 26

1.3.1 Toolkit Software Components . 29

2 Wind River for the ICP 31

2.1 Board-level Protocol-executable Modules 31

2.2 Development Tools . 33

2.2.1 WRS Compiler/Assembler/Linker 33

2.3 Interfacing to the Operating System . 34

2.4 Motorola ColdFire® Programming Environment 35

2.4.1 Processor Privilege States. 35

2.4.2 Stack Pointers . 35

2.4.3 Exception Vector Table . 36

2.4.4 Interrupt Priority Levels . 38
DC 900-2007A 3

Freeway ® Protocol Software Toolkit Programmer’s Guide

2.5 ICP2432B Hardware Device Programming. 39

2.5.1 Programming the ColdFire® . 40

2.5.2 Programming the Integrated Universal Serial Controllers 40

2.5.3 Programming Sipex’s Multi-Mode Serial Transceivers 41

2.5.4 Programming the Test Mode Register 42

3 Memory Organization 43

3.1 ICP2432B. 43

4 ICP Download, Configuration, and Initialization 45

4.1 Download Procedures . 45

4.1.1 Freeway Server Download Procedure 45

4.1.1.1 Downloading Without the Debug Monitor 47

4.1.1.2 Downloading With the SingleStep Monitor 49

4.1.2 Freeway Embedded Download Procedure 50

4.2 OS/Protogate Configuration and Initialization 50

4.2.1 Configuration Table. 53

4.2.2 Task Initialization Structures . 53

4.2.3 Task Initialization Routine . 55

4.2.4 OS/Protogate Initialization . 55

4.3 Determining Configuration Parameters 56

4.3.1 OS/Protogate Memory Requirements 56

4.3.2 Configuration and System Performance 58

4.3.2.1 Number of Configured Task Control Structures 58

4.3.2.2 Number of Configured Priorities 58

4.3.2.3 Tick and Time Slice Lengths 61

5 Debugging 63

5.1 PEEKER Debugging Tool . 63

5.2 SingleStep Debugging Tool . 66

5.3 System Panic Codes . 68

6 ICP Software 69

6.1 ICP-resident Modules . 69

6.1.1 System Initialization . 69
4 DC 900-2007A

Contents

6.1.2 Protocol Task . 72

6.1.3 Utility Task (spshio) . 73

6.1.3.1 Read Request Processing . 76

6.1.3.2 Write Request Processing . 78

6.2 Control of Transmit and Receive Operations 80

6.2.1 Link Control Tables. 81

6.2.2 SPS/ISR Interface for Transmit Messages 82

6.2.3 SPS/ISR Interface for Received Messages 82

6.3 Interrupt Service. 84

6.3.1 ISR Operation in HDLC/SDLC Mode 84

6.3.2 ISR Operation in Asynchronous Mode 86

6.3.3 ISR Operation in BSC Mode . 87

7 Host/ICP Interface 89

7.1 ICP’s Host Interface Protocol . 89

7.2 Queue Elements . 91

7.2.1 System Buffer Header . 94

7.2.2 Queue Element Initialization . 96

7.2.3 Node Declaration Queue Element 97

7.2.3.1 System Buffer Header Initialization 99

7.2.3.2 Completion Status . 100

7.2.4 Host Request Queue Element . 100

7.2.4.1 System Buffer Header Initialization 104

7.2.4.2 Host Request Header Initialization 106

7.2.4.3 Completion Status . 107

7.3 Reserved System Resources: XIO Interface 108

7.4 Executive Input/Output . 108

7.4.1 Node Declaration (s_nodec) . 109

7.4.2 XIO Read/Write (s_xio) . 109

7.5 Diagnostics. 110

8 Client Applications 113

8.1 Summary of DLI Concepts . 113

8.1.1 Configuration in the Freeway Server or Embedded Environment . . 114

8.1.1.1 DLI Configuration for Raw Operation 114

8.1.1.2 DLI and TSI Configuration Process 115
DC 900-2007A 5

Freeway ® Protocol Software Toolkit Programmer’s Guide

8.1.2 Blocking versus Non-blocking I/O 119

8.1.3 Buffer Management . 120

8.2 Example Call Sequences . 121

8.3 Overview of DLI Functions . 124

8.4 Client and ICP Interface Data Structures 126

8.5 Client and ICP Communication . 129

8.5.1 Sequence of Client Events to Communicate to the ICP 130

8.5.2 Initiating a Session with the ICP . 131

8.5.3 Initiating a Session with an ICP Link 132

8.5.4 Terminating a Session with an ICP Link 135

8.5.5 Activating an ICP Link . 137

8.5.6 Deactivating an ICP Link . 139

8.5.7 Writing to an ICP Link . 141

8.5.7.1 Writing the Link Configuration to the ICP 142

8.5.7.2 Writing a Request For Link Statistics From the ICP 143

8.5.7.3 Writing Data to an ICP Link 144

8.5.8 Reading from the ICP Link . 145

8.5.8.1 Reading ICP Statistics . 146

8.5.8.2 Reading Normal Data . 147

8.6 Additional Command Types Supported by the SPS 148

8.6.1 Internal Termination Message . 148

8.6.2 Internal Test Message . 149

8.6.3 Internal Ping . 149

9 Messages Exchanged between Client and ICP 151

9.1 Messages Sent From Client to the ICP 152

9.1.1 DLI_PROT_CFG_LINK – Client Link Configuration Request 152

9.1.2 DLI_PROT_GET_STATISTICS – Client Link Statistics Request . . . 155

9.1.3 DLI_PROT_SEND_NORM_DATA – Client Send ICP Link Data . . 156

9.2 Messages Sent From ICP To Client . 157

9.2.1 DLI_PROT_CFG_LINK – ICP Acknowledge Link Configuration . . 157

9.2.2 DLI_PROT_GET_STATISTICS – ICP Statistics Report. 158

9.2.3 DLI_PROT_SEND_NORMAL_DATA – ICP Send Data To Client . . 159

9.2.4 DLI_PROT_RESP_LOCAL_ACK – ICP Acknowledge Message . . . 160
6 DC 900-2007A

Contents

A Application Notes 161

B Data Rate Time Constants for IUSC Programming 163

C Error Codes 165

C.1 DLI Error Codes . 165

C.2 ICP Global Error Codes . 165

C.3 ICP Error Status Codes . 165

D Test Programs 167

Index 173
DC 900-2007A 7

Freeway ® Protocol Software Toolkit Programmer’s Guide
8 DC 900-2007A

List of Figures
Figure 1–1: Freeway Server Product Configuration 20

Figure 1–2: Freeway Embedded Product Configuration. 21

Figure 1–4: A Typical Freeway Embedded Environment 24

Figure 1–3: A Typical Freeway Server Environment 24

Figure 1–5: ICP PROM and Toolkit Software Components - Freeway Server 27

Figure 1–6: ICP PROM and Toolkit Software Components - Freeway Embedded. . . 28

Figure 2–1: Assembly Language Shell . 38

Figure 2–2: Test Mode Register, ICP2432. 42

Figure 4–1: Protocol Toolkit Download Script File (spsload) 48

Figure 4–2: ICP2432B Memory Layout with Application Only 51

Figure 4–3: ICP2432B Memory Layout with Application and SingleStep Monitor . . 52

Figure 4–4: Sample Configuration Table . 53

Figure 4–5: Sample Configuration Table with Task Initialization Structures 54

Figure 6–1: Block Diagram of the Sample Protocol Software - Freeway Server 70

Figure 6–2: Block Diagram of the Sample Protocol Software - Freeway Embedded . . 71

Figure 6–3: Sample Protocol Software Message Format 75

Figure 6–4: ICP Read Request (Transmit Data) Processing 77

Figure 6–5: ICP Write Request (Receive Data) Processing. 79

Figure 6–6: Sample Link-to-Board Queue . 83

Figure 7–1: Sample Singly-linked Queue with Three Elements 92

Figure 7–2: Sample Doubly-linked Queue with Three Elements 93

Figure 7–3: Node Declaration Queue Element. 98

Figure 7–4: Host Request Queue Element with Data Area 101

Figure 8–1: Typical DLI “main” Configuration plus Two Sessions 116

Figure 8–2: DLI and TSI Configuration Process . 119
DC 900-2007A 9

Freeway ® Protocol Software Toolkit Programmer’s Guide

Figure 8–3: “C” Definition of DLI Optional Arguments Structure 126

Figure 8–4: “C” Definition of api_msg Data Structure. 127

Figure 8–5: “C” Definition of icp_hdr and prot_hdr Data Structures 127
10 DC 900-2007A

List of Tables
Table 2–1: Vectors Reserved for System Software . 37

Table 2–2: ICP Interrupt Priority Assignments . 39

Table 2–4: SP503 or SP506 Electrical Interface Values 41

Table 2–3: LED Control Information . 41

Table 3–1: ICP2432B Device and Register Addresses 44

Table 4–1: System Data Requirements . 56

Table 4–2: Sample Calculation of System Data Requirements 57

Table 6–1: Summary of Communication Modes . 84

Table 8–1: DLI Call Sequence for Blocking I/O . 122

Table 8–2: DLI Call Sequence for Non-blocking I/O 123

Table 8–3: DLI Functions: Syntax and Parameters (Listed in Typical Call Order) . . . 125

Table 8–4: Equivalent Fields between DLI_OPT_ARGS and ICP_HDR/PROT_HDR 128

Table B–1: IUSC Time Constants for 1X Clock Rate for ICP2432B 163

Table B–2: IUSC Time Constants for 16X Clock Rate for ICP2432B 164

Table C–1: ICP Error Status Codes used by the ICP 166

Table D–1: UNIX Loopback Test Programs and Directories 167

Table D–2: VMS Loopback Test Programs and Directories 167

Table D–3: Windows NT Loopback Test Program and Directory 168
DC 900-2007A 11

Freeway ® Protocol Software Toolkit Programmer’s Guide
12 DC 900-2007A

Preface
Purpose of Document

This document describes the protocol software toolkit for the Freeway server and Free-

way embedded environments and the issues involved in developing software that exe-

cutes on Freeway. It also provides information on client application programs and the

host/ICP interface.

 Intended Audience

This document should be read by programmers who are developing code to be down-

loaded to the ICP2432B. You should be familiar with your client system’s operating sys-

tem and with program development in a real-time environment. Familiarity with the C

programming language and Motorola ColdFire® assembly language is helpful.

 Required Equipment

You must have the following equipment to use the protocol software toolkit to develop

and test communications applications:

• An ICP2432B installed in the Freeway server’s backplane or embedded in your

host computer system

• A console cable and an ASCII terminal or terminal emulator (running at 9600

b/s) for access to the ICP console port

• A set of Wind River tools for the Motorola ColdFire® processor
DC 900-2007A 13

Freeway ® Protocol Software Toolkit Programmer’s Guide

• If you plan to use the sample protocol software (SPS) test program as a basis for

your client application code, you will need a C compiler for your client system

 Organization of Document

Chapter 1 is an overview of the Freeway server and embedded products and the proto-

col software toolkit.

Chapter 2 describes the issues involved in ICP Wind River, including software-develop-

ment tools, the various interfaces, and how to program the hardware devices.

Chapter 3 describes local memory address allocation on the ICPs.

Chapter 4 describes system download, configuration, and initialization.

Chapter 5 describes the ICP debugging tools and techniques.

Chapter 6 describes the ICP software.

Chapter 7 gives an overview of the host/ICP interface and describes the interface

between the ICP’s driver, XIO, and OS/Protogate application tasks.

Chapter 8 describes client applications.

Chapter 9 describes the messages exchanged between the client and the ICP.

Appendix A clarifies some points made in the technical manuals and describes some

peculiarities of the devices and the ICP6000 hardware.

Appendix B provides some commonly used data rate time constants for SCC program-

ming on the ICP6000.

Appendix C describes error codes.
14 DC 900-2007A

Preface

11/12/97
Ginni: Moved
1510 and
changed name
of 1333.

Techpubs:
Don’t delete
the “Other
Helpful
Documents”
(separate
table at end o
References).
Also set “space
below” on firs
table = 0 pt.
Appendix D describes loopback test programs and sample programs.

References

Freeway general support:

• Freeway 3100 Hardware Installation Guide DC 900-2002

• Freeway 3200 Hardware Installation Guide DC 900-2003

• Freeway 3400 Hardware Installation Guide DC 900-2004

• Freeway 3600 Hardware Installation Guide DC 900-2005

• Freeway Programmable Communications Servers
Technical Overview

 25-000-0374

• Freeway Software Release Addendum: Client Platforms DC 900-1555

• Freeway Embedded ICP2432 User’s Guide for Windows NT DC 900-1510

• Freeway Server User’s Guide DC 900-1333

Freeway programming support:

• Freeway Client-Server Interface Control Document DC 900-1303

• Freeway Data Link Interface Reference Guide DC 900-1385

• Freeway OS/Protogate Programmer’s Guide DC 900-2008

• Freeway QIO/SQIO API Reference Guide DC 900-1355

• Freeway Server Software Toolkit Programmer’s Guide DC 900-1325

• Freeway Transport Subsystem Interface Reference Guide DC 900-1386

• ICP2432B Hardware Description and Theory of Operation DC 900-2006

Freeway protocol support:

• Freeway ADCCP NRM Programmer’s Guide DC 900-1317

• Freeway Asynchronous Wire Service (AWS) Programmer’s Guide DC 900-1324

• Freeway BSC Programmer’s Guide DC 900-1340

• Freeway BSCDEMO User’s Guide DC 900-1349

• Freeway BSCTRAN Programmer’s Guide DC 900-1406

• Freeway DDCMP Programmer’s Guide DC 900-1343

• Freeway FMP Programmer’s Guide DC 900-1339

• Freeway SIO STD-1200A (Rev. 1) Programmer’s Guide DC 900-1359

f

t
DC 900-2007A 15

Freeway ® Protocol Software Toolkit Programmer’s Guide

Document Conventions

This document follows the most significant byte first (MSB) and most significant word

first (MSW) conventions for bit-numbering and byte-ordering. In all packet transfers

between the client applications and the ICPs, the ordering of the byte stream is pre-

served.

The term “Freeway” refers to any of the Freeway server models (for example, Freeway

3100, Freeway 3200, Freeway 3400, or Freeway 3600), or to the Freeway embedded

product (for example, the embedded ICP2432B).

Physical “ports” on the ICPs are logically referred to as “links.” However, since port and

link numbers are usually identical (that is, port 0 is the same as link 0), this document

uses the term “link.”

Program code samples are written in the “C” programming language.

• Freeway SWIFT and CHIPS Programmer’s Guide DC 900-1344

• Freeway Tactical Military Protocols Programmer’s Guide DC 900-1341

• Freeway X.25 Call Service API Guide DC 900-1392

• Freeway X.25/HDLC Configuration Guide DC 900-1345

• Freeway X.25 Low-Level Interface DC 900-1307

Other Documents (Available from Vendor): Vendor

• Z16C32 IUSC Integrated Universal Serial Controller

• Technical Manual

 Zilog,
DC8292-01

Other Documents (Development Tools and Environment): Vendor

• SingleStep Debugger for the ColdFire® Microprocessor Family WRS
16 DC 900-2007A

Preface

File names for the loopback tests and sample applications have the format: spsxyz…z

where: x = s (blocking I/O) or a (non-blocking I/O)
y = l (loopback test) or s (sample application)
z…z = p (program) or

dcfg (DLI configuration file) or
tcfg (TSI configuration file)

Revision History

The revision history of the Freeway ® Protocol Software Toolkit Programmer’s Guide,

Protogate document DC 900-2007A, is recorded below:

Document
Revision Release Date Description

DC 900-1338A November 4, 1994 Original release

DC 900-1338B November 22, 1994 Update file names for Release 2.1
Add Appendix D, “Test Programs”

DC 900-1338C July 1995 Update file names
Add ICP2424 information

DC 900-1338D February 1996 Minor modifications throughout
Add ICP6030 information
Add new dlControl function to Table 8–3 on
page 125
Add Windows NT to Appendix D
Delete HIO task information

DC 900-1338E November 1997 Add Freeway embedded product information
Add ICP2432 information
Document changes in directory structure

DC 900-2007A June 2002 Port the 1338 document to Protogate, Inc.
DC 900-2007A 17

Freeway ® Protocol Software Toolkit Programmer’s Guide
Customer Support

If you are having trouble with any Protogate product, call us at (858)451-0865 Monday

through Friday between 8 a.m. and 5 p.m. Pacific time.

You can also fax your questions to us at (877)473-0190 any time. Please include a cover

sheet addressed to “Customer Service.”

We are always interested in suggestions for improving our products. You can use the

report form in the back of this manual to send us your recommendations.
18 DC 900-2007A

Chapter
1 Introduction
1.1 Freeway Overview

Protogate’s Freeway product provides a variety of wide-area network (WAN) connec-

tivity solutions for real-time financial, defense, telecommunications, and process-con-

trol applications. The original Freeway Server product offers flexibility and ease of

programming using a variety of LAN-based server hardware platforms. Now a consis-

tent and compatible Freeway Embedded product offers the same functionality as the

Freeway Server, allowing individual client computers to connect directly to the WAN.

Both the Freeway Server product and the Freeway Embedded product use the same

Freeway application program interface (API). Therefore, migration between the two

Freeway environments simply requires linking your client application with the proper

library. Freeway supports various client operating systems (for example, UNIX, VMS,

and Windows NT).

Protogate protocols that run on the Freeway intelligent communications processors

(ICPs) are independent of the client operating system and the hardware platform

(Freeway Server or Freeway Embedded).

1.1.1 Freeway Server Product

Protogate’s Freeway communications servers enable client applications on a local-area

network (LAN) to access specialized WANs through the Freeway API. The Freeway

Server can be any of several models (for example, Freeway 3100, Freeway 3200, Freeway

3400, or Freeway 3600). The Freeway Server is user programmable and communicates
DC 900-2007A 19

Freeway ® Protocol Software Toolkit Programmer’s Guide
in real time. It provides multiple data links and a variety of network services to LAN-

based clients. Figure 1–1 shows the Freeway Server product configuration.

To maintain high data throughput, the Freeway Server uses a multi-processor architec-

ture to support the LAN and WAN services. The LAN interface is managed by a single-

board computer, called the server processor. It uses the commercially available

VxWorks operating system to provide a full-featured base for the LAN interface and

layered services needed by Freeway.

The Freeway Server can be configured with multiple WAN interface processor boards,

each of which is a Protogate ICP. Each ICP runs the communication protocol software

using Protogate’s real-time operating system.

Figure 1–1: Freeway Server Product Configuration

WAN
Interface

Processors

Freeway Server

ICP

ICP

E
th

e
r
n

e
t

L
A

N

3
4

1
3

WAN Protocol
Options

Defense

Financial

SCADA

Commercial
 X.25
 Bisync
 HDLC . . .

In
d

u
s
tr

y
 S

ta
n

d
a
r
d

 B
u

s

Server
Processor

Client 1

Client 2

Client n

…

…

Application
 1

 DLI

Application
 2

 DLI

Application
 n

 DLI
20 DC 900-2007A

1: Introduction
1.1.2 Freeway Embedded Product

The Freeway Embedded product connects your computer directly to the WAN (for

example, through Protogate’s Embedded ICP2432B PCIbus board). The Freeway

Embedded product provides client applications with the same WAN connectivity as the

Freeway Server product, using the same Freeway API. The ICP runs the communication

protocol software using Protogate’s real-time operating system. Figure 1–2 shows the

Freeway Embedded product configuration.

Figure 1–2: Freeway Embedded Product Configuration

Client Computer

34
14

WAN Protocol
Options

Defense

Commercial
 X.25
 Bisync
 HDLC . . .

SCADA

Financial
 SWIFT
 CHIPS
 Telerate
 Telekurs
 Reuters
 40+ Market
 Feeds . . .

�

 �

 �

In
du

st
ry

 S
ta

n
da

rd
 B

u
s

Client
Appl 1

Freeway
API

Si
m

pa
ct

 D
ri

ve
r

Freeway
Embedded ICP

Simpact
WAN Protocol

Software

Client
Appl 1

Freeway
API

Client
Appl 1

Freeway
API
DC 900-2007A 21

Freeway ® Protocol Software Toolkit Programmer’s Guide
Summary of Freeway features:

• Support for multiple ICPs (two, four, or eight communication lines per ICP)

• Wide selection of electrical interfaces including EIA-232, EIA-449, EIA-530,

EIA-562, V.35, ISO-4903 (V.11), and MIL-188

• Variety of off-the-shelf communication protocols available from Protogate which

are independent of the client operating system (for example, Windows NT,

UNIX, or VMS) and hardware platform (Freeway Server or Freeway Embedded)

• Support for multiple WAN communication protocols simultaneously

• Elimination of difficult LAN and WAN programming and systems integration by

providing a powerful and consistent Freeway application program interface (API)

• Creation of customized server-resident and ICP-resident software, using Proto-

gate’s Wind River toolkits

• Freeway Server standard support for Ethernet LANs running the transmission

control protocol/internet protocol (TCP/IP)

• Freeway Server management and performance monitoring with the simple net-

work management protocol (SNMP), as well as interactive menus available

through a local console, telnet, or rlogin
22 DC 900-2007A

1: Introduction
1.2 Freeway Environments

1.2.1 Freeway Server Client-Server Environment

The Freeway server acts as a gateway that connects a client on a local-area network to a

wide-area network. Through the Freeway server, a client application can exchange data

with a remote data link application. Your client application must interact with the Free-

way server and its resident ICPs before exchanging data with the remote data link appli-

cation.

One of the major Freeway server components is the message multiplexor (msgmux) that

manages the data traffic between the LAN and the WAN environments. The client

application typically interacts with the Freeway server’s msgmux through a TCP/IP BSD-

style socket interface (or a shared-memory interface if it is a server-resident application

(SRA)). The ICPs interact with the msgmux through the DMA and/or shared-memory

interface of the industry-standard bus to exchange WAN data. From the client applica-

tion’s point of view, these complexities are handled through a simple and consistent

data link interface (DLI), which provides dlOpen, dlWrite, dlRead, and dlClose func-

tions.

Figure 1–3 shows a typical Freeway server connected to a locally attached client by a

TCP/IP network across an Ethernet LAN interface. Running a client application against

a Freeway server in a client-server environment requires the basic steps described in

Section 1.2.1.1, Section 1.2.3, and Section 1.2.4.

1.2.1.1 Establishing Freeway Server Internet Addresses

The Freeway server must be addressable in order for a client application to communi-

cate with it. In the Figure 1–3 example, the TCP/IP Freeway server name is freeway2,

and its unique Internet address is 192.52.107.100. The client machine where the client

application resides is client1, and its unique Internet address is 192.52.107.99. Refer

to the Freeway Server User’s Guide to initially set up your Freeway server and download

its operating system, server, and protocol software.
DC 900-2007A 23

Freeway ® Protocol Software Toolkit Programmer’s Guide
1.2.2 Freeway Embedded Client-Service Environment

In the Freeway embedded environment, the client application still interfaces with the

Freeway APIs, DLI and TSI. The primary difference is that the TSI layer now communi-

cates with the ICP driver instead of with TCP/IP and msgmux.

Figure 1–4 shows a typical Freeway embedded environment. Running a client applica-

tion requires the basic steps described in Section 1.2.3 and Section 1.2.4.

Figure 1–3: A Typical Freeway Server Environment

Figure 1–4: A Typical Freeway Embedded Environment

Freeway Server

ICP0

ICP1

ICP2

ICP3

TCP/IP

client1
192.52.107.99

freeway2
192.52.107.100

DLI
Client

Application TSI
TSI

Msg
Mux

Ethernet

WAN
Protocols

TCP/IP
Socket Interface

Client

31
25

St
an

da
rd

 B
u

s
In

du
st

ry

SRA

Shared Memory
Interface

DLI
Client

Application
TSI

ICP0

ICP1

ICP2

ICP3

WAN
Protocols

34
17

In
du

st
ry

St

an
da

rd
 B

u
s

IC
P

 D
ri

ve
r
24 DC 900-2007A

1: Introduction
1.2.3 Defining the DLI and TSI Configuration

In order for your client application to communicate with the ICP’s protocol task, you

must define the DLI sessions and the transport subsystem interface (TSI) connections.

You have the option of also defining the protocol-specific ICP link parameters. To

accomplish this, you first define the configuration parameters in DLI and TSI ASCII

configuration files, then you run two preprocessor programs, dlicfg and tsicfg, to

create binary configuration files. The dlInit function uses the binary configuration

files to initialize the DLI environment.

1.2.4 Application Operations

1.2.4.1 Opening a Freeway Session

After the DLI and TSI configurations are properly defined, your client application pro-

gram uses the dlOpen function to establish a DLI session with an ICP link. For the

Freeway server, the DLI establishes a TSI connection with msgmux through the TCP/IP

BSD-style socket interface as part of the session establishment process. For Freeway

embedded systems, the DLI establishes a TSI connection directly to the ICP driver.

1.2.4.2 Exchanging Data with the Remote Application

After the link is enabled, the client application program can exchange data with the

remote application using the dlRead and dlWrite functions.

1.2.4.3 Closing a Freeway Session

When your application finishes exchanging data with the remote application, it calls the

dlClose function to disable the ICP link, close the session with the ICP, and disconnect

from the Freeway server or ICP driver.
DC 900-2007A 25

Freeway ® Protocol Software Toolkit Programmer’s Guide
1.3 Protocol Toolkit Overview

The protocol software toolkit helps you develop serial protocol applications for execu-

tion on Protogate’s intelligent communications processors. Many of the software mod-

ules required to build a complete system are provided with the toolkit or reside in the

ICP’s PROM, including download facilities, operating system, and the Peeker

(ICP2432B) debugging tool. The toolkit also includes a debug monitor program for use

with Wind River Systems’ SingleStep debugger. (The SingleStep debugger must be pur-

chased directly from Wind River Systems.) All you have to provide is your application

code, which you can build using the toolkit’s sample protocol software as a model.

Chapter 2, Chapter 4, and Chapter 5 give more information on Wind River, configura-

tion, and debugging.

The toolkit includes software, provided on the distribution media, and complete docu-

mentation (see the document “References” section in the Preface). Some of the toolkit’s

software components, such as the SingleStep monitor, are provided only in executable

object format. All other components are provided in both source and executable form

so that they can be modified, used as coding examples, or linked with user applications.

Figure 1–5 shows a block diagram of the ICP’s PROM and the toolkit’s software com-

ponents for the Freeway server. Figure 1–6 shows the same information for the Freeway

embedded products.
26 DC 900-2007A

1: Introduction

aled 76%
Figure 1–5: ICP PROM and Toolkit Software Components - Freeway Server

ICP

XIO

Server Processor

SPS Test
Program

Application
Program
Interface

Boot
Loader

Low-level
Debugger

Power-up/
Reset

Diagnostics

PROM

SDS
Debug

Monitor

ISAbus,
PCIbus, or
VMEbus

VxWorks

Server-
resident

Applications

Server/ICP
Driver

Utility
Task

. . .
Serial Ports

Protocol
Task

Receive
Post-processor

Device-specific Procedures

Start Transmit Start ReceiveInitialization

Specific Conditions

Device-specific ISRs

Transmit Receive

Transmit
Pre-processor

34
15

Sc
DC 900-2007A 27

Freeway ® Protocol Software Toolkit Programmer’s Guide
Figure 1–6: ICP PROM and Toolkit Software Components - Freeway Embedded

ICP

XIO

Host Processor

SPS Test
Program

Application
Program
Interface

Boot
Loader

Low-level
Debugger

Power-up/
Reset

Diagnostics

PROM

SDS
Debug

Monitor

ISAbus,
PCIbus, or
VMEbus

ICP Driver

Utility
Task

. . .
Serial Ports

Protocol
Task

Receive
Post-processor

Device-specific Procedures

Start Transmit Start ReceiveInitialization

Specific Conditions

Device-specific ISRs

Transmit Receive

Transmit
Pre-processor

34
16

Host OS
28 DC 900-2007A

1: Introduction
1.3.1 Toolkit Software Components

The toolkit loopback test programs (spsalp.c and spsslp.c) are provided in source

form and, when compiled, execute in the client application program’s system environ-

ment. For the test procedures, see Appendix D in this manual and the “Protocol Toolkit

Test Procedure” appendix in the Freeway Server User’s Guide or the appropriate Freeway

embedded user’s guide.

The following programs execute on the ICP:

• System-services module containing the OS/Protogate operating system and the

XIO ICP-side driver (sources provided)

• Sample protocol software (source provided)

• Sample host interface I/O utility (source provided)

• Debug monitor; must be used with the Wind River Systems’ SingleStep monitor

package (executable code only)

The following source files aid in ICP Wind River:

• Subroutine library for C interface to OS/Protogate

• Macro library for assembly interface to OS/Protogate

• Header files with OS/Protogate and XIO definitions and equates

• Make files for supplied source files

• *.dld files for linking and address resolution of the executable images
DC 900-2007A 29

Freeway ® Protocol Software Toolkit Programmer’s Guide
30 DC 900-2007A

Chapter
2 Wind River for the ICP
This chapter describes the issues involved in developing software for the Protogate

ICPs, including software-development tools, the client application program interfaces,

and the hardware devices. The application program interface between the client and

ICP protocol tasks are described in the Freeway Transport Subsystem Interface Reference

Guide and Freeway Data Link Interface Reference Guide. The interface between the ICP

and the server (for Freeway server systems) or remote (for Freeway embedded systems)

is described in Chapter 7 of this manual.

2.1 Board-level Protocol-executable Modules

An ICP board-level protocol-executable module is an absolute image file containing

Motorola ColdFire® code and data developed on a Diab development system and sub-

sequently downloaded to the ICP. Any division of code and data among modules is

entirely arbitrary. For example, Protogate’s protocol software toolkit includes the fol-

lowing modules:

• A system-services module containing the OS/Protogate operating system kernel,

timer task, and XIO for the ICP2432B (osp_2432B.mem)

• A module comprising the sample protocol application for the ICP2432B

(sps_fw_2432B.mem)

• A module containing the source-level debug monitor for the ICP2432B

(icp2432Bc.mem) used only with the Wind River Systems’ SingleStep debugger
DC 900-2007A 31

Freeway ® Protocol Software Toolkit Programmer’s Guide
In general, the toolkit programmer develops or modifies one or more application mod-

ules or tasks that run with Protogate’s system-services module. Application tasks can

run concurrently.

Modules are downloaded to the ICP as individual entities as described in Chapter 4.

They are not linked with one another. Any shared information must be made available

to a module when it is created (in other words, during compilation or assembly) or

must be obtained by the module at the time of execution. Modules designed to execute

in the OS/Protogate environment access system services through the use of software

traps and, in general, communicate with other tasks through OS/Protogate services,

using public task and queue IDs.

For these reasons, and because there are no provisions in the OS/Protogate environ-

ment for memory protection, it is essential to document the system resources required

by a module if it is to execute in combination with other modules. The following infor-

mation is provided for each module developed by Protogate and defined in the *.spc

files:

• Reserved areas of memory for code, data, and stack space

• Reserved exception vector table entries

• Dependencies on, or conflicts with, other modules

• Configuration requirements (number of tasks, priorities, queues, alarms,

resources, and partitions for the configuration table parameter list)

• Task initialization structures to be included in the configuration table

• Reserved task, queue, alarm, resource, and partition IDs (to avoid conflict with

user-added modules and as public information for intertask communication)

During the design and development of your application, you can use this information

to build a complete system composed of compatible and cooperating modules. In addi-
32 DC 900-2007A

2: Wind River for the ICP
tion, your application code must provide a system configuration that is adequate for the

combined needs of all the modules in the system, and it must include the required task

initialization structures.

2.2 Development Tools

Modules are developed at Protogate using Wind River Systems’ Diab C/C++ cross-

compiler, assembler, and linker, and the SingleStep debugger. This section describes the

issues related to the development of download modules from the perspective of the

tools that Protogate has chosen.

2.2.1 WRS Compiler/Assembler/Linker

Protogate has worked with Wind River Systems (WRS) to offer source-level debugging

for the toolkit using the WRS SingleStep debugger for the ColdFire® microprocessor

family. To use the SingleStep debugger, see Chapter 5.

The WRS tools are available on SUN UNIX workstations and PCs running Windows.

The Diab C/C++ cross-compiler and SingleStep debugger must be purchased directly

from Wind River Systems.

The following WRS documents apply to these development tools:

• Diab C/C++ for the ColdFire® Microprocessor Family

• SingleStep Debugger for the ColdFire® Microprocessor Family

The Diab C/C++ package is designed specifically for the Motorola ColdFire® family

and includes a complete development system with a C compiler, an assembler, a linker,

and a downloader. The WRS assembler allows you to define multiple relocatable

regions, identified by region names. These regions are mapped into the target memory

structure by the linker using a linker specification file. This file allows you to map vari-

ous regions to particular addresses and position them in ROM or RAM as needed. The

C compiler automatically splits output into five standard regions for code, strings, con-
DC 900-2007A 33

Freeway ® Protocol Software Toolkit Programmer’s Guide
stant data, initialized data, and uninitialized data. The freeway/icp-

code/proto_kit/icp2432B1 directory contains a sample make file (makefile) and two

sample linker specification files (sps.dld, sps_os.spc) which can be used to build the

sps_fw_2432B.mem image. The second file is provided so that the source for OS/Proto-

gate will also be accessible during debugging.

2.3 Interfacing to the Operating System

The assembly and C language interfaces to OS/Protogate are described in the Freeway

OS/ProtogateProgrammer’s Guide. The freeway/icpcode/proto_kit/src directory con-

tains source code for a C interface library (oscif.h and oscif.asm). The routines in this

library are written according to the subroutine calling conventions of the Diab compiler

and can be easily modified for most other C compilers or high-level language compil-

ers.

The interface routines are necessary when accessing OS/Protogate from C language

routines for two reasons. First, OS/Protogate’s system calls are accessed through a soft-

ware trap instruction, which cannot be generated directly from C. Second, the subrou-

tine calling conventions of the Diab compiler (where parameters are passed mainly on

the stack) differ from those of the OS/Protogate system calls (where parameters are

passed in registers). The interface routines must perform the necessary translations

before and after OS/Protogate system calls.

The oscif.h file contains C structure definitions for all relevant operating system data

structures.

For programs written in assembly language, the freeway/icpcode/proto_kit/src

directory includes the files sysequ.asm, with OS/Protogate system call macros, and

oscif.asm, with assembly language definitions of OS/Protogate data structures. These

1. icpnnnn refers to the icp2424, icp2432, icp6000, or icp6030 directory.
34 DC 900-2007A

2: Wind River for the ICP
files are in a format compatible with the Diab assembler, but can also be modified for

use by other assemblers.

2.4 Motorola ColdFire® Programming Environment

The Motorola ColdFire® CPU is a 32-bit microprocessor with 32-bit registers, internal

data paths, and addresses that provides a four-gigabyte direct addressing range. If your

application code will be written in assembly language, you will find the ColdFIre®

Microprocessor Family Programmer’s Reference Manual (Motorola) indispensable. It

contains information on the general-purpose and special registers, addressing modes,

instruction set, and exception processing. When programming in a higher-level lan-

guage, most aspects of the processor are relatively transparent. The following sections

present some general information to help you understand the ColdFire® programming

environment.

2.4.1 Processor Privilege States

The ColdFire® supports two privilege levels: user and supervisor. On the ICP, OS/Pro-

togate operates in supervisor state, as do all interrupt service routines and certain sec-

tions of the application code. All tasks (including the system-level timer) operate in user

state, where certain operations are not allowed. See the ColdFIre® Microprocessor Family

Programmer’s Reference Manual (Motorola) for additional information.

2.4.2 Stack Pointers

The ColdFire® special registers include a system stack pointer (SSP).

A stack pointer is pre-decremented when an element is added to the stack (pushed) and

post-incremented when an element is removed (popped). Stacks therefore grow from

higher to lower memory addresses, and the stack pointer always contains the address of

the element currently at the top of the stack.
DC 900-2007A 35

Freeway ® Protocol Software Toolkit Programmer’s Guide
During its initialization, OS/Protogate allocates space for the system stack and initial-

izes the SSP. The system stack is used whenever the processor is in supervisor state. This

includes system calls and all interrupt service routines, including those associated with

user applications.

You must allocate stack space for each application task you create and specify the initial

stack pointer in the task initialization structure (see Section 4.2.2 on page 53). The ini-

tial stack pointer should be specified as the ending address of the stack space plus one.

For example, if a task’s stack space is 0x40116000 through 0x410163FF, the initial stack

pointer should be specified as 0x40116400. OS/Protogate saves this initial value in the

task control block as the current stack pointer. When the task is dispatched, OS/Proto-

gate initializes the SP to the stack address saved in the task control block. When the task

is preempted, the task’s state (the contents of the general registers) is saved on its stack

and the current SP is again saved in the task control block.

When allocating a task’s stack, you must consider the space required at the deepest level

of nested subroutine calls, and allow 66 bytes for the registers saved when the task is

preempted. You need to allocate additional stack space for interrupt service routines, as

the SSP is used for interrupt processing.

Note
The stack spaces are defined in the linker specification file free-

way/icpcode/proto_kit/icp2432B/sps.dld.

2.4.3 Exception Vector Table

On the ColdFire®, interrupts and traps are processed through an exception vector table.

The ColdFire® vector base register points to the exception vector table, which contains

256 longword (four-byte) vectors. The vector base register is not accessible in user state,

so OS/Protogate provides the base address of the exception vector table in its system

address table. (See the Freeway OS/ProtogateProgrammer’s Guide.)
36 DC 900-2007A

2: Wind River for the ICP
The ColdFIre® Microprocessor Family Programmer’s Reference Manual (Motorola) lists

vector assignments as defined by the ColdFire® CPU. Table 2–1 lists the vectors that are

reserved for use by Protogate’s system software.

To install an interrupt service routine (ISR) for a particular device, multiply the vector

number by four to obtain the vector offset, add the offset to the base address of the

exception vector table, and store your ISR entry point at the resulting address.

When the device generates an interrupt, it supplies the ColdFire® CPU with the eight-

bit vector number, which the CPU multiplies by four to obtain a vector offset, then adds

the contents of the vector base register to obtain the vector address at which your ISR

entry point is stored. When interrupt servicing is complete, the ISR must terminate

with a “return from ISR” (s_iret) system call (described in the Freeway OS/Proto-

gateProgrammer’s Guide) if the interrupt requires that system services be invoked. Oth-

erwise, a return from exception (RTE) is sufficient.

Table 2–1: Vectors Reserved for System Software

Vector Number
(Decimal)

Vector Offset
(Hexadecimal) Function

25 64 Auto vector level 1

26 68 Auto vector level 2

27 6C Auto vector level 3

28 70 Auto vector level 4

32 80 TRAP # 0

33 84 TRAP # 1

34 88 TRAP # 2

35 8C TRAP # 3

36 90 TRAP # 4

37 94 TRAP # 5

47 BC TRAP # 15
DC 900-2007A 37

Freeway ® Protocol Software Toolkit Programmer’s Guide
When programming interrupt service routines in a high-level language, it is usually

necessary to provide an assembly language “shell” for the ISR in order to save certain

registers.

For example, the Diab compiler saves on entry and restores on exit all registers used in

a subroutine except D0, D1, A0, and A1, which are considered working registers. The

calling code must save these registers, if necessary, before making a subroutine call.

These calling conventions, however, are not sufficient for ISRs. An ISR is not “called” in

the ordinary sense; it interrupts code that might currently be using the working regis-

ters. The ISR must, therefore, save those registers as well.

Because many compilers cannot distinguish between an ordinary subroutine and an

interrupt service routine, the programmer must provide an assembly language shell to

save the working registers on entry and restore them at completion of the ISR. (Note

that it is the address of the shell rather than the high-level language routine that must

be stored in the appropriate vector of the exception vector table.) Figure 2–1 shows a

sample assembly language shell.

2.4.4 Interrupt Priority Levels

The Motorola ColdFire® supports seven levels of prioritized interrupts, with level 7

being the highest priority. Any number of devices can be chained to interrupt at the

SECTION 9
XREF _Cisr external reference to C isr
XDEF _isr_shell external definition for C code

* which stores this address
* in the exception vector table
_isr_shell

movem.l d0/d1/a0/a1,-(sp) save registers not saved by C
jsr _Cisr call C routine for interrupt

* processing
movem.l (sp)+,d0/d1/a0/a1 restore registers
s_iret return from isr (system call)

Figure 2–1: Assembly Language Shell
38 DC 900-2007A

2: Wind River for the ICP
same priority. Table 2–2 shows the interrupt priorities for the various ICP’s hardware

devices.

When an interrupt occurs at a particular priority, the interrupt mask field in the Cold-

Fire®’s status register is set to the priority level of that interrupt, causing other inter-

rupts at the same or lower priorities to be ignored. When interrupt servicing is

complete, the interrupt mask level in the status register is returned to its previous value,

at which time pending interrupts at lower priorities can be serviced.

The interrupt priority level can be changed by directly modifying the mask field in the

status register, but this is possible only in supervisor state. OS/Protogate includes a sys-

tem call that can be called from the task level to modify the interrupt priority level.

The ColdFIre® Microprocessor Family Programmer’s Reference Manual (Motorola) con-

tains important information that should be studied before implementing interrupt-

level code.

2.5 ICP2432B Hardware Device Programming

The ICP2432 uses the Motorola ColdFire® CPU. The ColdFire® includes:

• Integer Arithmetic CPU

Table 2–2: ICP Interrupt Priority Assignments

Device(s) Level

ICP2432B

NMI and Bus Error Logic 7

Integrated Universal Serial Controllers (IUSC) 5

Integrated periodic timer interrupt 4

PCIbus 1
DC 900-2007A 39

Freeway ® Protocol Software Toolkit Programmer’s Guide
• a two-channel DMA controller

• a two-channel universal asynchronous receiver/transmitter (UART)

• a periodic interrupt timer

• two counter/timers

• A parallel digital port used as an LED register

In addition to the Motorola ColdFire®, the ICP2432B’s programmable devices include:

• two, four, or eight Z16C32 integrated universal serial controllers (IUSCs) with

integral DMA

• Sipex’s SP503 (ICP2432B-4) or SP506 (ICP2432B-2) multi-mode serial transceiv-

ers

• a test mode register

Note
The 8-port ICP2432B only supports EIA-232.

2.5.1 Programming the ColdFire®

The ColdFire®’s serial port 1 is used as a console port. The second serial port is ear-

marked for use as a printer port or for use by the SingleStep debugger.

The ColdFire®’s parallel port control the red and green LEDs on the mounting bracket.

Table 2–3 contains the information needed to turn the green and red LEDs on and off.

OS/Protogate uses the periodic interrupt timer, which uses vector 0x40.

2.5.2 Programming the Integrated Universal Serial Controllers

The Z16C32 IUSCs are used to control the ICP’s serial ports. Each IUSC controls trans-

mit and receive operations for one port. The IUSC also includes a DMA facility. Refer
40 DC 900-2007A

2: Wind River for the ICP
to the Z16C32 IUSC Integrated Universal Serial Controller Technical Manual, for IUSC

programming instructions. The sample protocol software package includes examples of

IUSC programming for asynchronous, byte synchronous and bit synchronous commu-

nications. See Chapter 6 for more information.

2.5.3 Programming Sipex’s Multi-Mode Serial Transceivers

The ICP2432B uses the SP503 or SP506 multi-mode serial transceivers. These trans-

ceivers allow software to select the electrical protocol to be used while communicating

on the serial line. Table 2–4 gives the value to be written into the transceiver to select the

corresponding electrical interface. See Chapter 3 for the addresses of the transceivers.

Table 2–3: LED Control Information

Address Value Operation

0x3000_0248 0x01 Green LED on

0x3000_0248 0x02 Red LED on

0x3000_0248 0x00 Both on

0x3000_0248 0x03 Both off

Table 2–4: SP503 or SP506 Electrical Interface Values

Interface Value

RS-232 0x02

RS-422 w/0 term 0x04

RS-422 w term 0x05

RS-449 or EIA-530 0x0d

V.35 0x0e
DC 900-2007A 41

Freeway ® Protocol Software Toolkit Programmer’s Guide
2.5.4 Programming the Test Mode Register

All modem control signals except Test Mode are handled directly by the IUSC associ-

ated with the port. The Test Mode input status for all supported ports is through the

Test Mode register located at 0x6001_0000. When a bit is set to one, the Test Mode sig-

nal is asserted on the serial line. See Figure 2–2.

Figure 2–2: Test Mode Register, ICP2432

Address = 0x60010000, byte wide, read only

01237 456
42 DC 900-2007A

Chapter
3 Memory Organization
This chapter describes the memory maps for the ICP2432B.

3.1 ICP2432B

The 64-kilobyte EPROM (Flash) on the ICP2432B is located at address 0x0000_0000.

The EPROM contains the diagnostics, PEEKER debugging tool, and boot loader.

Thirty-two (32) megabytes of synchronous dynamic random access memory (SDRAM)

starts at 0x4000_0000. Memory addresses 0x4000_0000 to 0x4010_0000 are reserved.

The system services module (containing the operating systems and XIO) is loaded

beginning at address 0x4010_0000. As described in Section 4.3.1 on page 56, the fixed

memory requirements for a particular version of the system services module are speci-

fied in the spsdefs.h file, and additional memory required for the OS/Protogate’s con-

figurable data section depends on the system configuration. The rest of the SDRAM is

available for user applications.

The ICP2432B Hardware Description and Theory of Operation provides a complete

memory map. Table 3–1 summarizes the hardware device and register addresses.
DC 900-2007A 43

Freeway ® Protocol Software Toolkit Programmer’s Guide
Table 3–1: ICP2432B Device and Register Addresses

Device or Register
Base Address

(Hexadecimal)

Base address of IUSC for Port 0 40000_0000

Base address of IUSC for Port 1 40000_1000

Base address of IUSC for Port 2 40000_2000

Base address of IUSC for Port 3 40000_3000

Base address of IUSC for Port 4 40000_4000

Base address of IUSC for Port 5 40000_5000

Base address of IUSC for Port 6 40000_6000

Base address of IUSC for Port 7 40000_7000

SP503 or 506 for Port 0 40000_8000

SP503 or 506 for Port 1 40000_9000

SP503 or 506 for Port 2 40000_A000

SP503 or 506 for Port 3 40000_B000
44 DC 900-2007A

Chapter
4 ICP Download,
Configuration,
and Initialization
Section 4.1 of this chapter describes additional download considerations not covered in

the Freeway Server User’s Guide or the Freeway embedded user’s guide so you can

download the toolkit protocol software with or without the Wind River Systems (WRS)

debug monitor. Section 4.2 describes configuration and initialization issues. Section 4.3

describes the relationship between the system configuration and OS/Protogate’s mem-

ory requirements and performance.

4.1 Download Procedures

4.1.1 Freeway Server Download Procedure

The protocol software toolkit installation procedure is described in the Freeway Server

User’s Guide. On UNIX systems, all subdirectories are installed by default under the

directory named /usr/local/freeway. On VMS systems, all subdirectories are installed

by default under the directory named SYS$SYSDEVICE:[FREEWAY]. On Windows NT sys-

tems, all subdirectories are installed by default under the directory named c:\freeway.

It is highly recommended that you use these default directories.

During the software installation, boot, and test procedures described in the Freeway

Server User’s Guide, the non-debug version of the toolkit software is downloaded to the

ICP. However, during toolkit application development, you must modify your Freeway

server boot configuration file and then reboot the Freeway server to download and start

the debug monitor module. Section 4.1.1.1 and Section 4.1.1.2 describe the files and

modifications required to download with or without the Wind River Systems (WRS)

SingleStep monitor.
DC 900-2007A 45

Freeway ® Protocol Software Toolkit Programmer’s Guide
The Freeway server boot configuration file, used to control the download procedure, is

covered in detail in the Freeway Server User’s Guide. The boot configuration file is

located in the freeway/boot directory (for example, bootcfg.pci for a Freeway

3100/3200/3400/3600). The download script file parameter (download_script) in the

boot configuration file specifies the modules to be downloaded to the ICP and the

memory location for each module. You must modify the download_script parameter as

described in Section 4.1.1.2 when you need to change between debug and non-debug

operation.

When you reboot the Freeway server, the modules are downloaded to the ICP in two

stages. First, the server software uses a file transfer program to download the modules

to the server’s local memory. The modules are then transferred across the PCIbus to the

ICP.

PCIbus transfers are handled by the ICP’s CPU. The server software provides the loca-

tion and size of the binary images and the address in the ICP’s SDRAM at which the

modules should be loaded, and then signals the ICP to begin the download process.
46 DC 900-2007A

4: ICP Download, Configuration, and Initialization
4.1.1.1 Downloading Without the Debug Monitor

Under normal operations you download the toolkit software without the debug moni-

tor. The following files are required:

ssssppppssssllllooooaaaadddd This is the download script file. You must specify this file

name for the download_script parameter in your boot con-

figuration file. The file is in the freeway/boot directory.

oooosssspppp____2222444433332222BBBB....mmmmeeeemmmm
This is the system-services module containing the OS/Proto-

gate operating system kernel, timer task, and XIO. This file is

in the freeway/boot directory.

sps_fw_2432B.mem
This is the toolkit sample protocol software (SPS) module.

This file is in the freeway/boot directory. Source files are in

the freeway/icpcode/proto_kit/src directory. If you make

changes to the source files, you must rebuild the

sps_fw_2432b.mem module before downloading. The make-

file is in the freeway/icpcode/proto_kit/icp2432b direc-

tory.

Figure 4–1 shows the spsload download script file that downloads the toolkit software

when you reboot the Freeway server. Uncomment the “normal” lines associated with

the type of ICP you are using and modify path names as needed. Do not change the

memory locations (such as 40100000) for the LOAD commands.
DC 900-2007A 47

Freeway ® Protocol Software Toolkit Programmer’s Guide
Protocol load files are referenced from the server boot configuration file
#
load files contain LOAD and INIT commands.
LOAD <fully qualified path name to the .mem file> <load address>
INIT <initialization address>
#
each protocol toolkit load file must contain an osimpact .mem file,
a protocol toolkit .mem file and a buffer size file.
#
Uncomment the ICP load/init section below for your ICP model and
modify the path to match the actual installation path. The examples
below are for the default UNIX installation. (see the bootcfg example
file for example path syntax for various host machines)
#
the below is an example for the icp2432B normal
#
#LOAD /usr/local/freeway/boot/osp_2432B.mem 40100000
#LOAD /usr/local/freeway/boot/snmp_2432B.mem 40110000
#LOAD /usr/local/freeway/boot/sps_2432B.mem 40120000
#LOAD /usr/local/freeway/boot/buffer.size 4011fff0
#INIT 40120000
#
the below is an example for the icp243B2 debug
#
#LOAD /usr/local/freeway/boot/osp_2432B.mem 40100000
#LOAD /usr/local/freeway/boot/snmp_2432B.mem 40110000
#LOAD /usr/local/freeway/icpcode/boot/icp2432bc.mem 40001000
#LOAD /usr/local/freeway/boot/sps_2432B.mem 40120000
#LOAD /usr/local/freeway/boot/buffer.size 4011fff0
#INIT 40001000

Figure 4–1: Protocol Toolkit Download Script File (spsload)
48 DC 900-2007A

4: ICP Download, Configuration, and Initialization
4.1.1.2 Downloading With the SingleStep Monitor

During application development you must download the toolkit software with the

debug monitor. The WRS tools are not compatible with VMS platforms, but Windows

versions are available. If you are a VMS user, you can develop and debug your software

with these tools using a PC running under Windows and a utility to transport files from

the PC to the VMS system. Chapter 5 explains how to use the WRS debug tools.

The following files are required:

ssssppppssssllllooooaaaadddd This is the download script file. You must specify this file name

for the download_script parameter in your boot configuration

file. The file is in the freeway/boot directory.

iiiiccccpppp2222444433332222bbbbcccc....mmmmeeeemmmm

This module contains the source-level debug monitor. This file

is in the freeway/icpcode/proto_kit/icpboot directory.

ssssppppssss____ffffwwww____2222444433332222bbbb....mmmmeeeemmmm

This is the toolkit sample protocol software (SPS) module. This

file is in the freeway/boot directory. Source files are in the

freeway/icpcode/proto_kit/src directory. If you make

changes to the source files, you must rebuild the

sps_fw_2432b.mem module before downloading. The makefile

is in the freeway/icpcode/proto_kit/icp2432b directory.

Figure 4–1 on page 48 shows the spsload download script file that downloads the tool-

kit software when you reboot the Freeway server. Uncomment the “debug” lines associ-

ated with the type of ICP you are using and modify path names as needed. Do not

change the memory locations (such as 40100000) for the LOAD commands.

When the WRS debug monitor is downloaded along with other executable image files,

the placement and order of execution of the downloaded code is different. The down-

load addresses of the modules can differ, and the debug module will be first to execute.
DC 900-2007A 49

Freeway ® Protocol Software Toolkit Programmer’s Guide
Note that the monitor must use SDRAM from 0x40110000 to 0x40120000 on the

ICP2432B.

4.1.2 Freeway Embedded Download Procedure

As with the Freeway server environment described in Section 4.1.1, the freeway/boot/

spsload file defines the files to be downloaded to the embedded ICP. Uncomment the

lines associated with the type of ICP you are using and modify path names as needed.

Do not change the memory locations (such as 40100000) for the LOAD commands.

The ICPs are loaded by the program icpload (a Windows NT service) which is nor-

mally executed during the start up of the host system. During development, the ICPs

may be loaded or reloaded by running spsload.

4.2 OS/Protogate Configuration and Initialization

A complete ICP run-time system is composed of a system-services module and one or

more user-application modules. One of the user-application modules must include a

configuration table and a system task initialization routine. For example, the system-

services module provided with toolkit is the binary image file (osp_2432B.mem), and the

sample user-application modules are the sample protocol software binary image

(sps_fw_2432B.mem).

The last step of the download script file specifies an entry point or start-up address for

execution of the downloaded code (see the INIT command in Figure 4–1). This entry

point must be the address of your system task initialization routine (or the address of

the icp2432Bc.mem debug module if you are running with the WRS debug monitor).
50 DC 900-2007A

4: ICP Download, Configuration, and Initialization
Figure 4–2 shows a sample memory layout that specifies the download and start-up

locations in the ICP2432B’s RAM for the system-services module and sample protocol

application.

Figure 4–2: ICP2432B Memory Layout with Application Only

ICP2432B SDRAM

Reserved

System
Services
Module

Task Initializtion Routine

User Application

Buffer Pools

0x4000_0000

0x4010_0000

0x4011_0000

0x4200_0000

(osp_2432B.mem)

(snmp_2432B.mem)

34
03

0x4012_0000
(sps_2432B.mem)

SNMP Support Routines
DC 900-2007A 51

Freeway ® Protocol Software Toolkit Programmer’s Guide
Figure 4–3 shows a similar ICP2432B configuration consisting of the system-services

module, WRS debug monitor, and sample protocol application.

Figure 4–3: ICP2432B Memory Layout with Application and SingleStep Monitor

ICP2432B SDRAM

Reserved

System
Services
Module

Task Initializtion Routine

User Application

Buffer Pools

0x4000_0000

0x4010_0000

0x4011_0000

0x4200_0000

(osp_2432B.mem)

(snmp_2432B.mem)

34
04

SingleStep Monitor
0x4000_1000

(icp2432Bc.mem)

0x4012_0000
(sps_2432B.mem)

SNMP Support Routines

Reserved
0x4000_0000
52 DC 900-2007A

4: ICP Download, Configuration, and Initialization
4.2.1 Configuration Table

The format of the configuration table is defined in the Freeway OS/ProtogateProgram-

mer’s Guide and consists of a list of configurable parameters and a list of task initializa-

tion structures.

OS/Protogate creates its data structures based on the values of the parameters, then cre-

ates a task for each task initialization structure.

Section 4.3 discusses the selection of appropriate configuration parameters. Figure 4–4

gives an example of a configuration table (not including the task initialization struc-

tures).

4.2.2 Task Initialization Structures

A list of task initialization structures must follow the configuration table. The sample

configuration table shown previously in Figure 4–4 is repeated in Figure 4–5 with task

initialization structures for a sample task.

_spsccf
DC.W 5 number of tasks
DC.W 4 number of priorities
DC.W 350 number of queues
DC.W 32 number of alarms
DC.W 4 number of partitions
DC.W 0 number of resources
DC.W 10 tick length (milliseconds)
DC.W 0 ticks for time slice
DC.L 0 no user clock isr

Figure 4–4: Sample Configuration Table
DC 900-2007A 53

Freeway ® Protocol Software Toolkit Programmer’s Guide
Figure 4–5: Sample Configuration Table with Task Initialization Structures

*
* Configuration Table
*
 .text

 .global _spscfg

_spscfg
 DC.W 5 number of tasks
 DC.W 4 number of priorities
 DC.W 350 number of queues
 DC.W 32 number of alarms
 DC.W 4 number of partitions
 DC.W 0 number of resources
 DC.W 10 tick length
 DC.W 0 ticks for time slice
 DC.L 0 no user clock isr

* Task Initialization Structure for the sample protocol task

 DC.W SPSTSK_ID task ID
 DC.W 2 task priority
 DC.L _spstsk entry point address
 DC.L SPSSTKTOP initial stack pointer
 DC.W 0 time slice enabled
 DC.W 0 filler (not used)

* Task Initialization Structure for the spshio (utility) task

 DC.W SPSHIO_ID task ID
 DC.W 2 task priority
 DC.L _spshio entry point address
 DC.L STKTOP_HIO initial stack pointer
 DC.W 0 time slice enabled
 DC.W 0 filler (not used)

* end of list
 DC.W 0 end of list marker
54 DC 900-2007A

4: ICP Download, Configuration, and Initialization
4.2.3 Task Initialization Routine

A task initialization routine is supplied to be used at the start-up of the ICP. The task

initialization routine is executed at the completion of the download sequence and per-

forms the following functions:

1. Load the configuration table address into register A0.

2. Loads the operating system initialization entry point address into register A1.

3. Jumps to the operating system initialization entry point “osinit.”

4.2.4 OS/Protogate Initialization

Once the task initialization routine passes control to “osinit”, the following operations

are performed:

1. Initialize system stack pointer, exception vector table, and clock interrupts (using

the tick length specified in the configuration table).

2. Build data structures (task control blocks, queue control blocks, and so on)

according to parameters specified in the configuration table.

3. Allocate space for the timer task’s stack and create the task.

4. Use the task initialization structures included in the configuration table to create

one or more application tasks.

5. Transfer control to the kernel’s dispatcher to begin normal run-time operations.

The timer task is the highest priority in the system and is dispatched first. It performs

certain initialization procedures and then stops, after which the other tasks that were

created are dispatched in order of priority.
DC 900-2007A 55

Freeway ® Protocol Software Toolkit Programmer’s Guide
4.3 Determining Configuration Parameters

Although the design of a system should never be constrained by its configuration, when

available memory is extremely limited or system performance is critical, it might be

wise to consider the relationship between the system configuration and OS/Protogate’s

memory requirements and performance. These relationships are discussed in the fol-

lowing sections.

4.3.1 OS/Protogate Memory Requirements

OS/Protogate requires memory space for code, system data, stacks, and the exception

vector table. Some data requirements are fixed, and some are dependent on the system

configuration. The space required for the exception vector table, code, and fixed data

for a particular version of the operating system can be found in osp_2432B.map for

osp_2432B.mem. The number of bytes required for the system stacks and configurable

data structures can be calculated as shown in Table 4–1.

Table 4–2, which is based on the configuration shown previously in Figure 4–4 on

page 53, shows a sample calculation used to determine the total number of system data

bytes required. The total memory requirements for the system are calculated by adding

Table 4–1: System Data Requirements

Stack Bytes Required

Supervisor stack 1024

Timer task’s stack 512

Task control blocks Number of tasks x 24

Queue control blocks Number of queues x 20

Partition control blocks Number of partitions x 28

Resource control blocks Number of resources x 16

Alarm control blocks Number of alarms x 28

Task alarm control blocks Number of tasks x 28

Dispatch queues ((Number of priorities + 1) x 8) + 4
56 DC 900-2007A

4: ICP Download, Configuration, and Initialization
the total number of system bytes required to the ending address of the system services

module and rounding up, if necessary, to an even multiple of four bytes.

Table 4–2: Sample Calculation of System Data Requirements

Stack Bytes Required

Supervisor stack 1024

Timer task’s stack 512

Task control blocks 8 x 24 = 192

Queue control blocks 30 x 20 = 600

Partition control blocks 4 x 28 = 112

Resource control blocks 0 x 16 = 0

Alarm control blocks 10 x 28 = 280

Task alarm control blocks 8 x 28 = 224

Dispatch queues ((5 + 1) x 8) + 4 = 52

2996

or

0xBB4
DC 900-2007A 57

Freeway ® Protocol Software Toolkit Programmer’s Guide
4.3.2 Configuration and System Performance

The following fields of the configuration table define the number of control structures

to be allocated during system initialization:

As described in Section 4.3.2.1, the values of these fields, no matter how large, have no

effect on system performance. The cf_nprior field determines the number of task pri-

orities in the system and affects performance as described in Section 4.3.2.2. The

cf_ltick field determines the length of a “tick” and the cf_lslice field determines the

length of a time slice. The relationships of these fields to system performance are dis-

cussed in Section 4.3.2.3.

4.3.2.1 Number of Configured Task Control Structures

The cf_ntask field of the configuration table defines the number of task control blocks

to be allocated in the system. Task control blocks are allocated sequentially, forming an

array of structures. The task ID is used as an index into the array to locate a particular

task control block. Therefore, the processing time required to access any task control

block is fixed and is not dependent on the number of task control blocks in the system.

Likewise, and for the same reason, the number of queue control blocks, alarm control

blocks, partition control blocks, and resource control blocks has no effect on system

performance.

4.3.2.2 Number of Configured Priorities

The cf_nprior field of the configuration table determines the number of task priorities

to be defined. A dispatch queue is created for each priority. When the head pointer for

cf_ntask Task control blocks and task alarm control blocks

cf_nque Queue control blocks

cf_nalarm Alarm control blocks

cf_npart Partition control blocks

cf_nresrc Resource control blocks
58 DC 900-2007A

4: ICP Download, Configuration, and Initialization
a particular dispatch queue is zero, the queue is empty (in other words, no task is sched-

uled for execution at that priority). When the head pointer is non-zero, it contains the

address of a task control block corresponding to a task that is scheduled for execution

at that priority. Whenever a task switch occurs, the system dispatcher tests the head

pointer of each dispatch queue, in order of priority, until a non-zero value is encoun-

tered, then dispatches the task indicated by the task control block address. Because the

dispatch queues are searched sequentially, a large number of priorities can adversely

affect system performance. There is no benefit to configuring more priorities than

required by the system design.
DC 900-2007A 59

Freeway ® Protocol Software Toolkit Programmer’s Guide
For example, suppose that a particular system consists of the following tasks:

The operation of that system is no different than the operation of a system with the

same tasks at the following priorities:

The priority of task 5 is no lower in the second system than in the first. The difference

between the priorities of tasks 1 and 2 is no greater in the second system than in the first.

However, the first system executes more efficiently because it requires the configuration

of only three priorities (priority 0 is added automatically for the timer task), and the

dispatcher must search a maximum of only four dispatch queues at each task switch,

rather than the 201 required by the second system.

Task ID Priority

1 0 (timer task)

2 1 (reserved)

3 2

4 2

5 3

Task ID Priority

1 0 (timer task)

2 50 (reserved)

3 75

4 75

5 200
60 DC 900-2007A

4: ICP Download, Configuration, and Initialization
4.3.2.3 Tick and Time Slice Lengths

Ticks measure the duration of alarms and the system’s time slice period. The cf_ltick

field of the configuration table specifies the length of a tick (1 to 222 milliseconds).

The length of a tick should be set to the smallest of the following values:

• The minimum duration of any alarm in the system

• The maximum acceptable error in an alarm duration

• The desired time slice duration

Because each tick corresponds to a clock interrupt and involves processing by the clock

interrupt service routine, setting the tick length to a smaller value than is actually

required results in increased overhead and a degradation in system performance.

The cf_lslice field of the configuration table specifies the number of ticks for each

time slice. The time slice should be long enough to allow each task adequate processing

time before being preempted (in other words, to avoid “thrashing”), but not so long

that any task is able to prevent other tasks from executing in a timely fashion. (If no

tasks in the system are created with time slicing enabled, the length of the time slice is

immaterial.)
DC 900-2007A 61

Freeway ® Protocol Software Toolkit Programmer’s Guide
62 DC 900-2007A

Chapter
5 Debugging
The debugging facilities available depend on whether Wind River Systems’ or some

other cross development environment is being used. This chapter describes the debug-

ging facilities provided.

5.1 PEEKER Debugging Tool

PEEKER is a low-level peek and poke routine stored in the ICP2432B’s PROM. To use

PEEKER, attach a 9600 b/s terminal directly to the ICP’s console port with a standard

DB-9 to 10 pin box connector cable. To enter PEEKER, type Control-C on the ICP’s

console device, depress the NMI switch on the ICP2432B’s card near the top edge or

execute a trap #15 in your code.

On entry, PEEKER displays the current values of the ColdFire®’s register set.

PEEKER allows you to examine and modify locations in the ICP’s memory space by

bytes, words, or longwords.

In response to PEEKER’s prompt (pk>), enter Control-X to return to PEEKER’s caller or

enter the hex address of a location to examine or modify it.

To examine a location, enter:

• the location’s address in hexadecimal

• the access width (preceded by a semicolon):

• b for byte
DC 900-2007A 63

Freeway ® Protocol Software Toolkit Programmer’s Guide
• w for word

• l for a longword

• an equal sign

PEEKER then displays the address and contents of the given address in the form speci-

fied. The data may be modified by entering the new hexadecimal value followed by “^”,

“=”, a space, or a return as listed below.

The following is a typical example:

pk> 1111000000000000;;;;bbbb====
0000.1000 01 n <<<<rrrreeeettttuuuurrrrnnnn>>>>
0000.1001 10 p <<<<rrrreeeettttuuuurrrrnnnn>>>>
0000.1000 01 <<<<rrrreeeettttuuuurrrrnnnn>>>>
pk>

PEEKER uses the following special characters to navigate and/or process inputs:

^ Close current location, open previous location (in address
space), and display contents

= Close current location, open current location (in address
space), and display contents

space Close current location, open next location (in address space),
and display contents

return Close current location and return PEEKER to its initial state,
waiting for a new address or Control-X

b Open by byte

circumflex (^) Close current location, open previous location (in address
space), and display contents

comma Field delimiter between address and data

Control-X (exit) Return to whomever called PEEKER

delete Return PEEKER to its initial state

equal sign Close current location, open current location (in address
space), and display contents
64 DC 900-2007A

5: Debugging
When PEEKER is entered, a brief summary of the special characters is published after

the register dump:

Peek & Poke <address>[,<data>][;<b, w or l>]<p, =, n, or <return>>
R/r = dump registers
ctrl/x = return to caller

The ICP2432B has “reset” and “abort” (NMI) pushbuttons on its circuit board. Pushing

the NMI button allows you to break out of loops and gain control even if the CPU is at

level seven.

Note
If the vector table entry for Autovector 7 or the vector base register

has been corrupted, the result of pushing the NMI button is inde-

terminate.

l Open by longword

linefeed Control-J Close current location, open next location (in address space),
and display contents

space Close current location, open next location (in address space),
and display contents

n (next) Close current location, open next location (in address space),
and display contents

p Close current location, open previous location (in address
space), and display contents

period Ignore, but echo

r or R Publish registers and return PEEKER to initial state

<return> <esc> Close and return to initial state

u (up) Close current location, open previous location (in address
space), and display contents

underscore Ignore, but echo

w Open by word (default)
DC 900-2007A 65

Freeway ® Protocol Software Toolkit Programmer’s Guide
5.2 SingleStep Debugging Tool

The SingleStep Debugger for the ColdFire® Microprocessor Family manual describes how

to use the SingleStep debugging tool provided by Wind River Systems (WRS). Sing-

leStep is a symbolic debugger that allows developers to debug optimized C code for

ColdFire® target systems. The debugger can interface with the ICP in two ways: Via the

monitor, which is loaded into the ICP SDRAM along with the OS and the application

code and the “serial printer” port on the ICP; or via the Background Debug Mode

(BDM) connection (26 pin header on the ICP). The BDM method is the more powerful

and is recommended.

VMS users must have a PC running DOS and a utility to transport files from the PC to

the VMS system.

Modules built with WRS development tools can be downloaded to the ICP along with

the WRS RAM-based debug monitor. This monitor runs on the ICP and communicates

with SingleStep through one of the ColdFire®’s UARTs. You must connect the UART

by a cable from the ICP’s “serial printer” port to a serial port on the SingleStep host

machine. SingleStep instructs the monitor to set breakpoints, dump memory, view reg-

isters, and so on.

You must perform the following basic operations to use SingleStep monitor:

1. In the spsload file, uncomment (remove the pound sign) the LOAD command for

the debug monitor.

2. Install cables that connect the serial port on the SingleStep host machine with the

“serial printer” port on the ICP.

3. Reboot the Freeway server or rerun icpload on the embedded product to down-

load the SPS software and SingleStep monitor to the ICP.

Once the cables have been properly installed, launch SingleStep on you Windows

machine.
66 DC 900-2007A

5: Debugging
Configure the serial communications option for 9600 baud 8 bits, no parity and NO

flow control. Be sure to copy the sstep.ini and the MCF5407.cfg files from the

/user/freeway/.../icp2432b directory. Select either sps.lo or sps.los as the debug file.

Please read the READ ME file delivered in the above icp2432b directory

Consult the SingleStep Debugger for the ColdFire® Microprocessor Family manual for

complete instructions on commands, aliases, and so on.
DC 900-2007A 67

Freeway ® Protocol Software Toolkit Programmer’s Guide
5.3 System Panic Codes

Protogate’s OS/Protogate system software generates an illegal instruction trap (using

the ILLEGAL instruction) when it encounters a non-recoverable error condition. Before

executing the ILLEGAL instruction, the operating system stores a “panic code” in the

gs_panic field of the global system table. The format and location of the global system

table is described in the Freeway OS/ProtogateProgrammer’s Guide, and Appendix A in

that document describes the OS/Protogate panic codes.

XIO pushes its panic code onto the stack and calls hio_panic, which executes an illegal

instruction. The illegal instruction will then trap to PEEKER or the SingleStep monitor.

User applications can handle error conditions in the same manner to their own assem-

bly language panic routine.
68 DC 900-2007A

Chapter
6 ICP Software
6.1 ICP-resident Modules

The ICP-resident sample protocol software (SPS) is downloaded in addition to the sys-

tem services module. The sps_fw_2432B.mem module contains the task-level code and

interrupt service routines.

Functionally, the sample protocol software is composed of the protocol and utility tasks

and a group of interrupt service routines. Figure 6–1 shows a block diagram of the Free-

way server and Figure 6–2 shows a block diagram of the Freeway embedded product.

6.1.1 System Initialization

As the last step of the SPS download (Section 4.1 on page 45), the system is initialized

at the address of a system task initialization routine that is part of the SPS module. The

task initialization routine loads the address of the system configuration table into regis-

ter A0 and jumps to OS/Protogate’s initialization entry point (osinit). The SPS task ini-

tialization routine and configuration table, described in Section 4.2 on page 50, are

located in the spsasm.asm file located in the freeway/icpcode/proto_kit/src directory.

OS/Protogate’s osinit routine initializes the operating system variables and data struc-

tures, then creates the timer task and the tasks specified in the configuration table.

These are the protocol task (spstsk) and the utility task (spshio). Section 4.2.4

describes the osinit procedure in more detail.
DC 900-2007A 69

Freeway ® Protocol Software Toolkit Programmer’s Guide
Figure 6–1: Block Diagram of the Sample Protocol Software - Freeway Server

ICP

XIO

Server Processor

SPS Test
Program

Application
Program
Interface

Boot
Loader

Low-level
Debugger

Power-up/
Reset

Diagnostics

PROM

SDS
Debug

Monitor

ISAbus,
PCIbus, or
VMEbus

VxWorks

Server-
resident

Applications

Server/ICP
Driver

Utility
Task

. . .
Serial Ports

Protocol
Task

Receive
Post-processor

Device-specific Procedures

Start Transmit Start ReceiveInitialization

Specific Conditions

Device-specific ISRs

Transmit Receive

Transmit
Pre-processor

34
15
70 DC 900-2007A

6: ICP Software
Figure 6–2: Block Diagram of the Sample Protocol Software - Freeway Embedded

ICP

XIO

Host Processor

SPS Test
Program

Application
Program
Interface

Boot
Loader

Low-level
Debugger

Power-up/
Reset

Diagnostics

PROM

SDS
Debug

Monitor

ISAbus,
PCIbus, or
VMEbus

ICP Driver

Utility
Task

. . .
Serial Ports

Protocol
Task

Receive
Post-processor

Device-specific Procedures

Start Transmit Start ReceiveInitialization

Specific Conditions

Device-specific ISRs

Transmit Receive

Transmit
Pre-processor

34
16

Host OS
DC 900-2007A 71

Freeway ® Protocol Software Toolkit Programmer’s Guide
6.1.2 Protocol Task

This section explains the buffer management method for writing to or reading from the

ICP’s host. The eXecutive Input/Output (XIO) interface is a collection of function calls

that are executed in the context of the user’s application tasks. XIO uses queues that are

declared by the utility task.

XIO consists of simple function calls. Section 7.4 on page 108 gives details of XIO.

During its initialization, the protocol task creates queues for each link, which relate to

the stages and direction of data flow as follows:

After initialization completes, the protocol task operates in a loop. Within the loop, it

makes a series of subroutine calls for each link. In the chkhio subroutine, the protocol

task checks for messages from the ICP’s host that have been routed to the individual

queues by the utility task; these messages are then processed according to command

type. For a transmit data block command, the message is not processed immediately,

but is transferred to the link’s board-to-link queue, where it is later processed in the

chkloq subroutine.

In the chkloq subroutine, which is called only for active links, the protocol task sends

data buffers associated with completed transmit messages back to the application pro-

gram as write acknowledgments and checks the board-to-link queue for transmissions

that are ready to be started.

In the chkliq subroutine, also called only for active links, the protocol task checks the

link-to-board queue for buffers that have been filled with received data at the interrupt

Board-to-Server Queue Link-to-Board Queue

Server ICP Serial

Line

Server-to-Board Queue Board-to-Link Queue
72 DC 900-2007A

6: ICP Software
level. Completed received data messages are sent to the link’s board-to-server queue to

await processing by the utility task.

When all links have been processed, the protocol task suspends. It continues when a

message is posted to any of its queues or when an interrupt service routine notifies it

that a transmit or receive operation has completed. The interface between the protocol

task and its interrupt service routines is described in Section 6.2.

The SPS utility task, spshio, sets up an interface to XIO during its initialization, then

enters a loop. Within the loop, it checks its input queue for returned header buffers as

well as messages from the ICP’s host that have arrived on node 1 and node 2. It also

checks the protocol task’s board-to-server queues for messages to be sent to the host. It

then suspends, and will be unsuspended by the protocol task or when a message is

posted to its input queue. The operation of the utility task is described more completely

in Section 6.1.3.

6.1.3 Utility Task (spshio)

The ICP-resident software communicates indirectly with the ICP’s host through the

part of the system services module called the XIO interface. The utility task, spshio,

handles the interface between the protocol task, spstsk, and XIO. This section describes

the utility task and its relationship with the protocol task. Chapter 7 provides a more

detailed explanation of the ICP/host protocol used for communication between the

utility task and XIO.

As described in Section 6.1.2, the protocol task, spstsk, creates an board-to-server

queue and a server-to-board queue for each link during its initialization. These queues

hold messages to be transferred to and from the ICP’s host by the utility task.

(Section 7.2.3 on page 97 describes the node declaration queues.) The protocol task is

also responsible for creating the buffer partition that contains data buffers to be used

for passing data to and from the ICP’s host. The size of the buffers created for this par-
DC 900-2007A 73

Freeway ® Protocol Software Toolkit Programmer’s Guide
tition depends on the value of the buffer.size file which is downloaded with the appli-

cation. (See the /freeway/boot/spsload file.)

During initialization, the utility task creates the header buffer partition and posts node

declaration queue requests to XIO to establish nodes to be used by the ICP for reading

from, and writing to, the ICP’s host. As requested by the utility task, XIO creates read

and/or write request queues for each node. Node 1 (the main node) and node 2 (the

priority node) are special insofar as all information coming to the ICP from the ICP’s

host arrives through these nodes. These nodes do have write queues, and in rare cases

(such as rejecting an erroneous attach request) are used to pass information back to the

ICP’s host, but for the most part they are a one-way path for messages coming from the

ICP’s host. These messages are then de-multiplexed to the various links. The remaining

nodes are used strictly by the ICP for writing to the ICP’s host.

The utility task begins by creating all the nodes as well as the queues for the system

header and data buffers. After this initialization, the utility task operates in a loop and

performs the following functions:

1. Keeps reads posted on the main and priority nodes

2. Distributes incoming buffers to the correct server-to-board queues

3. Posts buffers from the board-to-server queues to the appropriate nodes

The utility task is also responsible for the verification of session and link IDs, and for

swapping bytes within words (to allow for differences in word ordering for Big Endian

(Motorola) and Little Endian (Intel and VAX)), both for messages coming from and

messages going to the ICP’s host. When no message processing is required, the utility

task suspends and will be unsuspended by the protocol task or when a message is posted

to its input queue.

The following sections provide detailed examples of read and write processing by the

utility task. Figure 6–3 shows the SPS message format.
74 DC 900-2007A

6: ICP Software
Figure 6–3: Sample Protocol Software Message Format

Header Buffer

Data Buffer

Host Request
Header

System Buffer
Header

ICP_HDR
PROT_HDR

Data

System Buffer
Header

Portion
transferred
to or from

ICP

Portion
transmitted

or
received on
serial link

2523
DC 900-2007A 75

Freeway ® Protocol Software Toolkit Programmer’s Guide
6.1.3.1 Read Request Processing

The utility task, spshio, issues read requests to XIO to obtain messages from the ICP’s

host, which could be either data or control messages. A message from the ICP’s host

contains one of the command codes described in Section 8.5. The

DLI_PROT_SEND_NORM_DATA command code is used as an example in this section to

describe the steps involved in processing read requests. Figure 6–4 illustrates these

steps.

1. To obtain messages from the ICP’s host, the utility task creates read request queue

elements composed of headers from partition H and data buffers from partition

D. The utility task sets the disposition flags in the system buffer headers to inform

XIO of the action it should take when the request is complete. It also sets the node

number in the host request header for XIO to use in communicating with the

host. Sixteen queue elements are created for node 1 and sixteen for node 2. These

are the only nodes to which the host can write.

2. The utility task issues read requests to XIO for each queue element created in

Step 1.

3. For each read request, XIO posts a read to the Read Request Queue associated

with the node identified in the host request header.

4. When the ICP’s host sends a write request to its driver, XIO transfers the message

to the data buffer, and the ICP read request issued in step 2 is complete.

5. XIO posts the header and the data buffer to the utility task’s data and header input

queues for node 1 or 2.

6. The protocol and utility tasks then do the following:

a. Based on the session or link field of the ICP header, the utility task multi-

plexes and transfers the data buffers from its data input queue to the appro-

priate server-to-board queue.
76 DC 900-2007A

6: ICP Software
Figure 6–4: ICP Read Request (Transmit Data) Processing

Utility Task

Input Header
Queues

Read
Request
Queues

XIO

Read Request
Queue Element

Header
Buffer

3242

node 1

5

• • •

Header buffer partition H

Data buffer partition D

Server-to-Board
Queues

Protocol Task

• • •

6b
Transmit

data

link 0

link 1
•
•
•

link 15

Data
From
Server

2

node 1

node 2

3

4

node 2

node 2

node 1

Data
Buffer

Input Data
Queues

6a

6c

1

DC 900-2007A 77

Freeway ® Protocol Software Toolkit Programmer’s Guide
b. The protocol task removes data buffers from the server-to-board queue,

processes the requests, then releases the buffers to partition D or uses them

to send acknowledgments back to the application program.

c. The utility task obtains additional data buffers from partition D and links

them to header buffers that were returned to its header input queue. It then

issues new read request to XIO for node 1 or 2 (depending on the node from

which the header buffers were returned). In this way, the utility task

attempts to keep at least one read request pending at all times.

6.1.3.2 Write Request Processing

The utility task issues write requests to XIO when data is received on a serial line or in

response to other requests from the ICP’s host. A message to the ICP’s host can contain

a received data block, a statistics report, an error message, or some other acknowledg-

ment to a client application program. A received data block is used as an example in this

section to describe the steps involved in processing write requests. Figure 6–5 illustrates

these steps.

1. The protocol task obtains a data buffer from partition D, to be filled with data

received on a particular link. When a block of data has been received, the protocol

task posts the buffer to the link’s board-to-server queue.

2. When the utility task finds the data buffer on the board-to-server queue, it links

the buffer to a header buffer obtained from partition H, creating a write request

queue element. The utility task sets the disposition flags in the system buffer

headers to inform XIO of the action it should take when the request is complete.

It also sets the link’s previously assigned node number in the host request header

for XIO to use in communicating with the host.

3. After filling out the data length and session fields of the ICP and PROT headers,

the utility task issues the write request to XIO.
78 DC 900-2007A

6: ICP Software
Figure 6–5: ICP Write Request (Receive Data) Processing

Utility Task

• • •

Header buffer partition H

ICP-to-Server
Queues

Protocol Task

Receive
data

XIO

Data
Buffer

Header
Buffer

Data to
server

Write Request
Queue Element

• • •

Data buffer partition D

2

1
link 0

link 1
•
•
•

link 15

3243

node 4

node 18

•
•
•

node 3

Write
Request
Queues

4

5

3

6

DC 900-2007A 79

Freeway ® Protocol Software Toolkit Programmer’s Guide
4. XIO posts a write to the Write Request Queue associated with the node identified

in the host request header.

5. When the ICP’s host sends a read request to its driver with a matching node num-

ber, XIO transfers the message from the data buffer to the ICP’s host memory and

the ICP write request issued in step 3 is complete.

6. As instructed by the disposition flags, XIO releases the header and data buffers to

their respective partitions.

6.2 Control of Transmit and Receive Operations

Various techniques are available for coordinating transmit and receive operations at the

task and interrupt level. The simplest method is to start every operation from the task

level. In this case, a signal of some kind must be sent from the interrupt service routine

to the task level at completion, at which time the task can start the next operation. This

is the method used by the SPS for data transmissions.

Another option is to maintain a queue of messages. To save time in the interrupt service

routine, messages can be added to the tail and removed from the head of the queue at

the task level, with the interrupt service routine moving from message to message

within the queue using a link field in the buffer headers. An example of this technique

is provided by the SPS receive operations.

The following sections describe the task/interrupt-service-routine interface used to

control transmit and receive operations for the SPS.
80 DC 900-2007A

6: ICP Software
6.2.1 Link Control Tables

The protocol and utility tasks and the interrupt service routines communicate and

coordinate their operations for each link by means of a global link control table. One

link control table is allocated for each link. The link control table contains state infor-

mation, queue IDs, configuration parameters, IUSC register values and/or addresses,

transmit and receive control parameters, configuration-specific subroutine addresses,

statistics information, and so on. The link control table is defined in

/freeway/icpcode/proto_kit/src/spsstructs.h. Please review it with your favorite

editor before reading the following discussions.
DC 900-2007A 81

Freeway ® Protocol Software Toolkit Programmer’s Guide
6.2.2 SPS/ISR Interface for Transmit Messages

When the protocol task receives a transmit data block message on a link’s server-to-

board queue, it moves the message to the link’s board-to-link queue to await transmis-

sion. The board-to-link queue is processed in the chkloq subroutine according to the

mode of communication.

The lct_flags field in the link control table is cleared by the protocol task when it ini-

tiates a transmission and is set by the interrupt service routine when the transmission is

finished. A transmission can be initiated only when the link is in the IDLE state. The

protocol task points the transmit data block message on the head of the board-to-link

queue, calls the appropriate preprocess routine for the protocol to prepare the data for

transmission, and calls the subroutine xmton to set up the hardware devices for trans-

mission of the data. Xmton clears the flags field in the buffer’s headers and clears the

lct_flags and states in the link control table. When the transmit completes, the inter-

rupt service routine sets flags in the buffer’s headers, initializes the lct_flags and

states in the link control table, and resumes the protocol task. The protocol task releases

the completed buffer and starts the transmission of the next message on the queue.

6.2.3 SPS/ISR Interface for Received Messages

When a link is enabled, the rcvstr subroutine for the requested protocol (located in

asydev_iusc.c, bscdev_iusc.c, and sdlcdev_iusc.c) is called, which calls “restock” to

preallocate data buffers from the data buffer partition for posting to the link-to-board

queue. The lct_frbuf field in the link control table is set to the address of the first buffer

on the queue.

When a frame is received, the buffer is filled, and the interrupt service routine updates

lct_frbuf to the next buffer on the queue using the sb_nxte field in the system buffer

header. (The interrupt service routine does not unlink the filled buffer from the queue).

In the chkliq subroutine, the protocol task determines whether the buffer at the head

of the queue has been completed (a block has been received). If the receive is finished,
82 DC 900-2007A

6: ICP Software
and the protocol task removes the buffer from the link-to-board queue, calls the appro-

priate postprocessor to process the data before passing it to the application program,

posts it to the board-to-server queue, and resumes the utility task which passes the mes-

sage to the host.

Whenever the protocol task removes a buffer from the head of the link-to-board queue,

it restocks the queue. In this way, the protocol task maintains several available buffers

for received messages.

Figure 6–6 shows a link-to-board queue containing four buffers. Two are filled and

waiting for removal by the protocol task. The third buffer is set up for the current

receive.

Figure 6–6: Sample Link-to-Board Queue

System Buffer
Header

data

System Buffer
Header

data

System Buffer
Header

System Buffer
Header

ICP Header ICP Header ICP Header ICP Header

queue
head lct_frbuf

queue
tail

DMA transfer address

2401

Protocol HeaderProtocol HeaderProtocol HeaderProtocol Header
DC 900-2007A 83

Freeway ® Protocol Software Toolkit Programmer’s Guide
6.3 Interrupt Service

At the interrupt level, the SPS provides specific examples of IUSC programming for

asynchronous (ASYNC), byte synchronous (BSC), and bit synchronous (HDLC/SDLC)

modes of operation. At the same time, examples are provided for:

• operation with and without the use of DMA

• C and assembly language programming

• CRC calculation in hardware (by the IUSC) or in software

Table 6–1 summarizes these features for each mode of operation.

6.3.1 ISR Operation in HDLC/SDLC Mode

In HDLC/SDLC mode, DMA is used for both transmit and receive. The IUSC automat-

ically provides the opening and closing flags on transmit. The DMA transfer count is set

to the number of bytes in the frame, not including CRC and flags. The IUSC is set to

calculate the CRC during transmission of the frame and to send the CRC when it

detects a transmit underrun. When the DMA reaches terminal count (and no longer

Table 6–1: Summary of Communication Modes

Asynchronous BSC HDLC/SDLC

IUSC mode Asynchronous Byte synchronous Bit synchronous

Data transfer method Character interrupts Character
interrupts/DMA

DMA

Start block detection
(receive)

ISR search for start
character

IUSC detects SYNC
character

IUSC detects opening
flag

End block detection
(receive)

ISR search for end
character

Byte count in header IUSC detects closing
flag

CRC calculation Software Software IUSC

ISR programming
language

C Assembly/C C
84 DC 900-2007A

6: ICP Software
transfers characters to the IUSC), a transmit underrun is generated. The IUSC trans-

mits the two-byte CRC followed by a closing flag to terminate the frame.

To receive, the DMA transfer count is set to the maximum block size and will not nor-

mally reach terminal count. The IUSC automatically calculates CRC during the

received frame and generates an end-of-frame (special receive condition) interrupt

when the closing flag is detected. The interrupt service routine reads an SCC register to

determine whether the CRC that the SCC calculated matched the CRC bytes received at

the end of the frame. The IUSC posts the status of the reception in the linked list header

record (located at the end of the data buffer) which is then examined by the ISR.

The following interrupts are processed in HDLC/SDLC mode:

IUSC End of Buffer If terminal count is reached before end-of-frame, the received

message is too long (receiving more data would overrun the receive buffer). In

this case, the interrupt service routine increments an error count and restarts the

receiver using the current receive buffer.

IUSC RDMA Complete This interrupt is generated at the end of a received frame. If

the IUSC indicates a CRC error, an error count is incremented, and the receiver is

restarted using the current buffer. If the CRC is good, the receiver is restarted

using the next buffer in the link-to-board queue.

IUSC End of Buffer This interrupt is enabled only by the external or transmit status

interrupt service routine when a transmit underrun occurs while the transmit

buffer is not yet empty. The end of the transmission is processed.

Loss of DCD An error count is incremented and the receiver is restarted using

the current receive buffer.

Abort An error count is incremented and the receiver is restarted using the cur-

rent receive buffer.
DC 900-2007A 85

Freeway ® Protocol Software Toolkit Programmer’s Guide
Transmit Underrun If the DMA has reached terminal count, transmit underrun

can cause an external/status interrupt. This indicates end-of-frame on

transmit, although the final character of the frame might not yet be com-

pletely sent. If the SCC transmit buffer is empty, the end of the transmission

is processed. Otherwise, the SCC’s transmit interrupt is enabled, so the end

of the transmission can be processed when the transmit buffer becomes

empty. If a transmit underrun interrupt is generated when the DMA has not

reached terminal count, an actual underrun has occurred. An error count is

incremented, but the transmission is allowed to continue. (The receiving

link detects a CRC error on the frame.)

6.3.2 ISR Operation in Asynchronous Mode

For asynchronous mode, DMA (conditional compile option for the IUSC) is not used

for either transmit or receive. Rather, the IUSC is set up to generate interrupts on every

character received and transmitted. On transmit, a count is decremented as each char-

acter is written to the IUSC’s transmit buffer, and the block is complete when the count

reaches zero. On receive, user-configured start and end characters are used to delimit a

block. CRC, if enabled, is calculated and compared at the task level.

The following interrupts are serviced in asynchronous mode:

IUSC Receive Character Available This interrupt is generated on every received char-

acter. The receive interrupt service routine is state-driven. After transferring the

received character from the IUSC receiver to the receive data buffer, the interrupt

service routine processes the character according to the current state:

State 0 Search for start character. If the start character is found, move to state 1;

otherwise, take no action and ignore the current character (it will be over-

written by the next character).

State 1 Receive frame. Check for stop character. If the stop character is found and

CRC is enabled, move to state 2. If the stop character is found and CRC is
86 DC 900-2007A

6: ICP Software
not enabled, process the end of received block and restart the receiver at

state 0 using the next buffer in the link-to-board queue. If the stop char-

acter is not found, store the character and increment the count.

State 2 First CRC byte. Move to state 3.

State 3 Second CRC byte. Process the end of received block and restart the

receiver at state 0 using the next buffer in the link-to-board queue.

IUSC Receive Status This interrupt is generated on receiver overrun, parity error, or

framing error. The appropriate error count is incremented, but the receive is not

aborted.

IUSC Transmit Buffer Empty This interrupt is generated on every transmitted charac-

ter. The transmit byte count is decremented, and the end of the transmission is

processed if the count has reached zero. (The next transmission is started at the

task level.) The IUSC is set up to interrupt when there are 16 bytes free in its

transmit FIFO and up to 16 bytes are loaded during each interrupt.

6.3.3 ISR Operation in BSC Mode

In BSC mode, a simple header is prepended to the start of the data block, containing a

user-configured start character and a byte count. For transmit, the DMA transfer count

is set to the number of bytes in the block, including the header and the two-byte CRC,

if enabled. The CRC is calculated and appended to the data at the task level.

For receive, the IUSC is initially set up to generate interrupts on every character

received. Each character is compared to the configured start character. Once the start

character has been found, the remainder of the BSC header can be received. The DMA

transfer count is set to the value specified in the BSC header, IUSC receive interrupts are

disabled, and DMA is used to receive the remainder of the message.
DC 900-2007A 87

Freeway ® Protocol Software Toolkit Programmer’s Guide
The following interrupts are processed in BSC mode:

IUSC Receive Character Available While enabled, this interrupt is generated on every

received character. No data is transferred to the receive buffer until the data count

is received. When the entire three-byte header has been received, the interrupt

service routine disables receive and special receive condition interrupts, sets the

DMA transfer count according to the count field of the BSC header (plus two if

CRC is enabled), and initiates DMA transfer.

IUSC Special Receive Condition While enabled (before and during reception of the

BSC header), this interrupt is generated on receiver overrun errors. An error

count is incremented and the receive is aborted.

IUSC End of Buffer This interrupt is generated when the data portion of a BSC mes-

sage has been received. The interrupt service routine re-enables IUSC receive and

special receive condition interrupts and restarts the receiver using the next buffer

in the link-to-board queue. CRC, if enabled, is checked at the task level.

IUSC End of Buffer This interrupt is generated at the end of a transmitted frame. The

interrupt service routine processes the end of the transmission. (The next trans-

mission is started at the task level.)
88 DC 900-2007A

Chapter
7 Host/ICP Interface
This chapter describes the interface between the ICP’s host processor and an ICP. This

interface will be referred to as the host/ICP interface. It is managed by an XIO interface

which runs on the ICP, in the OS/Protogate environment, and provides a queue-driven,

non-blocking interface to the host processor. Section 7.4 on page 108 gives details of

XIO.

7.1 ICP’s Host Interface Protocol

Communications between the ICP’s host and the ICPs is performed by the host’s driver,

icp.c, and the ICP’s driver, XIO. Information concerning any data transfers between

the two is passed through a Protocol eXchange Region (PXR).

The PXR for the ICP2432 is implemented via mailboxes within the PCI interface chip.

They are accessed as 32-bit entities so that the issue of little or big endian are alleviated.

The ICP2432B is responsible for actually moving the data buffers between the host and

the ICP.

When the host has a buffer into which data may be transferred, it issues a “read” request

to the ICP along with the address of the buffer and the maximum amount of data it can

hold. When the ICP receives a matching request from its application program, it moves

the data into the host’s buffer and then signals the host that the “read” is complete.

When the host has a buffer of data ready to transfer to the ICP, it issues a “write” request

to the ICP with the address of the data’s buffer and the amount of data in it. When the
DC 900-2007A 89

Freeway ® Protocol Software Toolkit Programmer’s Guide
ICP receives a matching request from its application program, it transfers the data and

signals the host with a “write” complete.

Since this protocol is asynchronous, the host can send any number of requests to the

ICP without waiting for completions on previous requests, and the ICP can process

requests and return completions in any order.

The ICP driver and the host driver coordinate the information flowing between the ICP

and the host processor by means of node numbers. Each node can have one read and

one write queue. At startup, the utility task creates the nodes it will be using, up to the

maximum number of nodes allowed by the configuration parameters of the two driv-

ers.

The ICP posts read requests to node 1 (the main node) and node 2 (the priority node);

all information coming to the ICP from the host processor arrives through these two

nodes. These nodes do have write queues, and in rare cases (such as rejecting an erro-

neous attach request) are used to pass information to the ICP’s host, but for the most

part they are a one-way path for messages coming from the host; these messages are

then de-multiplexed to the various links. The remaining nodes are used strictly by the

ICP for writing to the host. The ICP read request processing is explained in more detail

in Section 6.1.3.1 on page 76 and is shown in Figure 6–4 on page 77.

After a message bound for the application program is processed by the protocol task, it

is posted to the board-to-server queue belonging to that link. The utility task subse-

quently removes the message from that queue, prefixes a properly initialized buffer

header (for example, providing information on what to do with process completions),

then posts it as a write request to a write queue belonging to one of the nodes created at

startup. (The particular node is ascertained by indexing into the session table and

accessing the node number field by means of the unique session ID that was assigned to

that link as a result of a prior attach command.) XIO then passes the message through

to the host processor. The ICP write request processing is explained in more detail in

Section 6.1.3.2 on page 78 and is shown in Figure 6–5 on page 79.
90 DC 900-2007A

7: Host/ICP Interface
Note that when a request completion is received from the host processor, XIO uses the

node number and request type to match the completion with a pending request. There-

fore XIO does not send the host processor a request for a particular node number until

any pending request from the same node number is complete. Additionally, requests for

any queue are sent to the host processor in the same order they were posted to the

queue, but no order is guaranteed for requests posted to different queues. Likewise,

notifications of completion are guaranteed to be in the same order that the completions

were received from the host processor, but the host processor is not required to send

completions in the same order that it received the requests. XIO provides two options

for processing the request completions. These options are described in Section 7.2.3.1

on page 99.

7.2 Queue Elements

In general, a queue element consists of one or more linked buffers, and a queue can con-

tain one or more linked queue elements. Every buffer of a queue element contains a

standard system buffer header, as defined in the Freeway OS/ProtogateProgrammer’s

Guide. A field in each buffer’s header is used as a link to the next buffer of the queue ele-

ment. Two fields in the header are valid only in the first buffer of a queue element. One

field is a link to the next element on a queue and the other, if the queue is doubly linked,

is a link to the previous element.

A buffer can be obtained from a system partition (using the get buffer, s_breq, system

call), but this is not a requirement. Any block of memory large enough to contain a sys-

tem buffer header can be used as a buffer (for example, a fixed data structure defined

within an ICP-resident application). There is no maximum buffer size, no maximum

number of buffers in a queue element, and no maximum number of queue elements

attached to a queue.

Figure 7–1 shows a singly-linked sample queue containing three queue elements.

Figure 7–2 shows a doubly-linked sample queue containing three queue elements.
DC 900-2007A 91

Freeway ® Protocol Software Toolkit Programmer’s Guide
Figure 7–1: Sample Singly-linked Queue with Three Elements

0

0

next element

next buffer

data

data

0

next buffer

data

0

0

0

next buffer

data

data

queue head queue tail

Legend

2450

system buffer header

buffer

queue element

next element

0

data

next element

prev element

next buffer
92 DC 900-2007A

7: Host/ICP Interface
Figure 7–2: Sample Doubly-linked Queue with Three Elements

queue head queue tail

Legend

0

0

0

0

0

0

next element

next buffer

prev element

next element

next buffer

prev element

0

prev element

next element

2451

system buffer header

buffer

queue element

data data data

data

data

0

0

next buffer

data
DC 900-2007A 93

Freeway ® Protocol Software Toolkit Programmer’s Guide
7.2.1 System Buffer Header

As mentioned previously, every buffer of every queue element must begin with a system

buffer header. The following structure defines the format of the system buffer header:

struct SBH_TYPE
{

struct SBH_TYPE *sb_nxte; /* next element */
struct SBH_TYPE *sb_pree; /* previous element */
struct SBH_TYPE *sb_thse; /* this element */
struct SBH_TYPE *sb_nxtb; /* next buffer */
unsigned short sb_pid; /* partition ID */
unsigned short sb_dlen; /* data length */
unsigned short sb_disp; /* disposition flag */
unsigned short sb_dmod; /* disposition modifier */

};

The header fields, as used by the system, are described below:

Next Element This field is used only by the operating system, and only in the

first buffer of a queue element. While the element is attached to

a singly- or doubly-linked queue, this field contains the address

of the next element on the queue.

Previous Element This field is used only by the operating system, and only in the

first buffer of a queue element. While the element is attached to

a doubly-linked queue, this field contains the address of the

previous element on the queue.

This Element This field is used only by the operating system, and only in the

first buffer of the queue element, as a consistency check when

the element is posted to or removed from a queue. This field

contains the address of the buffer itself (that is, the address of

the queue element).
94 DC 900-2007A

7: Host/ICP Interface
Next Buffer This field contains the address of the next buffer of the queue

element. In general, this field must be zero in the last buffer. In

the data buffer of a host request queue element, XIO uses this

field for a special purpose, as described in Section 7.2.4.1 on

page 104.

Partition ID This field contains the partition ID if the buffer was obtained

from a partition.

Data Length This field contains the number of valid bytes of data in the

buffer (excluding the system buffer header).

Disposition Flag This field, in combination with the disposition modifier, indi-

cates the action to be taken by XIO when processing of the

queue element is complete (when the request completion is

received from the host). This flag has the following possible val-

ues:

POST_QE Post queue element to queue

FREE_QE Zero disposition modifier to mark queue ele-

ment free

TOKEN_QE Release queue element to a resource

POST_BUF Post buffer to queue

FREE_BUF Zero disposition modifier to mark buffer free

TOKEN_BUF Release buffer to a resource

REL_BUF Release buffer to partition

POST_QE, FREE_QE, and TOKEN_QE are valid only in the first buffer

of a queue element and apply to the entire queue element (the
DC 900-2007A 95

Freeway ® Protocol Software Toolkit Programmer’s Guide
disposition flag is then ignored in all other buffers of the queue

element). POST_BUF, FREE_BUF, TOKEN_BUF, and REL_BUF are valid

in all buffers and apply only to an individual buffer. For exam-

ple, in a queue element consisting of only one buffer, POST_QE is

equivalent to POST_BUF, but for a multiple-buffer queue ele-

ment, the value POST_QE in the first buffer indicates that the

queue element is to be posted to a particular queue intact, but

the value POST_BUF in every buffer indicates that each buffer is

to be posted to a queue as an individual queue element.

Section 7.2.3.1 on page 99 and Section 7.2.4.1 on page 104

describe the use of this field in more detail.

Disposition modifier This field provides additional information required for com-

pletion processing by XIO. What is contained in this field

depends on the value of the disposition flag, as follows:

7.2.2 Queue Element Initialization

For the utility task to communicate with the host, it must post at least three node dec-

laration queue elements, described in Section 7.2.3, to XIO’s public node declaration

queue during its initialization. Two of these, the main node and the priority node, are

the conduits for passing information from the host to the ICP. The remaining nodes

Disposition Flag Disposition Modifier

POST_QE Queue ID

FREE_QE Non-zero value to be cleared

TOKEN_QE Resource ID

POST_BUF Queue ID

FREE_BUF Non-zero value to be cleared

TOKEN_BUF Resource ID

REL_BUF Not used
96 DC 900-2007A

7: Host/ICP Interface
are used by your ICP-resident software to send information in the form of data and

command acknowledgments to the host processor.

Each node declaration queue element must contain a unique ICP node number and

unique queue IDs which will be used for the read and write queues for that node. Once

this operation is complete, the utility task can begin posting host request queue ele-

ments, described in Section 7.2.4, to these queues. The following sections describe the

two types of queue elements.

7.2.3 Node Declaration Queue Element

The utility task, spshio, creates node declaration queue elements, generally during ini-

tialization, and posts them to XIO. These queue elements identify the ICP node number

that the task will use and queue IDs to which either read or write requests (or both) for

that node will be posted. (XIO creates the queues. Only the queue IDs are supplied by

the utility task.) In your code, you can declare several nodes (up to the maximum

allowed by the driver), but you must post a separate node declaration queue element for

each.

Since ICP node numbers must be unique throughout an ICP subsystem, a task can

declare a node number only once; no other tasks can make a declaration using that

node number. The queue IDs associated with declared node numbers must also be

unique. A single ID cannot be used as both the read and write queue for a node, nor can

it be used for other nodes or for any other purpose.

The node declaration queue element consists of a single buffer containing a system

buffer header followed by a node declaration header. The queue element is shown in

Figure 7–3 and has the following format:
DC 900-2007A 97

Freeway ® Protocol Software Toolkit Programmer’s Guide
struct NODEC_TYPE
{

struct SBH_TYPE sbh; /* system buffer header */
unsigned short rqid; /* host read request queue ID */
unsigned short wqid; /* host write request queue ID */
unsigned char node; /* ICP node number */
unsigned char status; /* completion status */

};

Figure 7–3: Node Declaration Queue Element

Fields that require
initialization

Legend

System
Buffer
Header

Node
Declaration
Header

2452

sb_nxte

sb_pree

sb_thse

sb_nxtb = 0

sb_pid

sb_dlen

sb_disp

sb_dmod

rqid

wqid

node status
98 DC 900-2007A

7: Host/ICP Interface
7.2.3.1 System Buffer Header Initialization

In the system buffer header, the sb_thse field must be set to the starting address of the

buffer. (This field is set by the system if the buffer was obtained from a partition.) The

sb_nxtb field must be set to zero. The disposition flag, sb_disp, and disposition modi-

fier, sb_dmod, fields must be initialized as described in the following paragraphs, but no

other fields in the system buffer header require specific initialization.

The disposition flag must be set to one of the values defined for the field as described in

Section 7.2.1 on page 94. If the requesting task obtained the buffer from a partition, and

if it does not require notification when the request has been processed by XIO, the value

REL_BUF can be used; this causes XIO to release the buffer to its partition on completion.

However, since a post to either of the host request queue IDs specified in the queue ele-

ment fails if XIO has not yet processed the request (and created the queues), tasks gen-

erally request completion notification. Since the queue element consists of only one

buffer, POST_QE and POST_BUF are equivalent, and cause XIO to post the queue element

to a specified queue. Likewise, FREE_QE and FREE_BUF are equivalent, and cause XIO to

clear the disposition modifier. TOKEN_QE and TOKEN_BUF are also equivalent and cause

XIO to release the queue element to a specified resource.

If the disposition flag is set to POST_QE or POST_BUF, the disposition modifier must con-

tain a valid queue ID. If the requesting task is the owner of that queue, it then suspends

its operation, and resumes when XIO posts the queue element (with a post and resume

system call) to the queue on completion.

If FREE_QE or FREE_BUF is specified in the disposition flag, the disposition modifier

should be set to a non-zero value, so the requesting task can recognize the completion

when the field is cleared by XIO.

If TOKEN_QE or TOKEN_BUF is specified in the disposition flag, the disposition modifier

must contain a valid resource ID. The requesting task cannot use this method to obtain

completion information unless the node declaration queue element is the only token
DC 900-2007A 99

Freeway ® Protocol Software Toolkit Programmer’s Guide
associated with the resource. If this is the case, the task can make a resource request and

obtain the token when it is released by XIO on completion.

7.2.3.2 Completion Status

Before processing the completion of the queue element, XIO stores a completion code

in the status field of the node declaration header, as follows:

7.2.4 Host Request Queue Element

When your ICP-resident application or utility task posts a read or write request to the

host processor, it must create a queue element and post it to the appropriate node’s read

or write queue. The queue element consists of two buffers, a header buffer and a data

buffer. The header buffer contains a system buffer header followed by a host request

header. The next buffer (sp_nxtb) field of the system buffer header in the header buffer

contains the address of the data buffer. The data buffer also contains a system buffer

header, followed by an ICP header, a protocol header, and the received data, if any, that

will ultimately be transferred to the application program (in the case of a write request),

or the area to which data being sent from the application program will be transferred

(in the case of a read request).

Figure 7–4 shows an example of a host request queue element with an encapsulated

data buffer.

0 = Good completion

1 = The node number is out of range or already declared

2 = A queue create system call failed (the queue ID is out of range
or the queue already exists)
100 DC 900-2007A

7: Host/ICP Interface
Figure 7–4: Host Request Queue Element with Data Area

System
Buffer
Header

Server
Request
Header

System
Buffer
Header

•
•
•

•
•
•

Data Area
dlen

Fields that require initialization
(in all or some cases)

Legend

Data Buffer

Header Buffer

2453

sb_nxte

sb_pree

sb_thse

sb_pid

sb_dlen

subfunc

sb_nxte

sb_pree

sb_pid

sb_dlen

line

circuit

status

s_dlen

s_node i_node

ICP_HDR
PROT_HDR

sb_nxtb = 0

sb_disp

sb_dmod

funct

snode inode

sb_thse

sb_nxtb

sb_disp

sb_dmod

dlen
DC 900-2007A 101

Freeway ® Protocol Software Toolkit Programmer’s Guide
 The header buffer has the following structure:

struct SREQ_HDR_TYPE
{

struct SBH_TYPE sbh;
struct sreq_type req;

};

The two structures that make it up are as follows:

struct SBH_TYPE
{

struct SBH_TYPE *sb_nxte; /* next element */
struct SBH_TYPE *sb_pree; /* previous element */
struct SBH_TYPE *sb_thse; /* this element */
struct SBH_TYPE *sb_nxtb; /* next buffer */
unsigned short sb_pid; /* partition ID */
unsigned short sb_dlen; /* data length */
unsigned short sb_disp; /* disposition flag */
unsigned short sb_dmod; /* disposition modifier */

};

struct sreq_type
{

unsigned char funct; /* function code (read or write) */
unsigned char subfunct; /* subfunction code */
unsigned char snode; /* host node number */
unsigned char inode; /* ICP node number */
unsigned short line; /* line number */
unsigned short circuit; /* circuit number */
unsigned short dlen; /* data length, in bytes */
unsigned short status; /* completion code */
unsigned char s_node; /* actual host node number

 (on completion) */
unsigned char i_node; /* actual ICP node number

 (on completion) */
unsigned short s_dlen; /* actual number of bytes

 transferred */
};
102 DC 900-2007A

7: Host/ICP Interface
The data buffer has the following structure:

struct data_buffer
{
 struct SBH_TYPE sbh; /* (defined in oscif.h) */
 ICP_HDR icp_hdr;
 union
 {
 PROT_HDR prot_hdr;
 XMT_HDR xmt_hdr;
 } prot_hdrs;
 bit8 data; /* start of data */
};
typedef struct data_buffer DATA_BUFFER;

The structures that make it up are as follows:

struct SBH_TYPE
{
 struct SBH_TYPE *sb_nxte; /* next element */
 struct SBH_TYPE *sb_pree; /* previous element */
 struct SBH_TYPE *sb_thse; /* this element */
 struct SBH_TYPE *sb_nxtb; /* next buffer */
 unsigned short sb_pid; /* partition ID */
 unsigned short sb_dlen; /* data length */
 unsigned short sb_disp; /* disposition flag */
 unsigned short sb_dmod; /* disposition modifier */
};

struct icp_hdr /* ICP message header */
{
 bit16 su_id; /* service user (client) ID */
 bit16 sp_id; /* service provider (server) ID */
 bit16 count; /* size of data following this header */
 bit16 command; /* function code */
 bit16 status; /* function status */
 bit16 params[3]; /* API specific parameters */
};
typedef struct icp_hdr ICP_HDR;
DC 900-2007A 103

Freeway ® Protocol Software Toolkit Programmer’s Guide
struct prot_hdr /* Protocol message header */
{
 bit16 command; /* function code */
 bit16 modifier; /* function modifier */
 bit16 link; /* physical port number */
 bit16 circuit; /* data link circuit identifier */
 bit16 session; /* session identifier */
 bit16 sequence; /* message sequence number */
 bit16 reserved1; /* reserved */
 bit16 reserved2; /* reserved */
};
typedef struct prot_hdr PROT_HDR;

struct xmt_hdr
{
 bit32 flags; /* local transmit/receive flags */
 bit8 filler;
 bit8 syncs[8]; /* starting sync chars (BSC) */
 bit8 start_char; /* start char (BSC) */
 bit16 count;
};
typedef struct xmt_hdr XMT_HDR;

7.2.4.1 System Buffer Header Initialization

In the system buffer header of the header buffer (the first buffer of the queue element),

sb_thse must be initialized. (This field is set by the system if the buffer was obtained

from a partition.) The sb_nxtb field must be set to the starting address of the data buffer

(that is, to the start of its system buffer header). In addition, the disposition flag,

sb_disp, and possibly the disposition modifier, sb_dmod, must be initialized.

In the system buffer header of the second buffer (the data buffer), initialization of

sb_thse is not required. If the sb_nxtb field is set to zero, the remainder of the buffer

immediately follows the system buffer header. If the sb_nxtb field is non-zero, it must

contain a pointer to the first byte of the API header. For the data buffer, initialization of

the system buffer header’s disposition flag and disposition modifier might be required,

depending on the value of the header buffer’s disposition flag.
104 DC 900-2007A

7: Host/ICP Interface
In the header buffer, the disposition flag must be set to one of the values defined for the

field in Section 7.2.1 on page 94. If it is set to POST_QE, FREE_QE, or TOKEN_QE, the dispo-

sition flag in the data buffer is ignored. If the disposition flag in the header buffer is set

to POST_BUF, FREE_BUF, TOKEN_BUF, or REL_BUF, the disposition flag in the data buffer

must also be set to one of those four values, although not necessarily the same one.

These options are described in the following paragraphs.

In general, a task requires notification of the completion of a read request so that it can

process the message received from the ICP’s host. However, it might or might not

require notification of the completion of a write request. If the task obtained the buffers

of a queue element from a partition, and if it does not require notification when the

request has been processed by XIO, the value REL_BUF in the disposition flags of both

buffers causes XIO to release the buffers to their partitions on completion.

If the task is maintaining host request queue elements as resource tokens and does not

require notification when the request has been processed by XIO, the value TOKEN_QE in

the disposition flag and a resource ID in the disposition modifier of the header buffer

cause XIO to release the queue element to the resource on completion. Alternatively, the

task could maintain the individual buffers of the queue element as resource tokens, in

which case TOKEN_BUF should be stored in the disposition flag and resource ID in the

disposition modifier of both the header and data buffers.

For notification of the completion of a host request, a task can set the disposition flag in

the header buffer to POST_QE, in which case XIO, on completion, posts the queue ele-

ment, intact, to the queue specified in the disposition modifier of the header buffer.

Alternatively, the task can set the disposition flag in the header buffer to FREE_QE, in

which case XIO clears the disposition modifier in the header buffer on completion.

If the completion is to be processed separately for the two buffers of the queue element,

the requesting task can use the POST_BUF, FREE_BUF, and REL_BUF values, in any combi-

nation, for the disposition flags. For example, if the task obtained its data buffer from a

partition, but defined a fixed data structure as the header buffer, it might set the dispo-
DC 900-2007A 105

Freeway ® Protocol Software Toolkit Programmer’s Guide
sition flag in the header buffer to FREE_BUF and the disposition flag in the data buffer to

REL_BUF. Then, when the request is complete, the header buffer is marked free by XIO,

indicating to the task that it is available for re-use. The data buffer is released to its par-

tition by XIO, and requires no further processing.

If the disposition flag in either buffer is set to POST_QE or POST_BUF, the corresponding

disposition modifier must contain a valid queue ID. If the requesting task is the owner

of the queue, it can suspend its operation and resume when XIO posts the queue ele-

ment or buffer (with a post and resume, s_post, system call) to the queue on comple-

tion of the request.

If FREE_QE or FREE_BUF is specified in the disposition flag of either buffer, the corre-

sponding disposition modifier should be set to a non-zero value so that the requesting

task can recognize the completion when the field is cleared by XIO.

7.2.4.2 Host Request Header Initialization

The subfunction, line number, and circuit number fields of the host request header are

defined for compatibility with other Protogate products and are not used for the ICP.

The function code must be set to one of the following values:

When a node is declared, a host read request queue ID and a host write request queue

ID are defined. For both the main and priority nodes, at least one host request queue

element containing a read function code (in the funct field of the host request header)

must always be posted to that node’s read request queue, and a queue element contain-

ing a write function code must always be posted to that node’s write request queue.

For nodes specific to your ICP-resident task, at least one host request queue element

must always be posted to each node’s write request queue. For compatibility with other

0x02 = Write request

0x08 = Read request
106 DC 900-2007A

7: Host/ICP Interface
Protogate implementations, provisions exist for read request queues for these nodes;

however, they are not used in the Freeway implementation. In addition, for any node, a

host request queue element posted to either the read or write queue must contain a

matching ICP node number in the inode field of the host request header. The snode

field should be set as defined for the particular application. (This field is passed to the

host, but is not interpreted by XIO. In general, it is used on a write request to specify the

destination of the data, and is not used on a read request.)

As the data transfer address for the request, XIO passes to the host the address that is

stored in the sb_nxtb field of the data buffer’s system buffer header. If this value is zero,

XIO uses the beginning address of the data buffer plus the length of the system buffer

header instead. (The system buffer header itself, as well as any portion of the buffer that

separates the system buffer header from the data, are never transferred to or from the

host.) For a write request, the dlen field of the host request header should be set to the

actual number of bytes of data in the data buffer, excluding the system buffer header

and any portion of the buffer that separates the header from the data. For a read

request, the dlen field should be set to the maximum length of the data buffer, exclud-

ing the system buffer header and any portion of the buffer that separates the header

from the data.

No other fields of the host request header require initialization.

7.2.4.3 Completion Status

Before processing the completion of the queue element, XIO stores a completion code

in the status field of the host request header, as follows:

If the completion status is good, XIO also returns the node numbers supplied by the

host and the actual number of bytes transferred. The ICP node number is returned in

the i_node field, and always matches the ICP node number supplied by the requesting

SPS task in the inode field. The host node number is returned in the s_node field. For a

write, this value always matches the node number supplied by the requesting SPS task
DC 900-2007A 107

Freeway ® Protocol Software Toolkit Programmer’s Guide
in the snode field. For a read, the node number is generally not specified on request

(snode is not used), and on completion, the s_node field identifies the node number

from which the data was received.

Note that inode and i_node are two separate fields in the host request header, as are

snode and s_node.

The number of bytes actually transferred to or from the host is returned in the s_dlen

field. This value is never greater than the number requested (dlen), but might be less,

depending on the data length requested by the corresponding application program.

7.3 Reserved System Resources: XIO Interface

XIO reserves the following system resources:

For proper operation of XIO, ICP-resident SPS tasks added to the system must not use

conflicting system resources.

7.4 Executive Input/Output

Executive Input/Output (XIO) consists of three functions which are described in the

following sections: s_initxio, s_nodec and s_xio.

0 = Good completion

1 = The queue to which the host request queue element was posted
is defined for a node number other than the one specified in the
inode field of the host request header

3 = The host request queue element was posted to a host read
request queue but contains a write function code, or was
posted to a host write request queue but contains a read func-
tion code

Queue IDs 1 and 2 (ID 1 = node declaration queue)

Vector numbers 25 and 26 (hexadecimal offsets 64 and 68)

GST entries gs_unused [0] (task entry point)
gs_unused [1] (panic code)
108 DC 900-2007A

7: Host/ICP Interface
The s_initxio function is called once to initialize the internal data structures and

devices that allow XIO to communicate with the host’s ICP driver. After initialization,

the user application can call s_nodec to declare a node. After nodes are declared, the

user application issues read and write request using s_xio.

7.4.1 Node Declaration (s_nodec)

The Node Declaration function declares the nodes as described in Section 7.2.3 on

page 97. Any error information is returned in the status field of the node declaration

header (NODEC_TYPE).

C Interface:

s_nodec (nodec)
struct NODEC_TYPE *nodec;

Return: n/a

Assembly Interface:

TRAP #4

Input: A0.L = address of NODEC_TYPE structure

Output: none

Access: task or ISR

7.4.2 XIO Read/Write (s_xio)

Issue a read or write request. Depending on the value of the funct field of the host

request header (Figure 7–4 on page 101), the s_xio function issues a read or write

request.

C Interface:

s_xio (p_hdr)
SREQ_HDR_TYPE *p_hdr;
DC 900-2007A 109

Freeway ® Protocol Software Toolkit Programmer’s Guide
p_hdr: pointer to host request header

Assembly Interface:

TRAP #4

Input: A0.L = address of SREQ_HDR_TYPE structure

Output: none

Access:

task or ISR

7.5 Diagnostics

OS/Protogate defines a global system table (GST) that can be accessed at a fixed offset

from the load address and contains information used for system initialization and diag-

nostic purposes. A number of four-byte entries are defined by the operating system as

unused and are available for use by ICP-resident system and SPS tasks. (See the

OS/Protogate Operating System Programmer’s Guide for a definition of the GST.)

OS/Protogate initializes the second unused entry in the GST to zero. If OS/Protogate

encounters a fatal error during its operation, it stores a panic code at this location and

executes an illegal instruction, which causes a trap to the debugger. The panic codes,

described below, are each composed of an identifier in the high-order word and a mod-

ifier in the low-order word.

Identifier 0x100

Modifier Error code returned from s_qcreat

Description Creation of the node declaration queue failed (queue ID 1).

Identifier 0x200

Modifier Error code returned from s_qcreat

Description Creation of the pending request queue failed (queue ID 2).
110 DC 900-2007A

7: Host/ICP Interface
Identifier 0x300

Modifier Error code returned from s_accpt

Description An accept message system call on the node declaration queue returned

an invalid queue ID error.

Identifier 0x400

Modifier Queue ID

Description An accept message system call on a read request queue returned an

invalid queue ID error.

Identifier 0x500

Modifier Queue ID

Description An accept message system call on a write request queue returned an

invalid queue ID error.

Identifier 0x600

Modifier Error code returned from s_susp

Description A suspend call failed.

Identifier 0x700

Modifier Disposition flag value

Description A buffer contains an illegal disposition flag value.

Identifier 0x800

Modifier Error code returned from s_accpt

Description An accept message system call on the pending request queue returned

an invalid queue ID or queue empty error. (The queue should not be

empty, because s_accpt is not called unless the queue head pointer is

non-zero.)
DC 900-2007A 111

Freeway ® Protocol Software Toolkit Programmer’s Guide
Identifier 0x900

Modifier 8 (error code returned from DMA subroutine)

Description A data transfer from the host to the ICP failed due to a bus error.

Identifier 0xA00

Modifier 8 (error code returned from DMA subroutine)

Description A data transfer from the ICP to the host failed due to a bus error.
112 DC 900-2007A

Chapter
8 Client Applications
This chapter describes how to use the data link interface (DLI) functions, part of Proto-

gate’s application program interface (API), to initiate and terminate sessions when

developing applications that interface to the ICP sample protocol software (SPS). You

should be familiar with the concepts described in the Freeway Data Link Interface Ref-

erence Guide ; however, some summary information is provided in Section 8.1.

The following might be helpful references while reading this chapter:

• Section 8.2 compares a typical sequence of DLI function calls using blocking ver-

sus non-blocking I/O.

• Appendix C explains error handling and provides a summary table for error

codes. The Freeway Data Link Interface Reference Guide gives complete DLI error

code descriptions.

• The Freeway Data Link Interface Reference Guide provides a generic code example

which can guide your application program development, along with the pro-

grams described in Appendix D of this manual.

8.1 Summary of DLI Concepts

The DLI presents a consistent, high-level, common interface across multiple clients,

operating systems, and transport services. It implements functions that permit your

application to use data link services to access, configure, establish and terminate ses-

sions, and transfer data across multiple data link protocols. The DLI concepts are
DC 900-2007A 113

Freeway ® Protocol Software Toolkit Programmer’s Guide
described in detail in the Freeway Data Link Interface Reference Guide. This section

summarizes the basic information.

8.1.1 Configuration in the Freeway Server or Embedded Environment

Several items must be configured before a client application can run in the Freeway

environment:

• boot configuration for Freeway server implementations

• data link interface (DLI) session configuration

• transport subsystem interface (TSI) connection configuration

• protocol-specific ICP link configuration

The Freeway server boot configuration file is normally created during the installation

procedures described in the Freeway Server User’s Guide. DLI session and TSI connec-

tion configurations are defined by specifying parameters in DLI and TSI ASCII config-

uration files and then running two preprocessor programs, dlicfg and tsicfg, to create

binary configuration files. The DLI and TSI configuration process is described in

Section 8.1.1.1 and Section 8.1.1.2.

Protocol-specific ICP link configuration must be performed by the client application

(as described in Section 8.5.7.1 on page 142 and Section 9.1.1 on page 152) after dlOpen

completes the DLI session establishment process.

8.1.1.1 DLI Configuration for Raw Operation

The application program interface (API) is implemented in two levels: the data link

interface (DLI) and the transport subsystem interface (TSI). These levels are docu-

mented in the Freeway Data Link Interface Reference Guide and the Freeway Transport

Subsystem Interface Reference Guide.
114 DC 900-2007A

8: Client Applications

/14/97:
ure 8-1 is
t what is
lly in the
tware, but
ic said to use
 The real file
esn’t have
glink and
able.
The DLI provides two levels of operation for ICP protocol software, as described in the

Freeway Data Link Interface Reference Guide. Normal operation is not supported by the

SPS. Raw operation means that the application programmer must provide link config-

uration, link enable, and all the other requirements of the ICP protocol software. The

SPS is provided as an example to be modified; however, the DLI supports only Raw

operation for the SPS. The DLI optional arguments data structure (DLI_OPT_ARGS),

which is central to Raw operation, is described in Section 8.4 on page 126.

The configuration files for the client application are relatively simple. However, you

must specify the DLI configuration parameters whose values differ from the defaults.

Figure 8–1 shows a portion of a typical DLI configuration file, such as spsaldcfg. The

BoardNo parameter specifies the target ICP. If BoardNo is not specified, the default is zero.

The PortNo parameter may or may not be provided. The PortNo parameter is required

if the application requests a DLI session status and expects to see the correct value for

iPortNo. If your application does not require the iPortNo value, the DLI configuration

file does not need to specify PortNo. If PortNo is not included, only one DLI section

(besides the “main” section) is required in the configuration file, which can be refer-

enced in all calls to dlOpen. Refer to the Freeway Data Link Interface Reference Guide for

more information on requesting DLI session status.

8.1.1.2 DLI and TSI Configuration Process

This section summarizes the process for configuring DLI sessions and TSI connections.

DLI and TSI text configuration files are used as input to the dlicfg and tsicfg prepro-

cessor programs to produce binary configuration files which are used by the dlInit and

dlOpen functions. The DLI and TSI configuration process is a part of the loopback test-

ing procedure described in Appendix D and the installation procedure described in the

Freeway Server User’s Guide. However, during your client application development and

testing, you might need to perform DLI and TSI configuration repeatedly. These proce-

dures are summarized as follows:

11
Fig
no
rea
sof
Er
it!
do
Cf
En
DC 900-2007A 115

Freeway ® Protocol Software Toolkit Programmer’s Guide
//---//
// "main" section. If not defined defaults are used. If present //
// the main section must be the very first section of the DLI //
// configuration file. //
//---//

main
{
 AsyncIO = "yes"; // Non-blocking I/O //
 TSICfgName = "spsaltcfg.bin"; // TSI binary config file //
}

//---//
// Define a section for a raw port. //
//---//

server0icp0port0
{
 AlwaysQIO = "yes"; // DLI always queues I/O //
 AsyncIO = "Yes"; // Non-blocking I/O //
 BoardNo = 0; // First ICP is board 0 //
 CfgLink = "No"; // Client must configure link //
 Enable = "No"; // Client must enable link //

PortNo = 0; // First link is 0 //
 Protocol = "raw"; // SPS uses Raw operation //
 Transport = "conn0"; // TSI connection name //
}
//---//
// Define a section for a raw port. //
//---//

server0icp0port1
{
 AlwaysQIO = "yes"; // DLI always queues I/O //
 AsyncIO = "Yes"; // Non-blocking I/O //
 BoardNo = 0; // First ICP is board 0 //
 CfgLink = "No"; // Client must configure link //
 Enable = "No"; // Client must enable link //

PortNo = 1; // Second link is 1 //
 Protocol = "raw"; // SPS uses Raw operation //
 Transport = "conn0"; // TSI connection name //
}

Figure 8–1: Typical DLI “main” Configuration plus Two Sessions
116 DC 900-2007A

8: Client Applications
1. Create or modify a TSI text configuration file specifying the configuration of the

TSI connections (for example, spsaltcfg in the freeway/client/test/sps direc-

tory).

2. Create or modify a DLI text configuration file specifying the DLI session configu-

ration for all ICPs and serial communication links in your system (for example,

spsaldcfg in the freeway/client/test/sps directory).

3. If you have a UNIX or Windows NT system, skip this step. If you have a VMS sys-

tem, run the makefc.com command file from the [FREEWAY.CLIENT.TEST.SPS]

directory to create the foreign commands used for dlicfg and tsicfg.

@MAKEFC UCX

4. From the freeway/client/test/sps directory, execute tsicfg with the text file

from Step 1 as input. This creates the TSI binary configuration file in the same

directory as the location of the text file (unless a different path is supplied with the

optional filename). If the optional filename is not supplied, the binary file is given

the same name as your TSI text configuration file plus a .bin extension.

tsicfg TSI-text-configuration-filename [TSI-binary-configuration-filename]

UNIX example: freeway/client/op-sys/bin/tsicfg spsaltcfg

VMS example: tsicfg spsaltcfg

Windows NT example: freeway\client\op-sys\bin\tsicfg spsaltcfg

5. From the freeway/client/test/sps directory, execute dlicfg with the text file

from Step 2 as input. This creates the DLI binary configuration file in the same

directory as the location of the text file (unless a different path is supplied with the

optional filename). If the optional filename is not supplied, the binary file is given

the same name as your DLI text configuration file plus a .bin extension.

dlicfg DLI-text-configuration-filename [DLI-binary-configuration-filename]

UNIX example: freeway/client/op-sys/bin/dlicfg spsaldcfg
DC 900-2007A 117

Freeway ® Protocol Software Toolkit Programmer’s Guide
VMS example: dlicfg spsaldcfg

Windows NT example: freeway\client\op-sys\bin\dlicfg spsaldcfg

Note
You must rerun dlicfg or tsicfg whenever you modify the text

configuration file so that the DLI or TSI functions can apply the

changes. On all but VMS systems, if a binary file already exists with

the same name in the directory, the existing file is renamed by

appending the .BAK extension. If the renamed file duplicates an

existing file in the directory, the existing file is removed by the con-

figuration preprocessor program.

6. If you have a UNIX system, move the TSI and DLI binary configuration files that

you created in Step 4 and Step 5 into the appropriate freeway/client/op-sys/bin

directory where op-sys indicates the operating system: hpux, solaris, sunos, or

osf1. For example, freeway/client/sunos/bin.

7. If you have a VMS system, run the move.com command file from the [FREEWAY.

CLIENT.TEST.SPS] directory. This moves the DLI and TSI binary configuration

files you created in Step 4 and Step 5 into the bin directory for your particular

TCP/IP package.

@MOVE filename UCX

8. If you have a Windows NT system, move the TSI and DLI binary configuration

files that you created in Step 4 and Step 5 into the appropriate

freeway\client\op-sys\bin directory where op-sys indicates the operating sys-

tem: ant or int for a Freeway server or int_nt_emb for an embedded system. For

example, freeway\client\ant\bin.

When your application calls the dlInit function, the DLI and TSI binary configuration

files generated in Step 4 and Step 5 are used to configure the DLI sessions and TSI con-
118 DC 900-2007A

8: Client Applications
nections. The Freeway Transport Subsystem Interface Reference Guide provides addi-

tional details on the TSI configuration. Figure 8–2 shows the configuration process.

8.1.2 Blocking versus Non-blocking I/O

Note
Earlier Protogate releases used the term “synchronous” for block-

ing I/O and “asynchronous” for non-blocking I/O. Some parame-

ter names reflect the previous terminology.

Non-blocking I/O applications are useful when doing I/O to multiple channels with a

single process where it is not possible to “block” (sleep) on any one channel waiting for

Figure 8–2: DLI and TSI Configuration Process

Application

TSI

Transport
Environment

2
8
3
6

tsicfg

TSI Text
Configuration File

TSI Configuration
Processor

TSI Binary
Configuration File
DC 900-2007A 119

Freeway ® Protocol Software Toolkit Programmer’s Guide

1/14/97: Eric
ays Freeway
erver is okay
ere.
I/O completion. Blocking I/O applications are useful when it is reasonable to have the

calling process wait for I/O completion.

In the Freeway environment, the term blocking I/O indicates that the dlOpen, dlClose,

dlRead and dlWrite functions do not return until the I/O is complete. For non-blocking

I/O, these functions might return after the I/O has been queued at the client, but before

the transfer to the ICP is complete. The client must handle I/O completions at the soft-

ware interrupt level in the completion handler established by the dlInit or dlOpen

function, or by periodic use of dlPoll to determine the I/O completion status.

The asyncIO DLI configuration parameter specifies whether an application session uses

blocking or non-blocking I/O (set asyncIO to “no” to use blocking I/O). The alwaysQIO

DLI configuration parameter further qualifies the operation of non-blocking I/O activ-

ity. Refer to the Freeway Data Link Interface Reference Guide for more information.

The effects on different DLI functions, resulting from the choice of blocking or non-

blocking I/O, are explained in the Freeway Data Link Interface Reference Guide.

Server-resident applications must use non-blocking I/O; support for blocking I/O in

server-resident applications is not available.

8.1.3 Buffer Management

Currently the interrelated Freeway server, DLI, TSI, and ICP buffers default to a size of

1024 bytes.

Caution
If you need to change a buffer size for your application, refer to the

Freeway Data Link Interface Reference Guide for explanations of the

complexities that you must consider.

120 DC 900-2007A

8: Client Applications
8.2 Example Call Sequences

Table 8–1 shows the sequence of DLI function calls to send and receive data using

blocking I/O. Table 8–2 is the non-blocking I/O example. The remainder of this chapter

and the Freeway Data Link Interface Reference Guide give further information about

each function call. Refer back to Section 8.1.2 on page 119 for more information on

blocking and non-blocking I/O.

Note
The example call sequences assume that the cfgLink and enable

DLI configuration parameters are set to “no” (the default is “yes”

for both). This is necessary for the client application to configure

and enable the ICP links. Figure 8–1 on page 116 shows an exam-

ple DLI configuration file.
DC 900-2007A 121

Freeway ® Protocol Software Toolkit Programmer’s Guide
Table 8–1: DLI Call Sequencea for Blocking I/O

a Because the protocol software can send a message to the client at any time, a dlRead
request must always be queued to avoid loss of data or response messages from the ICP.

1. Call dlInit to initialize the DLI operating environment. The first parameter is
your DLI binary configuration file name.

2. Call dlOpen for each required session (link) to get a session ID.

3. Call dlBufAlloc for all required input and output buffers.

4. Call dlWrite to send an attach request to Freeway.

5. Call dlRead to receive the protocol session ID from Freeway.

6. Call dlWrite to send a configuration message to Freeway.

7. Call dlRead to receive the configuration confirmation from Freeway.

8. Call dlWrite to send a link activation message to Freeway.

9. Call dlRead to receive the link activation confirmation from Freeway.

10. Call dlWrite to send requests and data to Freeway.

11. Call dlRead to receive responses and data from Freeway.

12. Repeat Step 10 and Step 11 until you are finished writing and reading.

13. Call dlBufFree for all buffers allocated in Step 3.

14. Call dlClose for each session ID obtained in Step 2.

15. Call dlTerm to terminate your application’s access to Freeway.
122 DC 900-2007A

8: Client Applications
Note
Server-resident applications must use non-blocking I/O. It is also

necessary to call dlPost before relinquishing task control. See the

Freeway Data Link Interface Reference Guide for details.

Table 8–2: DLI Call Sequencea for Non-blocking I/O

1. Call dlInit to initialize the DLI operating environment. The first parameter
is your DLI binary configuration file name.

2. Call dlOpen for each required session (link) to get a session ID.

3. Call dlPoll to confirm the success of each session ID obtained in Step 2.

4. Call dlBufAlloc for all required input and output buffers.

5. Call dlWrite to send an attach request to Freeway.

6. Call dlRead to receive the protocol session ID from Freeway.

7. Call dlWrite to send a configuration message to Freeway.

8. Call dlRead to receive the configuration confirmation from Freeway.

9. Call dlWrite to send a link activation message to Freeway.

10. Call dlRead to receive the link activation confirmation from Freeway.

11. Call dlWrite to send requests and data to Freeway.

12. Call dlRead to queue reads to receive responses and data from Freeway.

13. As I/Os complete, call dlPoll to confirm the success of each dlWrite in
Step 11 and to accept the data from each dlRead in Step 12.

14. Repeat Step 11 through Step 13 until you are finished writing and reading.

15. Call dlBufFree for all buffers allocated in Step 4.

16. Call dlClose for each session ID obtained in Step 2.

17. Call dlPoll to confirm that each session was closed in Step 16.

18. Call dlTerm to terminate your application’s access to Freeway.

a Because the protocol software can send a message to the client at any time, a dlRead
request must always be queued to avoid loss of data or response messages from the ICP.
DC 900-2007A 123

Freeway ® Protocol Software Toolkit Programmer’s Guide
8.3 Overview of DLI Functions

After the protocol software is downloaded to the ICP, the client and ICP can communi-

cate by exchanging messages. These messages configure and activate each ICP link and

transfer data. The client application issues reads and writes to transfer messages to and

from the ICP.

Caution
A dlRead request must always be queued to avoid loss of data or

responses from the ICP.

This section summarizes the DLI functions used in writing a client application. The

simplest view of using the DLI functions is:

• Start up communications (dlInit, dlOpen, dlBufAlloc, dlWrite, dlRead)

• Send requests and data using dlWrite

• Receive responses using dlRead

• For non-blocking I/O, handle I/O completions at the software interrupt level in

the completion handler established by the dlInit or dlOpen function, or by peri-

odic use of dlPoll to query the I/O completion status

• For server-resident applications, use dlPost before relinquishing task control

• Shut down communications (dlBufFree, dlClose, dlTerm)

Table 8–3 summarizes the DLI function syntax and parameters, listed in the most likely

calling order. Refer to the Freeway Data Link Interface Reference Guide for details.

The remainder of this chapter and Chapter 9 describe the dlWrite and dlRead func-

tions. Both functions use the optional arguments parameter to provide the protocol-

specific information required for Raw operation (see Section 8.1.1.1 on page 114). The

“C” definition of the optional arguments is described in Section 8.4 on page 126.
124 DC 900-2007A

8: Client Applications
Table 8–3: DLI Functions: Syntax and Parameters (Listed in Typical Call Order)

DLI Function Parameter(s) Parameter Usage

int dlInit (char *cfgFile,
char *pUsrCb,
 int (*fUsrIOCH)(char *pUsrCb));

DLI binary configuration file name
Optional I/O complete control block
Optional IOCH and parameter

int dlOpena (char *cSessionName,
 int (*fUsrIOCH)
 (char *pUsrCB, int iSessionID));

Session name in DLI config file
Optional I/O completion handler
Parameters for IOCH

int dlPoll (int iSessionID,
int iPollType,
 char **ppBuf,
 int *piBufLen,
 char *pStat,
 DLI_OPT_ARGS **ppOptArgs);

Session ID from dlOpen
Request type
Poll type dependent buffer
Size of I/O buffer (bytes)
Status or configuration buffer
Optional arguments

char *dlBufAlloc (int iBufLen); Minimum buffer size

int dlRead (int iSessionID,
 char **ppBuf,
 int iBufLen,
 DLI_OPT_ARGS *pOptArgs);

Session ID from dlOpen
Buffer to receive data
Maximum bytes to be returned
Optional arguments structure

int dlWrite (int iSessionID,
 char *pBuf,
 int iBufLen,
 int iWritePriority,
 DLI_OPT_ARGS *pOptArgs);

Session ID from dlOpen
Source buffer for write
Number of bytes to write
Normal or expedite write
Optional arguments structure

int dlPost (void);

char *dlBufFree (char *pBuf); Buffer to return to pool

int dlClose (int iSessionID,
 int iCloseMode);

Session ID from dlOpen
Mode (normal or force)

int dlTerm (void);

int dlControl (char *cSessionName,
 int iCommand,
 int (*fUsrIOCH)
 (char *pUsrCB, int iSessionID));

Session name in DLI config file
Command (e.g. reset/download)
Optional I/O completion handler
Parameters for IOCH

a It is critical for the client application to receive the dlOpen completion status before making any other DLI
requests; otherwise, subsequent requests will fail. After the dlOpen completion, however, you do not have to
maintain a one-to-one correspondence between DLI requests and dlRead requests.
DC 900-2007A 125

Freeway ® Protocol Software Toolkit Programmer’s Guide
8.4 Client and ICP Interface Data Structures

The data link interface (DLI) provides a session-level interface between a client applica-

tion and the sample protocol software resident on an ICP. Messages traveling from the

client application go over the Ethernet to the Freeway server or ICP driver and end up

at the ICP. From the client’s perspective, these messages consist of data buffers supple-

mented with the DLI optional arguments data structure to provide the protocol-spe-

cific information required for Raw operation (Section 8.1.1.1 on page 114). Figure 8–3

shows the “C” definition of the DLI optional arguments structure.

typedef struct {
unsigned short usFWPacketType; /* Client’s packet type */
unsigned short usFWCommand; /* Client’s cmd sent or rcvd */
unsigned short usFWModifier; /* Client’s cmd modifier */
unsigned short usFWStatus; /* Client’s status of I/O ops */
unsigned short usICPClientID; /* old su_id */
unsigned short usICPServerID; /* old sp_id */
unsigned short usICPCommand; /* ICP’s command. */
short iICPStatus; /* ICP’s command status */
unsigned short usICPParms[3]; /* ICP’s xtra parameters */
unsigned short usProtCommand; /* protocol cmd */
short iProtModifier; /* protocol cmd’s modifier */
unsigned short usProtLinkID; /* protocol link ID */
unsigned short usProtCircuitID; /* protocol circuit ID */
unsigned short usProtSessionID; /* protocol session ID */
unsigned short usProtSequence; /* protocol sequence */
unsigned short usProtXParms[2]; /* protocol xtra parms */
} DLI_OPT_ARGS;

Figure 8–3: “C” Definition of DLI Optional Arguments Structure
126 DC 900-2007A

8: Client Applications
From the ICP’s perspective, these messages consist of the api_msg data structure shown

in Figure 8–4.

The icp_hdr structure is of type ICP_HDR and the prot_hdr structure is of type PROT_HDR,

as shown in Figure 8–5.

Table 8–4 shows the equivalent fields between the DLI_OPT_ARGS structure and the

ICP_HDR and PROT_HDR structures.

struct api_msg {
ICP_HDR icp_hdr;
PROT_HDR prot_hdr;
bit8 *data;

};

Figure 8–4: “C” Definition of api_msg Data Structure

typedef struct { /* ICP message header */
bit16 su_id; /* service user (client) ID */
bit16 sp_id; /* service provider (server) ID */
bit16 count; /* size of data following this header */
bit16 command; /* function code */
bit16 status; /* function status */
bit16 params[3]; /* ICP-specific parameters */

} ICP_HDR;

typedef struct { /* Protocol message header */
bit16 command; /* function code */
bit16 modifier; /* function modifier */
bit16 link; /* physical port number */
bit16 circuit; /* data link circuit identifier */
bit16 session; /* session identifier */
bit16 sequence; /* message sequence number */
bit16 reserved1; /* reserved */
bit16 reserved2; /* reserved */

} PROT_HDR;

Figure 8–5: “C” Definition of icp_hdr and prot_hdr Data Structures
DC 900-2007A 127

Freeway ® Protocol Software Toolkit Programmer’s Guide
The client API translates between the DLI_OPT_ARGS and the api_msg data structures.

The usICPCommand field of the DLI_OPT_ARGS structure corresponds to the command field

of the ICP_HDR structure. The usProtCommand field of the DLI_OPT_ARGS structure corre-

sponds to the command field of the PROT_HDR structure.

Table 8–4: Equivalent Fields between DLI_OPT_ARGS and ICP_HDR/PROT_HDR

DLI_OPT_ARGS
in DLI Client Program

ICP_HDR and
PROT_HDR in

 ICP SPS Program Field Description

DLI_OPT_ARGS.usFWPacketType unused client’s packet type

DLI_OPT_ARGS.usFWCommand unused client’s command sent or received

DLI_OPT_ARGS.usFWStatus unused client’s status of I/O operations

DLI_OPT_ARGS.usICPClientID icp.su_id old su_id

DLI_OPT_ARGS.usICPServerID icp.sp_id old sp_id

count filled in by DLI icp.count data size

DLI_OPT_ARGS.usICPCommand icp.command ICP’s command

DLI_OPT_ARGS.iICPStatus icp.status ICP’s command status

DLI_OPT_ARGS.usICPParms[3] icp.params[3] ICP’s extra parameters

DLI_OPT_ARGS.usProtCommand prot.command protocol command

DLI_OPT_ARGS.iProtModifier prot.modifier protocol command's modifier

DLI_OPT_ARGS.usProtLinkID prot.link protocol link ID

DLI_OPT_ARGS.usProtCircuitID prot.circuit protocol circuit ID

DLI_OPT_ARGS.usProtSessionID prot.session protocol session ID

DLI_OPT_ARGS.usProtSequence prot.sequence protocol sequence

DLI_OPT_ARGS.usProtXParms[2] prot.reserved1 protocol extra parameters

prot.reserved2 second XParms field
128 DC 900-2007A

8: Client Applications
The ICP supports the following commands:

• attach

• bind

• write

• unbind

• detach

These commands are encoded into the DLI_OPT_ARGS structure’s usICPCommand field. In

addition, for the write command, the usProtCommand can specify the following qualifi-

ers:

• configure link

• provide statistics

• transmit data

The following sections describe how these commands are used to access and provide

data to a wide area network.

8.5 Client and ICP Communication

The following sections discuss the DLI functions and DLI_OPT_ARGS data structure as

used by client applications in communicating with ICP software. In addition, this com-

munication is discussed from the ICP perspective with details regarding the content of

the ICP_HDR and PROT_HDR data structures.
DC 900-2007A 129

Freeway ® Protocol Software Toolkit Programmer’s Guide
8.5.1 Sequence of Client Events to Communicate to the ICP

To exchange data with a wide-area network, a client must follow these steps:

1. Initiate a session with the Freeway server or the embedded product’s driver

2. Initiate a session with the ICP link

3. Configure the link

4. Activate the link

5. Send data to and receive data from the link

6. Deactivate the link

7. End the session with the ICP link

8. End the session with the Freeway server or the embedded product’s driver

The following sections describe how to use the DLI subroutine library to perform these

steps. Prior to these steps, however, the DLI must be initialized. This is accomplished

when the application calls the dlInit function, which is declared as follows:

int dlInit (char *pCfgFile,
 char *pUsrCB,
 int (*pUsrIOCH) (char *pUsrCB));

The following is an example of a call to dlInit:

status = dlInit (“spsaldcfg.bin”, NULL, NULL);

This example indicates to DLI that the file spsaldcfg.bin is available to be read to con-

figure the process, and that if an I/O completion function is to be called, it is specified

as individual sessions are opened in calls to dlOpen. For more information, consult the

Freeway Data Link Interface Reference Guide.
130 DC 900-2007A

8: Client Applications
8.5.2 Initiating a Session with the ICP

A session identifier is used by DLI to manage information exchanged between the client

application and the ICP. The session identifier is requested by the client, then defined

and returned by the DLI. This is accomplished when the application calls dlOpen. The

ICP software is not involved in these two steps. The dlOpen function is declared as fol-

lows:

int dlOpen (char *cSessionName,
 short (*fUsrIOCH) (char *pUseCB,
 int iSessionID));

The first argument is the name of a section in the application’s DLI configuration file.

The second argument is the name of a function, supplied by the application writer, that

DLI calls when it services an I/O condition for the session identifier returned by the

dlOpen call.

The following is an example of a call to dlOpen.

servSessID = dlOpen (“server0icp0port0”, ioComplete);

The string server0icp0port0 is the name of a section in a DLI configuration file, and

ioComplete is the name of a function the application writer provides. The value of

servSessID is used in further calls to DLI functions.
DC 900-2007A 131

Freeway ® Protocol Software Toolkit Programmer’s Guide
8.5.3 Initiating a Session with an ICP Link

When the DLI configuration file parameter protocol is set to raw (protocol="raw"), a

call to the dlOpen function establishes a data path to the ICP for a given link. This path

is referenced by the return value of dlOpen and is called the session identifier. A call to

dlPoll can be used to verify the success of the dlOpen function. If the status of the new

session is DLI_STATUS_READY, the open was successful. Next, the data path must be

extended to the ICP with an attach. This is accomplished by issuing a call to dlWrite

with the optional argument structure set as follows:

DLI_OPT_ARGS.usFWPacketType FW_DATA
DLI_OPT_ARGS.usFWCommand FW_ICP_WRITE
DLI_OPT_ARGS.usFWStatus n/a
DLI_OPT_ARGS.usICPClientID n/a
DLI_OPT_ARGS.usICPServerID n/a
DLI_OPT_ARGS.usICPCommand DLI_ICP_CMD_ATTACH
DLI_OPT_ARGS.iICPStatus n/a
DLI_OPT_ARGS.usICPParms [0] n/a
DLI_OPT_ARGS.usICPParms [1] n/a
DLI_OPT_ARGS.usICPParms [2] n/a
DLI_OPT_ARGS.usProtCommand DLI_ICP_CMD_ATTACH
DLI_OPT_ARGS.iProtModifier n/a
DLI_OPT_ARGS.usProtLinkID Link the session relates to
DLI_OPT_ARGS.usProtCircuitID n/a
DLI_OPT_ARGS.usProtSessionID n/a
DLI_OPT_ARGS.usProtSequence n/a
DLI_OPT_ARGS.usProtXParms [0] n/a
DLI_OPT_ARGS.usProtXParms [1] n/a
132 DC 900-2007A

8: Client Applications
The response to the attach is read with a call to dlRead. If the attach was successful, the

optional argument structure in the response is as follows:

DLI_OPT_ARGS.usFWPacketType n/a
DLI_OPT_ARGS.usFWCommand n/a
DLI_OPT_ARGS.usFWStatus n/a
DLI_OPT_ARGS.usICPClientID n/a
DLI_OPT_ARGS.usICPServerID n/a
DLI_OPT_ARGS.usICPCommand DLI_ICP_CMD_ATTACH
DLI_OPT_ARGS.iICPStatus DLI_ICP_ERR_NO_ERR
DLI_OPT_ARGS.usICPParms [0] n/a
DLI_OPT_ARGS.usICPParms [1] n/a
DLI_OPT_ARGS.usICPParms [2] n/a
DLI_OPT_ARGS.usProtCommand DLI_ICP_CMD_ATTACH
DLI_OPT_ARGS.iProtModifier n/a
DLI_OPT_ARGS.usProtLinkID link the session relates to
DLI_OPT_ARGS.usProtCircuitID n/a
DLI_OPT_ARGS.usProtSessionID Protocol Session ID
DLI_OPT_ARGS.usProtSequence n/a
DLI_OPT_ARGS.usProtXParms [0] n/a
DLI_OPT_ARGS.usProtXParms [1] n/a

The ICP returns a protocol session identifier in the usProtSessionID field. This value

must be used in the usProtSessionID field of the optional arguments structure in all

future calls to dlWrite for this link.

From the ICP’s perspective, the attach command establishes a session between the cli-

ent application and one of the ICP links. A successful attach command gives the ICP

and the client application IDs that are unique to the current session with which they can

relay information.

The protocol session identifier is used by the ICP to manage information exchanged

between the client application and a specific link. The protocol session identifier is

requested by the client, then defined and returned by the ICP.
DC 900-2007A 133

Freeway ® Protocol Software Toolkit Programmer’s Guide
For the attach command, the fields of the ICP and protocol headers that the ICP

receives contain the following values:

ICP_HDR
count = size of icp header
command = DLI_ICP_CMD_ATTACH
status = high bits indicate byte ordering
params[0] = return node number

PROT_HDR
link = link number

After the ICP processes the attach command, it returns these headers with the follow-

ing field modifications:

ICP_HDR
status = error code or zero if successful

PROT_HDR
modifier = error code or zero if successful
session = session ID assigned by the ICP

The ICP receives an ICP header containing DLI_ICP_CMD_ATTACH in the command field

and a return node number (assigned by msgmux for the Freeway server or the ICP driver

for the Freeway embedded product) in the params[0] field. It also receives a link num-

ber in the link field of the protocol header. If the ICP can successfully complete the

attach, it returns a session number in the session field of the protocol header and a zero

(indicating success) in both the status field of the ICP header and the modifier field of

the protocol header. Any subsequent transactions involving this session number will be

transmitted from the ICP via the corresponding node number.

There is a correspondence between node numbers and session numbers. (Chapter 7

provides more information on node numbers and the host/ICP interface). All the com-

mands in Section 8.5.1 on page 130, from the attach command on, must have this ses-

sion number in the session field of the protocol header. (The msgmux or ICP driver

copies the protocol session ID from the usProtSessionID field in the client’s

DLI_OPT_ARGS to the session field in the protocol header.) If the attach is unsuccessful
134 DC 900-2007A

8: Client Applications
(for example, the link has already been attached or the link or node number is invalid),

the ICP returns an appropriate error code in the status field of the ICP header and the

modifier field of the protocol header. The Freeway Data Link Interface Reference Guide

lists possible error codes.

8.5.4 Terminating a Session with an ICP Link

When the DLI configuration file parameter protocol is set to raw (protocol="raw"), a

call to the dlClose function terminates a data path to the ICP for a given link. However,

before the session is terminated, it is important to allow the ICP to release the space

allocated by it for session management. This is accomplished by issuing a call to dlWrite

with the optional argument structure set as follows:

DLI_OPT_ARGS.usFWPacketType FW_DATA
DLI_OPT_ARGS.usFWCommand FW_ICP_WRITE
DLI_OPT_ARGS.usFWStatus n/a
DLI_OPT_ARGS.usICPClientID n/a
DLI_OPT_ARGS.usICPServerID n/a
DLI_OPT_ARGS.usICPCommand DLI_ICP_CMD_DETACH
DLI_OPT_ARGS.iICPStatus n/a
DLI_OPT_ARGS.usICPParms [0] n/a
DLI_OPT_ARGS.usICPParms [1] n/a
DLI_OPT_ARGS.usICPParms [2] n/a
DLI_OPT_ARGS.usProtCommand DLI_ICP_CMD_DETACH
DLI_OPT_ARGS.iProtModifier n/a
DLI_OPT_ARGS.usProtLinkID link the session relates to
DLI_OPT_ARGS.usProtCircuitID n/a
DLI_OPT_ARGS.usProtSessionID Session to end
DLI_OPT_ARGS.usProtSequence n/a
DLI_OPT_ARGS.usProtXParms [0] n/a
DLI_OPT_ARGS.usProtXParms [1] n/a
DC 900-2007A 135

Freeway ® Protocol Software Toolkit Programmer’s Guide
The response to the detach is read with a call to dlRead. If the detach was successful, the

optional argument structure in the response is as follows:

DLI_OPT_ARGS.usFWPacketType n/a
DLI_OPT_ARGS.usFWCommand n/a
DLI_OPT_ARGS.usFWStatus n/a
DLI_OPT_ARGS.usICPClientID n/a
DLI_OPT_ARGS.usICPServerID n/a
DLI_OPT_ARGS.usICPCommand DLI_ICP_CMD_DETACH
DLI_OPT_ARGS.iICPStatus DLI_ICP_ERR_NO_ERR
DLI_OPT_ARGS.usICPParms [0] n/a
DLI_OPT_ARGS.usICPParms [1] n/a
DLI_OPT_ARGS.usICPParms [2] n/a
DLI_OPT_ARGS.usProtCommand DLI_ICP_CMD_DETACH
DLI_OPT_ARGS.iProtModifier n/a
DLI_OPT_ARGS.usProtLinkID link the session relates to
DLI_OPT_ARGS.usProtCircuitID n/a
DLI_OPT_ARGS.usProtSessionID Protocol Session ID
DLI_OPT_ARGS.usProtSequence n/a
DLI_OPT_ARGS.usProtXParms [0] n/a
DLI_OPT_ARGS.usProtXParms [1] n/a

Once the ICP releases the session, the application can call dlClose to terminate the ses-

sion with the ICP.

From the ICP’s perspective, the detach command terminates an active session between

the client and the ICP. When the application is finished with the ICP session, it writes a

detach command to the ICP. The application establishes a DLI_OPT_ARGS structure

requesting the detach, then sends the structure to the ICP with a call to the DLI dlWrite

function.

For the detach command, the fields of the ICP and protocol headers that the ICP

receives contain the following values:

ICP_HDR
count = size of icp header
command = DLI_ICP_CMD_DETACH
status = high bits indicate byte ordering

PROT_HDR
session = session ID
136 DC 900-2007A

8: Client Applications
The ICP receives a message consisting of an ICP header with DLI_ICP_CMD_DETACH in the

command field and a protocol header with the session number in the session field. The

ICP responds to this command by making that session’s ID available for future sessions.

The ICP also turns off devices and clears the link control table’s link active flag for that

session’s link if this was not already done as a result of a prior unbind command. The

ICP always puts a zero, indicating success, in the status field of the ICP header and the

modifier field of the protocol header and sends the two headers back to the client as an

acknowledgment.

8.5.5 Activating an ICP Link

Once dlOpen has been called and an attach message written to the ICP, the link can be

configured. After the link is configured, it is necessary to request the ICP to start the

link’s receiver and transmitter. Starting (enabling) the link is accomplished by sending

a bind message to the ICP. This is accomplished by issuing a call to dlWrite with the

optional argument structure set as follows:

DLI_OPT_ARGS.usFWPacketType FW_DATA
DLI_OPT_ARGS.usFWCommand FW_ICP_WRITE
DLI_OPT_ARGS.usFWStatus n/a
DLI_OPT_ARGS.usICPClientID n/a
DLI_OPT_ARGS.usICPServerID n/a
DLI_OPT_ARGS.usICPCommand DLI_ICP_CMD_BIND
DLI_OPT_ARGS.iICPStatus n/a
DLI_OPT_ARGS.usICPParms [0] n/a
DLI_OPT_ARGS.usICPParms [1] n/a
DLI_OPT_ARGS.usICPParms [2] n/a
DLI_OPT_ARGS.usProtCommand DLI_ICP_CMD_BIND
DLI_OPT_ARGS.iProtModifier n/a
DLI_OPT_ARGS.usProtLinkID Link to start
DLI_OPT_ARGS.usProtCircuitID n/a
DLI_OPT_ARGS.usProtSessionID Protocol Session ID
DLI_OPT_ARGS.usProtSequence n/a
DLI_OPT_ARGS.usProtXParms [0] n/a
DLI_OPT_ARGS.usProtXParms [1] n/a
DC 900-2007A 137

Freeway ® Protocol Software Toolkit Programmer’s Guide
The response to the bind is a read with a call to dlRead. If the bind was successful, the

optional argument structure in the response is as follows:

DLI_OPT_ARGS.usFWPacketType n/a
DLI_OPT_ARGS.usFWCommand n/a
DLI_OPT_ARGS.usFWStatus n/a
DLI_OPT_ARGS.usICPClientID n/a
DLI_OPT_ARGS.usICPServerID n/a
DLI_OPT_ARGS.usICPCommand DLI_ICP_CMD_BIND
DLI_OPT_ARGS.iICPStatus DLI_ICP_ERR_NO_ERR
DLI_OPT_ARGS.usICPParms [0] n/a
DLI_OPT_ARGS.usICPParms [1] n/a
DLI_OPT_ARGS.usICPParms [2] n/a
DLI_OPT_ARGS.usProtCommand DLI_ICP_CMD_BIND
DLI_OPT_ARGS.iProtModifier n/a
DLI_OPT_ARGS.usProtLinkID Link started
DLI_OPT_ARGS.usProtCircuitID n/a
DLI_OPT_ARGS.usProtSessionID Protocol Session ID
DLI_OPT_ARGS.usProtSequence n/a
DLI_OPT_ARGS.usProtXParms [0] n/a
DLI_OPT_ARGS.usProtXParms [1] n/a

The bind command activates one of the ICP’s links by initializing flags and turning on

that link’s receiver.

From the ICP’s perspective, when the application sends a bind command to the ICP, the

ICP completes all preparations to receive and transmit on the specified link. For the

bind command, the fields of the ICP and protocol headers that the ICP receives contain

the following values:

ICP_HDR
count = size of icp header
command = DLI_ICP_CMD_BIND
status = high bits indicate byte ordering

PROT_HDR
session = session ID

The constant value DLI_ICP_CMD_BIND is in the command field of the ICP header and a

session number is in the session field of the protocol header. The ICP starts that link’s

receiver, sets the link control table link active flag, and returns an acknowledgment to
138 DC 900-2007A

8: Client Applications
the client. If the link was already active, the acknowledgment contains an error code in

the ICP header’s status field and the protocol header’s modifier field. Otherwise they

contain zero, indicating success.

8.5.6 Deactivating an ICP Link

Stopping (disabling) the link is accomplished by sending an unbind message to the ICP.

This is accomplished by issuing a call to dlWrite with the optional argument structure

set as follows:

DLI_OPT_ARGS.usFWPacketType FW_DATA
DLI_OPT_ARGS.usFWCommand FW_ICP_WRITE
DLI_OPT_ARGS.usFWStatus n/a
DLI_OPT_ARGS.usICPClientID n/a
DLI_OPT_ARGS.usICPServerID n/a
DLI_OPT_ARGS.usICPCommand DLI_ICP_CMD_UNBIND
DLI_OPT_ARGS.iICPStatus n/a
DLI_OPT_ARGS.usICPParms [0] n/a
DLI_OPT_ARGS.usICPParms [1] n/a
DLI_OPT_ARGS.usICPParms [2] n/a
DLI_OPT_ARGS.usProtCommand DLI_ICP_CMD_UNBIND
DLI_OPT_ARGS.iProtModifier n/a
DLI_OPT_ARGS.usProtLinkID Link to stop
DLI_OPT_ARGS.usProtCircuitID n/a
DLI_OPT_ARGS.usProtSessionID Protocol Session ID
DLI_OPT_ARGS.usProtSequence n/a
DLI_OPT_ARGS.usProtXParms [0] n/a
DLI_OPT_ARGS.usProtXParms [1] n/a
DC 900-2007A 139

Freeway ® Protocol Software Toolkit Programmer’s Guide
The response to the unbind is a read with a call to dlRead. If the unbind was successful,

the optional argument structure in the response is as follows:

DLI_OPT_ARGS.usFWPacketType n/a
DLI_OPT_ARGS.usFWCommand n/a
DLI_OPT_ARGS.usFWStatus n/a
DLI_OPT_ARGS.usICPClientID n/a
DLI_OPT_ARGS.usICPServerID n/a
DLI_OPT_ARGS.usICPCommand DLI_ICP_CMD_UNBIND
DLI_OPT_ARGS.iICPStatus DLI_ICP_ERR_NO_ERR
DLI_OPT_ARGS.usICPParms [0] n/a
DLI_OPT_ARGS.usICPParms [1] n/a
DLI_OPT_ARGS.usICPParms [2] n/a
DLI_OPT_ARGS.usProtCommand DLI_ICP_CMD_UNBIND
DLI_OPT_ARGS.iProtModifier n/a
DLI_OPT_ARGS.usProtLinkID Link stopped
DLI_OPT_ARGS.usProtCircuitID n/a
DLI_OPT_ARGS.usProtSessionID Protocol Session ID
DLI_OPT_ARGS.usProtSequence n/a
DLI_OPT_ARGS.usProtXParms [0] n/a
DLI_OPT_ARGS.usProtXParms [1] n/a

The unbind command stops an ICP link.

From the ICP’s perspective, when the application sends an unbind command, the ICP

immediately terminates all receiving and transmitting on the link. Deactivation means

that data structures are initialized and the link’s serial transmitter and receiver are dis-

abled.

For the unbind command, the fields of the ICP and protocol headers that the ICP

receives contain the following values:

ICP_HDR
count = size of icp header
command = DLI_ICP_CMD_UNBIND
status = high bits indicate byte ordering

PROT_HDR
session = session ID
140 DC 900-2007A

8: Client Applications
The constant DLI_ICP_CMD_UNBIND is in the command field of the ICP header and a ses-

sion number is in the session field of the protocol header. The ICP stops devices for

that link, clears the link control table link active flag, and returns an acknowledgment

to the client. If the link was inactive, the acknowledgment contains an error code in the

ICP header’s status field and the protocol header’s modifier field. Otherwise they con-

tain zero, indicating success.

8.5.7 Writing to an ICP Link

Once the application has issued a bind command to the ICP, it can send messages to the

ICP for transmission to the wide-area network. When the ICP receives a message from

the client for transmission, it prepares it as required and sends it on the specified link.

When the last character is transmitted, the ICP sends a message to the application. The

message written by the ICP to the client is called an acknowledgment, however, in this

case “acknowledgment” means that the client’s message has been transmitted and the

memory buffer containing the message has been freed for reuse. It does not mean that

the opposite end of the network has acknowledged that it correctly received the mes-

sage. This is an important area of wide-area communications. It is vital to determine

which system is responsible for maintaining a message in case the ultimate end reader

does not receive it and the message must be retransmitted. The ICP does not have a

disk, and may not be the best platform for maintaining an extensive queue of messages.
DC 900-2007A 141

Freeway ® Protocol Software Toolkit Programmer’s Guide
8.5.7.1 Writing the Link Configuration to the ICP

To set the link configuration options, a buffer containing the structure defined below is

sent to the ICP. The fields of the data structure are set to appropriate values by the client

application.

/* Structure of configuration request message */

struct conf_type
{
 bit8 protocol; /* 0 = BSC, 1 = Async, 2 = SDLC */
 bit8 clock; /* 0 = external, 1 = internal clock */
 bit8 baud_rate; /* index into baudsc or baudas */
 bit8 encoding; /* 0 = NRZ, 1 = NRZI (SDLC only) */
 bit8 electrical; /* electrical protocol icp2424 */
 bit8 parity; /* 0 = none, 1 = odd, 2 = even */
 bit8 char_len; /* 7 = 7 bits, 8 = 8 bits */
 /* (asynch only) */
 bit8 stop_bits; /* 1 = 1 stop bit, 2 = 2 stop bits */
 /* (asynch only) */
 bit8 crc; /* 0 = no CRC, 1 = CRC */
 /* (SDLC always uses CRC) */
 bit8 syncs; /* # of leading sync chars (1-8) */
 /* (BSC only) */
 bit8 start_char; /* block start character */
 /* (not used for SDLC) */
 bit8 stop_char; /* block end char (asynch only) */
};
typedef struct conf_type CONF_TYPE;

Once the client has issued an attach command to the ICP, but before it issues a bind

command, it can send ICP link configuration values to the ICP. If no configuration

message is received by the ICP, the default link configuration is used. When the ICP

receives a configuration message, it validates it and updates the current link configura-

tion. First the client allocates a buffer for the CONF_TYPE structure and fills in the struc-

ture. Next the client establishes a DLI_OPT_ARGS structure requesting the write, then

sends the structure along with a buffer containing the configuration to the ICP. See

Section 9.1.1 on page 152 for more information on link configuration.
142 DC 900-2007A

8: Client Applications
At the ICP, the fields of the ICP and protocol headers that the ICP receives contain the

following values:

ICP_HDR
count = size of icp header and data area
command = DLI_ICP_CMD_WRITE
status = high bits indicate byte ordering

PROT_HDR
command = DLI_PROT_CFG_LINK
session = session ID
DATA AREA = configuration data structure

The ICP returns these headers to the client as an acknowledgment that the link config-

uration was completed. The values in the headers of this acknowledgment are the same

as those that were received at the ICP, except that the ICP header’s status field and the

protocol header’s modifier field are filled in with codes reflecting the success of the

transaction. The client application receives this acknowledgment by issuing a read

command as described in Section 8.5.8 on page 145.

8.5.7.2 Writing a Request For Link Statistics From the ICP

The get statistics command requests a configuration report for a particular link. The

ICP maintains a set of statistics for each link that keeps track of events occurring on

each ICP physical port. The client application receives this report by following the

write command with a read command. The read command is described in

Section 8.5.8 on page 145.
DC 900-2007A 143

Freeway ® Protocol Software Toolkit Programmer’s Guide
At the ICP, the fields of the ICP and protocol headers that the ICP receives contain the

following values:

ICP_HDR
count = size of icp header
command = DLI_ICP_CMD_WRITE
status = high bits indicate byte ordering

PROT_HDR
command = DLI_PROT_GET_STATISTICS_REPORT
session = session ID

The ICP copies the statistics portion of that link’s link control table to the data area

appended to the protocol header. The ICP then returns this message to the client with

the ICP header’s status field and the protocol header’s modifier field filled in with a

zero to indicate success. The ICP always returns a report, even if that link has not yet

been enabled. The client receives the statistics report by issuing a read command as

described in Section 8.5.8 on page 145. (Note that this statistics report serves as an

acknowledgment to the write command.) The format of the status report is described

in Section 8.5.8.

8.5.7.3 Writing Data to an ICP Link

The write command provides data to the ICP for transmission on the specified link.

The client establishes a DLI_OPT_ARGS structure requesting the write, then sends the

structure along with a buffer containing the data to the ICP by calling the DLI dlWrite

function. At the ICP, the fields of the ICP and protocol headers that the ICP receives

contain the following values:

ICP_HDR
count = size of icp header
command = DLI_ICP_CMD_WRITE
status = high bits indicate byte ordering

PROT_HDR
command = DLI_PROT_SEND_NORM_DATA
session = session ID
DATA AREA = data to be transmitted
144 DC 900-2007A

8: Client Applications
The ICP protocol task prepares the data for transmission (for example, calculates the

CRC values, and so on), then activates the transmit device for the protocol being used

by that link. Once the ICP determines that the data has been sent out over the link, it

prepares an acknowledgment that it sends to the client application. The headers of this

acknowledgment are of the same form as those described under ICP_HDR and

PROT_HDR above, except that the status field of the ICP header and the modifier

field of the protocol header contain zero, reflecting the successful completion of the

transmission. The client application receives this acknowledgment by issuing a read

command as described in Section 8.5.8.

8.5.8 Reading from the ICP Link

The ICP sends three types of messages to the client: command acknowledgments, link

statistics, and data read from the wide area network. The client calls the DLI dlRead

function to access these messages. The application determines the content of the read

buffer by examining the usProtCommand field of the DLI_OPT_ARGS data structure. If the

value is DLI_PROT_SEND_NORM_DATA, the buffer contains data read from the wide-area

network. If the value is DLI_PROT_GET_STATISTICS_REPORT, the buffer contains link sta-

tistics. If the value is DLI_PROT_RESP_LOCAL_ACK, the SPS is writing an acknowledgment

to a command.

The application allocates a DLI_OPT_ARGS structure, then provides the address of the

structure along with the address of a pointer to a buffer to the DLI dlRead function.
DC 900-2007A 145

Freeway ® Protocol Software Toolkit Programmer’s Guide
8.5.8.1 Reading ICP Statistics

The get statistics command described in Section 8.5.7.2 on page 143 causes the ICP

to send the link statistics to the client application. This report is for the link correspond-

ing to the usProtLinkID field in DLI_OPT_ARGS. The client application receives the report

by issuing a read command using the same session ID that was used for the write com-

mand. The link statistics take the following format:

struct STATA
{

bit16 msg_too_long;
bit16 dcd_lost;
bit16 abort_rcvd;
bit16 rcv_ovrrun;
bit16 rcv_crcerr;
bit16 rcv_parerr;
bit16 rcv_frmerr;
bit16 xmt_undrun;
bit16 frame_sent;
bit16 frame_rcvd;

};

At the ICP, the fields of the ICP and protocol headers that the ICP sends to the client

application contain the following values:

ICP_HDR
count = size of icp header plus size of data
command = DLI_ICP_CMD_READ
status = 0 (success) or an error code

PROT_HDR
command = DLI_PROT_GET_STATISTICS_REPORT
modifier = 0 (success) or an error code
session = session ID
DATA AREA = statistics report

The ICP copies the link control table’s statistics data structure to the data area that fol-

lows the protocol header and writes error codes to the status and modifier fields.
146 DC 900-2007A

8: Client Applications
8.5.8.2 Reading Normal Data

The read command receives normal data that has arrived on one of the ICP ports. The

client issues a read as described in Section 8.5.8 on page 145. The fields of the ICP and

protocol headers that the ICP sends to the client application contain the following val-

ues:

ICP_HDR
count = size of icp header plus size of data
command = DLI_ICP_CMD_READ
status = 0 (success) or an error code

PROT_HDR
command = DLI_PROT_SEND_NORM_DATA
modifier = 0 (success) or an error code
session = session ID
DATA AREA = incoming data

The ICP puts the data read from the link in the area that follows the protocol header.
DC 900-2007A 147

Freeway ® Protocol Software Toolkit Programmer’s Guide
8.6 Additional Command Types Supported by the SPS

In addition to the API function calls described in the preceding sections, the SPS sup-

ports a few commands that are used by layers that lie between the SPS and API layers.

These commands are described in the following sections.

8.6.1 Internal Termination Message

The dl_term function call is used by a client application when it loses its connection to

an ICP. The API issues the dl_term function call and provides the return node number

to be terminated. The SPS responds by clearing link active flags, turning off devices, and

freeing session numbers for all links that had been communicating with the client

application using that particular return node number.

The following is an example of the format of the ICP and protocol headers received by

the SPS:

ICP_HDR
count = size of icp header
command = DLI_ICP_CMD_TERM
params[0] = node number to be terminated (ACK returns on this

node as well)

PROT_HDR
command = DLI_ICP_CMD_TERM

After performing the dl_term call, the SPS returns an acknowledgment on the node that

was just terminated. This tells msgmux or the ICP driver that the dl_term call completed

successfully and the node number can be reused.
148 DC 900-2007A

8: Client Applications
8.6.2 Internal Test Message

The dl_test command is a diagnostic tool used by the client application. Data is writ-

ten to the SPS in the data area following a protocol header. The utility task immediately

returns this data to the client application.

The following is an example of the format of the ICP and protocol headers received by

the SPS:

ICP_HDR
count = size of icp header plus size of data
command = DLI_ICP_CMD_WRITE_EXP
params[0] = return node number assigned by msgmux or the ICP driver

PROT_HDR
command = DLI_ICP_CMD_TEST
DATA AREA = sample data

8.6.3 Internal Ping

The dl_ping command provides a way for the client application to verify that the SPS is

up and running. This message is passed from the utility task to the protocol task before

being returned to the client application as an acknowledgment.

The following is an example of the format of the ICP and protocol headers received by

the SPS:

ICP_HDR
count = size of icp header
command = DLI_ICP_CMD_PING
params[0] = return node number assigned by msgmux or the ICP driver

PROT_HDR
command = DLI_ICP_CMD_PING
DC 900-2007A 149

Freeway ® Protocol Software Toolkit Programmer’s Guide
150 DC 900-2007A

Chapter
9 Messages Exchanged between
Client and ICP
In messages sent from the client to the ICP, the usProtCommand field of the DLI optional

argument structure can assume the following values:

DLI_PROT_CFG_LINK — send a link configuration message

DLI_PROT_GET_STATISTICS — request a report on a link’s statistics

DLI_PROT_SEND_NORM_DATA — send data to the ICP for transmission

The following sections describe these messages in detail.
DC 900-2007A 151

Freeway ® Protocol Software Toolkit Programmer’s Guide
9.1 Messages Sent From Client to the ICP

9.1.1 DLI_PROT_CFG_LINK – Client Link Configuration Request

The client sends this message to configure an ICP link. The expected response is a

DLI_PROT_CFG_LINK message with the iICPStatus field set to DLI_ICP_ERR_NO_ERR. If the

ICP discovers an error in the message, it returns the configuration message with the

iICPStatus field set to DLI_ICP_ERR_BAD_PARMS. The optional arguments structure for

the configuration message is shown below.

DLI_OPT_ARGS.usFWPacketType FW_DATA
DLI_OPT_ARGS.usFWCommand FW_ICP_WRITE
DLI_OPT_ARGS.usFWStatus n/a
DLI_OPT_ARGS.usICPClientID n/a
DLI_OPT_ARGS.usICPServerID n/a
DLI_OPT_ARGS.usICPCommand DLI_ICP_CMD_WRITE
DLI_OPT_ARGS.iICPStatus n/a
DLI_OPT_ARGS.usICPParms [0] n/a
DLI_OPT_ARGS.usICPParms [1] n/a
DLI_OPT_ARGS.usICPParms [2] n/a
DLI_OPT_ARGS.usProtCommand DLI_PROT_CFG_LINK
DLI_OPT_ARGS.iProtModifier n/a
DLI_OPT_ARGS.usProtLinkID Link ICP is to configure.
DLI_OPT_ARGS.usProtCircuitID n/a
DLI_OPT_ARGS.usProtSessionID Session ID. (See attach message.)
DLI_OPT_ARGS.usProtSequence n/a
DLI_OPT_ARGS.usProtXParms [0] n/a
DLI_OPT_ARGS.usProtXParms [1] n/a
152 DC 900-2007A

9: Messages Exchanged between Client and ICP
The data area in the write is an instance of the CONF_TYPE structure. This structure is

defined as follows:

typedef struct {
unsigned char protocol; /* 0 = bsc, 1 = async, 2 = sdlc */
unsigned char clock; /* (bsc and sdlc only)
 0 = external, 1 = internal */
unsigned char baud_rate; /* For protocol = async, the following
 values apply:
 0 = 300
 1 = 600
 2 = 1200
 3 = 1800
 4 = 2400
 5 = 3600
 6 = 4800
 7 = 7200
 8 = 9600
 9 = 19200
 10 = 38400
 11 = 57600
 12 = 115000
 13 = 230400
 For bsc and sdlc, the following
 values apply:
 0 = 300
 1 = 600
 2 = 1200
 3 = 2400
 4 = 4800
 5 = 9600
 6 = 19200
 7 = 38400
 8 = 57600
 9 = 64000
 10 = 307000
 11 = 460800
 12 = 614400
 13 = 737300
 14 = 921600
 15 = 1228800
 16 = 1843200
 */
DC 900-2007A 153

Freeway ® Protocol Software Toolkit Programmer’s Guide
unsigned char encoding; /* (sdlc only) 0 = NRZ, 1 = NRZI */
unsigned char unused; /* not used */
unsigned char parity; /* (async only) 0 = none, 1 = odd,
 2 = even */
unsigned char char_len; /* (async only) 7 = 7 bits,
 8 = 8 bits */
unsigned char stop_bits; /* (async only) 1 = 1 stop bit,
 2 = 2 stop bits */
unsigned char crc; /* (async and bsc only)
 0 = no CRC, 1 = CRC */
unsigned char syncs; /* (bsc only) number of leading
 sync characters 1 to 8 */
unsigned char start_char; /* (async and bsc only) block
 start character */
unsigned char stop_char; /* (async only) block end
 character */
};
154 DC 900-2007A

9: Messages Exchanged between Client and ICP
9.1.2 DLI_PROT_GET_STATISTICS – Client Link Statistics Request

The client sends this message to request the statistics on an ICP link. The expected

response is a DLI_PROT_GET_STATISTICS_REPORT message with the iICPStatus field set

to DLI_ICP_ERR_NO_ERR. If the ICP discovers an error in the message, it returns the sta-

tistics request message with the iICPStatus field set to an error code. The DLI_OPT_ARGS

structure for the configuration message is shown below.

DLI_OPT_ARGS.usFWPacketType FW_DATA
DLI_OPT_ARGS.usFWCommand FW_ICP_WRITE
DLI_OPT_ARGS.usFWStatus n/a
DLI_OPT_ARGS.usICPClientID n/a
DLI_OPT_ARGS.usICPServerID n/a
DLI_OPT_ARGS.usICPCommand DLI_ICP_CMD_WRITE
DLI_OPT_ARGS.iICPStatus n/a
DLI_OPT_ARGS.usICPParms [0] n/a
DLI_OPT_ARGS.usICPParms [1] n/a
DLI_OPT_ARGS.usICPParms [2] n/a
DLI_OPT_ARGS.usProtCommand DLI_PROT_GET_STATISTICS_REPORT
DLI_OPT_ARGS.iProtModifier n/a
DLI_OPT_ARGS.usProtLinkID Link ICP is to report on.
DLI_OPT_ARGS.usProtCircuitID n/a
DLI_OPT_ARGS.usProtSessionID Session ID. (See attach message.)
DLI_OPT_ARGS.usProtSequence n/a
DLI_OPT_ARGS.usProtXParms [0] n/a
DLI_OPT_ARGS.usProtXParms [1] n/a

There is no data area for a link statistics request.
DC 900-2007A 155

Freeway ® Protocol Software Toolkit Programmer’s Guide
9.1.3 DLI_PROT_SEND_NORM_DATA – Client Send ICP Link Data

The client sends this message to request the ICP to transmit data on a link. The expected

response is a DLI_PROT_RESP_LOCAL_ACK message when the message has been transmit-

ted by the ICP.

DLI_OPT_ARGS.usFWPacketType FW_DATA
DLI_OPT_ARGS.usFWCommand FW_ICP_WRITE
DLI_OPT_ARGS.usFWStatus n/a
DLI_OPT_ARGS.usICPClientID n/a
DLI_OPT_ARGS.usICPServerID n/a
DLI_OPT_ARGS.usICPCommand DLI_ICP_CMD_WRITE
DLI_OPT_ARGS.iICPStatus n/a
DLI_OPT_ARGS.usICPParms [0] n/a
DLI_OPT_ARGS.usICPParms [1] n/a
DLI_OPT_ARGS.usICPParms [2] n/a
DLI_OPT_ARGS.usProtCommand DLI_PROT_SEND_NORM_DATA
DLI_OPT_ARGS.iProtModifier n/a
DLI_OPT_ARGS.usProtLinkID Link ICP is to transmit on.
DLI_OPT_ARGS.usProtCircuitID n/a
DLI_OPT_ARGS.usProtSessionID Session ID. (See attach message.)
DLI_OPT_ARGS.usProtSequence n/a
DLI_OPT_ARGS.usProtXParms [0] n/a
DLI_OPT_ARGS.usProtXParms [1] n/a

The data area in the write is the data to be transmitted. If the protocol is bsc, the config-

ured number of sync characters are placed at the beginning of the message. If the pro-

tocol is async or bsc, the configured start character is placed immediately before the

client’s data. If the protocol is async, the configured stop character is appended. If a

CRC is configured, a CRC is calculated and appended.
156 DC 900-2007A

9: Messages Exchanged between Client and ICP
9.2 Messages Sent From ICP To Client

9.2.1 DLI_PROT_CFG_LINK – ICP Acknowledge Link Configuration

The ICP sends this message to acknowledge that the client’s link configuration request

was performed.

DLI_OPT_ARGS.usFWPacketType n/a
DLI_OPT_ARGS.usFWCommand n/a
DLI_OPT_ARGS.usFWStatus n/a
DLI_OPT_ARGS.usICPClientID n/a
DLI_OPT_ARGS.usICPServerID n/a
DLI_OPT_ARGS.usICPCommand n/a
DLI_OPT_ARGS.iICPStatus DLI_ICP_ERR_NO_ERR
DLI_OPT_ARGS.usICPParms [0] n/a
DLI_OPT_ARGS.usICPParms [1] n/a
DLI_OPT_ARGS.usICPParms [2] n/a
DLI_OPT_ARGS.usProtCommand DLI_PROT_CFG_LINK
DLI_OPT_ARGS.iProtModifier n/a
DLI_OPT_ARGS.usProtLinkID Link ICP configured.
DLI_OPT_ARGS.usProtCircuitID n/a
DLI_OPT_ARGS.usProtSessionID Session ID. (See attach message.)
DLI_OPT_ARGS.usProtSequence n/a
DLI_OPT_ARGS.usProtXParms [0] n/a
DLI_OPT_ARGS.usProtXParms [1] n/a

The data area is not applicable.
DC 900-2007A 157

Freeway ® Protocol Software Toolkit Programmer’s Guide
9.2.2 DLI_PROT_GET_STATISTICS – ICP Statistics Report

The ICP sends this message to report the statistics on an ICP link. The DLI_OPT_ARGS

structure for the configuration message is shown below.

DLI_OPT_ARGS.usFWPacketType n/a
DLI_OPT_ARGS.usFWCommand n/a
DLI_OPT_ARGS.usFWStatus n/a
DLI_OPT_ARGS.usICPClientID n/a
DLI_OPT_ARGS.usICPServerID n/a
DLI_OPT_ARGS.usICPCommand n/a
DLI_OPT_ARGS.iICPStatus DLI_ICP_ERR_NO_ERR
DLI_OPT_ARGS.usICPParms [0] n/a
DLI_OPT_ARGS.usICPParms [1] n/a
DLI_OPT_ARGS.usICPParms [2] n/a
DLI_OPT_ARGS.usProtCommand DLI_PROT_GET_STATISTICS_REPORT
DLI_OPT_ARGS.iProtModifier n/a
DLI_OPT_ARGS.usProtLinkID Link ICP is reporting on.
DLI_OPT_ARGS.usProtCircuitID n/a
DLI_OPT_ARGS.usProtSessionID Session ID. (See attach message.))
DLI_OPT_ARGS.usProtSequence n/a
DLI_OPT_ARGS.usProtXParms [0] n/a
DLI_OPT_ARGS.usProtXParms [1] n/a

The data area for the link statistics report contains the structure SPS_STATS_REPORT. This

structure is defined as follows:

typedef struct {
 bit16 msg_too_long; Number of messages read from WAN
 and thrown away
 bit16 dcd_lost; Number of times receiver restarted
 because carrier was lost
 bit16 abort_rcvd; Number of times receiver restarted
 because abort was received
 bit16 rcv_ovrrun; Number of messages received with receiver overruns
 bit16 rcv_crcerr; Number of messages received with bad CRCs
 bit16 rcv_parerr; Async only. Parity errors
 bit16 rcv_frmerr; Async only. Number of framing errors
 bit16 xmt_undrun; Number of transmit underruns
 bit16 frame_sent; Number of message buffers sent
 bit16 frame_rcvd; Number of message buffers received
} SPS_STATS_REPORT;
158 DC 900-2007A

9: Messages Exchanged between Client and ICP
9.2.3 DLI_PROT_SEND_NORMAL_DATA – ICP Send Data To Client

The ICP sends this message to the client to provide it with messages read from the link.

The DLI_OPT_ARGS structure for the DLI_ICP_CMD_READ message is shown below.

DLI_OPT_ARGS.usFWPacketType n/a
DLI_OPT_ARGS.usFWCommand n/a
DLI_OPT_ARGS.usFWStatus n/a
DLI_OPT_ARGS.usICPClientID n/a
DLI_OPT_ARGS.usICPServerID n/a
DLI_OPT_ARGS.usICPCommand DLI_ICP_CMD_READ
DLI_OPT_ARGS.iICPStatus n/a
DLI_OPT_ARGS.usICPParms [0] n/a
DLI_OPT_ARGS.usICPParms [1] n/a
DLI_OPT_ARGS.usICPParms [2] n/a
DLI_OPT_ARGS.usProtCommand DLI_PROT_SEND_NORM_DATA
DLI_OPT_ARGS.iProtModifier n/a
DLI_OPT_ARGS.usProtLinkID Link ICP read data from.
DLI_OPT_ARGS.usProtCircuitID n/a
DLI_OPT_ARGS.usProtSessionID Session ID. (See attach message.)
DLI_OPT_ARGS.usProtSequence n/a
DLI_OPT_ARGS.usProtXParms [0] n/a
DLI_OPT_ARGS.usProtXParms [1] n/a

The data area contains the data read. The stop character and CRC characters are not

provided.
DC 900-2007A 159

Freeway ® Protocol Software Toolkit Programmer’s Guide
9.2.4 DLI_PROT_RESP_LOCAL_ACK – ICP Acknowledge Message

The ICP sends this message to inform the client that the ICP has completed transmis-

sion of client’s message. The DLI_OPT_ARGS structure for the DLI_PROT_RESP_LOCAL_ACK

message is shown below.

DLI_OPT_ARGS.usFWPacketType n/a
DLI_OPT_ARGS.usFWCommand n/a
DLI_OPT_ARGS.usFWStatus n/a
DLI_OPT_ARGS.usICPClientID n/a
DLI_OPT_ARGS.usICPServerID n/a
DLI_OPT_ARGS.usICPCommand n/a
DLI_OPT_ARGS.iICPStatus n/a
DLI_OPT_ARGS.usICPParms [0] n/a
DLI_OPT_ARGS.usICPParms [1] n/a
DLI_OPT_ARGS.usICPParms [2] n/a
DLI_OPT_ARGS.usProtCommand DLI_PROT_RESP_LOCAL_ACK
DLI_OPT_ARGS.iProtModifier n/a
DLI_OPT_ARGS.usProtLinkID Link ICP transmitted data on.
DLI_OPT_ARGS.usProtCircuitID n/a
DLI_OPT_ARGS.usProtSessionID Session ID. (See attach message.)
DLI_OPT_ARGS.usProtSequence n/a
DLI_OPT_ARGS.usProtXParms [0] n/a
DLI_OPT_ARGS.usProtXParms [1] n/a

There is no data area.
160 DC 900-2007A

Appendix
A Application Notes
This appendix clarifies some points made in the technical manuals and describes some

peculiarities of the devices and the ICP hardware.

• When programming in a high-level language, be sure that your compiler’s opti-

mizer handles the special requirements of device-level programming correctly.

For example, if you program two writes to a hardware register in sequence, the

optimizer could inappropriately remove the first write instruction as superfluous.
DC 900-2007A 161

Freeway ® Protocol Software Toolkit Programmer’s Guide
162 DC 900-2007A

Appendix
B Data Rate Time Constants for
IUSC Programming
This appendix provides some commonly used baud rate time constants for IUSC pro-

gramming on the ICP.

Table B–1 shows IUSC time constants for 1X mode for the ICP2432B normally used for

all synchronous communication modes. Table B–2 shows IUSC time constants for 16X

mode for the ICP2432B normally used for asynchronous mode. Set the required clock

mode in the Channel Mode register of the IUSC.

The IUSC time constant is a 16-bit value stored in Time Constant register 0 or 1.

Table B–1: IUSC Time Constants for 1X Clock Rate for ICP2432B

Baud Rate
(kbits/sec)

Time Constant
(hexadecimal)

0.3 2FFF

0.6 17FF

1.2 0BFF

2.4 05FF

4.8 02FF

9.6 017F

19.2 00BF

38.4 005F

57.6 003F
DC 900-2007A 163

Freeway ® Protocol Software Toolkit Programmer’s Guide
Table B–2: IUSC Time Constants for 16X Clock Rate for ICP2432B

Baud Rate
(kbits/sec)

Time Constant
(hexadecimal)

0.3 02FF

0.6 017F

1.2 00BF

2.4 005F

4.8 002F

9.6 0017

19.2 000B

38.4 0005

57.6 0003
164 DC 900-2007A

Appendix
C Error Codes
There are several methods used by the DLI and ICP software to report errors, as

described in the following sections:

C.1 DLI Error Codes

The error code can be returned directly by the DLI function call in the global variable

dlerrno. Typical errors are those described in the Freeway Data Link Interface Reference

Guide.

C.2 ICP Global Error Codes

Table C–1 lists the ICP-related errors that can be returned in the global variable

iICPStatus. The DLI constants are defined in the dlicperr.h file.

C.3 ICP Error Status Codes

The ICP-related errors listed in Table C–1 can also be returned in the dlRead

optArgs.iICPStatus field of the response, which is a duplicate of the iIPCStatus global

variable. The DLI sets the dlRead optArgs.usProtCommand field to the same value as the

dlWrite request that caused the error.
DC 900-2007A 165

Freeway ® Protocol Software Toolkit Programmer’s Guide
Table C–1: ICP Error Status Codes used by the ICP

Code Mnemonic Meaning

0 DLI_ICP_ERR_NO_ERR A data block has been successfully transmitted or
received on the line or a command has been success-
fully executed.

–101 DLI_ICP_ERR_BAD_NODE An invalid node number was passed to the ICP from
the DLI.

–102 DLI_ICP_ERR_BAD_LINK The link number from the client program is not a
legal value.

–103 DLI_ICP_ERR_NO_CLIENT The maximum number of clients are registered for
the link.

–105 DLI_ICP_ERR_BAD_CMD The command from the client program is not a legal
value.

–115 DLI_ICP_ERR_BUF_TOO_SMALL The size of the data buffer sent from the client exceeds
the size of the configured buffers.

–117 DLI_ICP_ERR_LINK_ACTIVE A client request to enable (bind) a link is rejected by
the ICP because the link is already enabled.

–118 DLI_ICP_ERR_LINK_INACTIVE A client request to disable (unbind) a link is rejected
by the ICP because the link is already disabled.

–119 DLI_ICP_ERR_BAD_SESSID The session identification is invalid.

–121 DLI_ICP_ERR_NO_SESSION A client request to attach a link is rejected by the ICP
because the session identification is invalid.

–122 DLI_ICP_ERR_BAD_PARMS The values used for the function call are illegal.

–145 DLI_ICP_ERR_INBUF_OVERFLOW Server buffer input overflow

–146 DLI_ICP_ERR_OUTBUF_OVERFLOW Server buffer output overflow
166 DC 900-2007A

Appendix
D Test Programs
The Software Protocol Toolkit loopback test programs1 and test directories are listed in

Table D–1 for UNIX systems, Table D–2 for VMS systems, and Table D–3 for Windows

NT systems. This section gives a summary of the steps required to run the loopback test;

see the Freeway Server User’s Guide or the appropriate Freeway embedded user’s guide

for details and an example output. The I/O (blocking or non-blocking) is selected using

the asyncIO DLI configuration parameter (described in the Freeway Data Link Interface

Reference Guide) which defaults to “no” (blocking I/O).

1. File name conventions are described under “Document Conventions” in the Preface.

Table D–1: UNIX Loopback Test Programs and Directories

Loopback Program Type of I/O UNIX Test Directory

spsslp.c Blocking I/O usr/local/freeway/client/test/sps

spsalp.c Non-blocking I/O usr/local/freeway/client/test/sps

Table D–2: VMS Loopback Test Programs and Directories

Loopback Program Type of I/O VMS Test Directory

SPSSLP.C Blocking I/O SYS$SYSDEVICE:[FREEWAY.CLIENT.TEST.SPS]

SPSALP.C Non-blocking I/O SYS$SYSDEVICE:[FREEWAY.CLIENT.TEST.SPS]
DC 900-2007A 167

Freeway ® Protocol Software Toolkit Programmer’s Guide
To run one of the test programs, perform the following steps:

1. Make sure the server TSI configuration parameter is correctly defined in the TSI

text configuration file for each TSI connection definition. Refer to the Freeway

Transport Subsystem Interface Reference Guide.

2. Make any required changes to the DLI text configuration file for DLI session

parameters or ICP link parameters whose values differ from the defaults. Refer to

the Freeway Data Link Interface Reference Guide.

3. Be sure you are in the correct directory.

For UNIX: cd /usr/local/freeway/client/test/sps

For VMS: SET DEF SYS$SYSDEVICE:[FREEWAY.CLIENT.TEST.SPS]

For NT: cd c:\freeway\client\test\sps

4. Run the make file provided in the test directory.

For UNIX: make -f makefile.<op-sys> all

where <op-sys> is the operating system:

dec (for a DEC UNIX system)

hpux (for an HP/UX system)

sol (for a Solaris system)

sun (for a Sun system)

For example: make -f makefile.sun all

For VMS: @MAKEVMS "" UCX

Table D–3: Windows NT Loopback Test Program and Directory

Loopback Program Type of I/O Windows NT Test Directory

spsslp.c Blocking I/O c:\freeway\client\test\sps

spsalp.c Non-blocking I/O c:\freeway\client\test\sps
168 DC 900-2007A

D: Test Programs
For Windows NT (Freeway server): nmake -f makefile.<op-sys> all

where <op-sys> is the operating system:

ant (for Alpha NT)

int (for Intel NT)

For example: nmake -f makefile.ant all

For Windows NT (embedded): nmake -f makefile.nti

The make file automatically performs the following:

• In VMS systems only, creates the foreign commands used for the dlicfg and

tsicfg configuration preprocessor programs. (This is not necessary for

UNIX and NT systems.)

• In all systems, runs the dlicfg and tsicfg configuration preprocessor pro-

grams. These programs process the appropriate DLI and TSI text configura-

tion files to create the DLI and TSI binary configuration files. The text

configuration files provided for blocking and non-blocking I/O are:

The resulting binary configuration files have the same names with a .bin

extension. For example, spssldcfg.bin.

• In all systems, copies the DLI and TSI binary configuration files to the

appropriate bin directory.

UNIX example: freeway/client/op-sys/bin

VMS example: [FREEWAY.CLIENT.<vms_platform>_UCX.BIN]

where <vms_platform> is VAX or AXP

for example, [FREEWAY.CLIENT.VAX_UCX.BIN]

Blocking I/O Non-blocking I/O

DLI: spssldcfg spsaldcfg

TSI: spssltcfg spsaltcfg
DC 900-2007A 169

Freeway ® Protocol Software Toolkit Programmer’s Guide
NT example: freeway\client\op-sys\bin

where <op-sys> is the operating system:

ant (for Alpha NT)

int (for Intel NT)

int_nt_emb (for embedded)

• In all systems, compiles and links the loopback test programs (spsslp.c

and/or spsalp.c) and copies them to the same bin directory.

5. Boot the Freeway server or run icpload on the embedded product to download

the SPS software onto the ICP.

6. Connect two ICP links with loopback cables.

7. Execute the test program from the directory where the binary DLI and TSI con-

figuration files reside (that resulted from Step 4 above).

In Step 4 above, the make file runs the dlicfg and tsicfg preprocessor programs and

compiles and links the test programs. If you already compiled and linked the test pro-

grams, you can avoid recompiling and relinking them by running dlicfg and tsicfg

yourself instead of running the make file. However, note the following if you do.

In a UNIX system, if you run dlicfg and tsicfg instead of running the make file, you

must manually move the resulting DLI and TSI binary configuration files to the appro-

priate freeway/client/op-sys/bin directory where op-sys indicates the operating sys-

tem: sunos, hpux, solaris, rs_aix, osf1. For example, freeway/client/sunos/bin.

In a VMS system, if you run dlicfg and tsicfg instead of running the make file, you

must do the following:

• Before you run dlicfg and tsicfg, run the makefc.com command file to create the

foreign commands used for dlicfg and tsicfg.
170 DC 900-2007A

D: Test Programs
@MAKEFC UCX

• After you run dlicfg and tsicfg, run the move.com command file which moves

the DLI and TSI binary configuration files to the bin directory for your TCP/IP

package.

@MOVE filename UCX

where: filename is the name of the binary configuration file

For example: @MOVE SPSSLDCFG.BIN UCX

In a Windows NT system, if you run dlicfg and tsicfg instead of running the make

file, you must manually move the resulting DLI and TSI binary configuration files to the

appropriate freeway\client\op-sys\bin directory where op-sys indicates the operating

system: ant or int for the Freeway server or int_nt_emb for the Freeway embedded

product. For example, freeway\client\ant\bin.
DC 900-2007A 171

Freeway ® Protocol Software Toolkit Programmer’s Guide
172 DC 900-2007A

Index
A

Abort interrupt 85
Activate ICP link 137
Addresses

device
ICP2432B 44

Internet 23
register

ICP2432B 44
Allocation of control structures 58
Application interface 31
Application notes 161
Assembler 33

WRS 33
Assembly macro library 29
Assembly-language shell 38
asydev.c 82
Asynchronous mode, ISR operation in 86
Audience 13

B

Base addresses, device
ICP2432B 44

Baud rate
ICP2432B constants

16X clock rate 164
1X clock rate 163

Binary configuration files 117, 171
Bit numbering 16
Blocking I/O 119

call sequence 122
Board-level modules 31
Boot configuration file 46
BSC mode, ISR operation in 87
bscdev.c 82
DC 900-2007A
Byte ordering 16
Bytes required

configurable data structures 56
system stacks 56

C

C cross-compiler 33
C subroutine library 29
Caution

data loss 124
cf_lslice 58, 61
cf_ltick 58, 61
cf_nprior 58
cf_ntask 58
cfgLink DLI parameter 121
chkhio subroutine 72
chkliq subroutine 72, 82
chkloq subroutine 72
Client and ICP communication 129
Client applications 113
Client interface data structures 126
Client-server environment 23
Client-service environment 24
ColdFire® programming environment 35
Commands

foreign 117, 169
Communication 131

ICP and client 129
Communication modes, summary 84
Compiler 33

WRS 33
Completion status 100, 107
Components, software 29

block diagram 27, 28
Configuration
173

Freeway ® Protocol Software Toolkit Programmer’s Guide
binary files 117, 171
boot file 46
DLI

alwaysQIO parameter 120
asyncIO parameter 120
cfgLink parameter 121
enable parameter 121
summary 117

DLI and TSI process 114, 115
dlicfg program 117
ICP 45
OS/Protogate 50
overview 114
parameters 56
performance 58
table 53, 54
TSI

server parameter 168
summary 117

tsicfg program 117
Configured priorities

number 58
Connection

TSI configuration 115
Control structures

allocation 58
Customer support 18

D

Data exchange 25
Data length field 95
Data link interface 126

raw operation 115
Data rate

time constants 163
Data requirements

system 56
sample calculation 57

Data structures
client and ICP interface 126

Data structures, size 56
DCD

loss of 85
Deactivate ICP link 139
Debugger
174
PEEKER 63
SingleStep 26, 33, 66

Development tools 33
Device base addresses

ICP2432B 44
Device programming

ICP2432B 39
Diab C/C++ 33
Diagnostics 110
Dispostion flag field 95
Dispostion modifier field 96
dlBufAlloc (see also Functions) 125
dlBufFree (see also Functions) 125
dlClose (see also Functions) 125
dlControl (see also Functions) 125
dlerrno global variable 165
DLI 126
DLI concepts 113

blocking vs non-blocking I/O 119
configuration 114

see also Configuration, DLI
configuration process 114, 115

DLI functions
overview 124
see also Functions
summary table 125
syntax synopsis 125

DLI sessions
define 25

DLI_PROT_CFG_LINK 152, 157
DLI_PROT_GET_STATISTICS 155, 158
DLI_PROT_RESP_LOCAL_ACK 160
DLI_PROT_SEND_NORM_DATA 156
DLI_PROT_SEND_NORMAL_DATA 159
dlicfg preprocessor program 117
dlInit (see also Functions) 125
dlOpen (see also Functions) 125
dlPoll (see also Functions) 125
dlPost (see also Functions) 125
dlRead (see also Functions) 125
dlTerm (see also Functions) 125
dlWrite (see also Functions) 125
Document conventions 16
Documents

reference 15
DC 900-2007A

Index
Download
ICP 45
with debug 49
without debug 47

example script file 48
Download software 23
download_script 47, 49
Duration of tick and time slice 61

E

Electrical interface 41
enable DLI parameter 121
Equipment required 13
Error codes

dlerrno global variable 165
DLI 165
ICP error status codes, table 166
ICP global error codes 165
ICP status codes 165
iICPStatus global variable 165
optArgs.iICPStatus field 165

Ethernet 22
Example

call sequence 121
test programs 167

Exception vector table 36
Exception vector table memory 56
Executable programs 29

F

Features
Freeway 22

File transfer program 46
Files

binary configuration 117, 171
executable 29
make file 168
makefc.com 117, 170
move.com 118, 171
source 29
spsalp.c test program 168

Foreign commands 117, 169
FREE_BUF 99
FREE_QE 99
Freeway
DC 900-2007A
features 22
overview 19

embedded product 21
server product 19

Freeway embedded
client-service environment 24

Freeway server
client-server environment 23

Freeway session
close 25
open 25

Functions
dlBufAlloc 125
dlBufFree 125
dlClose 125
dlControl 125
dlInit 125
dlOpen 125
dlPoll 125
dlPost 125
dlRead 125

optional arguments 126
dlTerm 125
dlWrite 125

optional arguments 126

G

Get buffer system call 91
Global system table 68
gs_panic 68

H

Hardware device programming
ICP2432B 39

Hardware register addresses
ICP2432B 44

HDLC/SDLC mode, ISR operation in 84
Header fields

data length 95
disposition flag 95
disposition flag values

FREE_BUF 95
FREE_QE 95
POST_BUF 95
POST_QE 95
175

Freeway ® Protocol Software Toolkit Programmer’s Guide
REL_BUF 95
TOKEN_BUF 95
TOKEN_QE 95

disposition modifier 96
next buffer 95
next element 94
partition ID 95
previous element 94
this element 94

Header files 29
Header, system buffer 91, 94
History of revisions 17
Host/ICP interface 89

I

ICP
activate link 137
configuration 45
deactivate link 139
download 45
initialization 45
initiate session 132
reading 145
reading normal data 147
reading statistics 146
terminate session 135
writing data 144
writing link configuration to 142
writing request for link statistics 143
writing to link 141

ICP and client communication 129
ICP interface data structures 126
ICP software 69
icp2432bc.mem 49
ICP/host interface 89
iICPStatus global variable 165
Illegal instruction trap 68
Include file

dlicperr.h 165
Initialization

ICP 45
OS/Protogate 50, 55
structure 54
system 50, 69

Initiate session with ICP 131, 132
176
Interface
data link 126
host/ICP 89
SPS/ISR 82

Interface data structures
client and ICP 126

Interface, application 31
Interfaces

assembly 34
C language 34
operating system 34

Internal ping 149
Internal termination message 148
Internal test message 149
Internet addresses 23
Interrupt priority levels 38

ICP2432B 39
Interrupt service 84
Interrupt service routine 37

asynchronous mode 86
BSC mode 87
HDLC/SDLC mode 84

Interrupt service routine, sample 38
Interrupt stack pointer 35
Interrupts 36

abort 85
IUSC end of buffer 85, 88
IUSC RDMA complete 85
IUSC receive status 87
loss of DCD 85
receive character available 86, 88
special receive condition 88
transmit buffer empty 87
transmit underrun 86

I/O
blocking vs non-blocking 119

I/O utility 29
ISR, see Interrupt service routine
ISR/SPS interface for receive 82
ISR/SPS interface for transmit 82
IUSC 40

data rate time constants 163
end of buffer interrupt 85, 88
RDMA complete interrupt 85
receive character available interrupt 86, 88
DC 900-2007A

Index
receive status interrupt 87
special receive condition interrupt 88
transmit buffer empty interrupt 87

L

LAN interface processor 20
lct_flags 82
lct_frbuf 82
Library

C interface 34
macro 29

Link control table 81
Linker 33

WRS 33
Link-to-Board queue, sample 83
Loopback test

UNIX 167
VMS 167
Windows NT 167

Loss of DCD interrupt 85

M

Macro library 29
Make file 168
makefc.com file 117, 170
makefile 34
Master stack pointer 35
Memory layout

ICP2432B
application only 51
debug monitor and application 52

Memory organization
ICP2432B 43

Memory requirements
OS/Protogate 56

Messages
client to Freeway

Client link configuration request 152
Client link statistics request 155
Client send ICP link data 156

Freeway to client
ICP acknowledge link configuration 157
ICP acknowledge message 160
ICP send data to client 159
ICP statistics report 158
DC 900-2007A
Modules
debug monitor 31
ICP-resident 69
protocol-executable 31
sample protocol application 31
system services 31, 50
user application 50

Motorola ColdFire® programming
environment 35

move.com file 118, 171
Multi-mode serial transceiver 41

N

Next buffer field 95
Next element field 94
Node declaration queue

public 96
Node declaration queue element 96, 97
Non-blocking I/O 119

call sequence 123
Number of configured priorities 58
Number of task control structures 58

O

Operating system
Simpact’s real-time 20, 21

Operating system interface 34
Optional arguments

structure 124, 126
Organization of memory 43
oscif.h 34
osdefs.asm 34
osinit 69
osp_2432B.mem 47
OS/Protogate 29, 69

configuration 50
initialization 50, 55

OS/Protogate memory requirements 56
Overview

DLI and TSI configuration 114, 115
DLI functions 124
Freeway 19

embedded product 21
server product 19

protocol toolkit 26
177

Freeway ® Protocol Software Toolkit Programmer’s Guide
P

Panic codes 68
Parameters for configuration 56
Partition ID field 95
Partition, system 91
PEEKER debugging tool 63
Ping

internal 149
Post and resume system call 99, 106
POST_BUF 99
POST_QE 99
Previous element field 94
Priorities 58
Priority levels for interrupts 38
Privilege states 35
Processor privilege states 35
Product support 18
Programmable devices 39

ColdFire® 40
IUSC 40
multi-mode serial transceiver 41
test mode register 42

programming
ICP2432B 39

Programming environment 35
Programs

dlicfg preprocessor 117
test 167
tsicfg preprocessor 117

PROM 43
Protocol software 29
Protocol task 72
Protocol toolkit overview 26

Q

Queue create system call 100
Queue element

initialization 96
node declaration 97

Queue element, node declaration 96
Queue elements 91
Queues 72

R

Raw operation 115, 124, 126
178
rcvstr subroutine 82
Read request processing 76, 77
Reading from ICP 145
Reading ICP statistics 146
Reading normal data 147
Receive

control 80
SPS/ISR interface 82

Receive character available interrupt 86
Receive data processing 79
Reference documents 15
Register addresses, hardware 42

ICP2432B 44
REL_BUF 99
Request

client link configuration 152
client link statistics 155

Request completion 91
Revision history 17
rlogin 22

S

Sample configuration table 53, 54
Sample I/O utility 29
Sample protocol software 29

block diagram
Freeway embedded
Freeway server

message format 75
modules 69

sb_disp 99
sb_dmod 99
sb_nxtb 99
sb_nxte 82
sb_thse 99
sdlcdev.c 82
SDRAM requirements 56
Server processor 20
Server request header

initialization 106
Server request queue element 100
Session

DLI configuration 115
SingleStep debugger 26, 33
SingleStep debugging tool 66
DC 900-2007A

Index
SingleStep monitor 29
SNMP 22
Software

download 23
Software components 29

block diagram 27, 28
Software development 31
Source programs 29
sp_nxtb 100
SPS, see sample protocol software
sps_fw_2432B.mem 34, 47, 49, 69
spsalp.c test program 168
spsasm.asm 69
spsdefs.h 43
spshio 76
spshio utility task 97
SPS/ISR interface for receive 82
SPS/ISR interface for transmit 82
spsload 47, 49
Stack pointers 35
Structure for task initialization 53
Supervisor state 35
Support, product 18
sysequ.asm 34
System buffer header 91, 94

initialization 99, 104
System call

get buffer 91
post and resume 99, 106
queue create 100

System configuration table 53
System data requirements 56

sample calculation 57
System initialization 69
System panic codes 68
System partition 91
System performance 58
System resources

XIO interface 108
System services module 29, 31
System stacks

size 56
System-services module 50
DC 900-2007A
T

Task control blocks
number 58

Task control structures
number 58

Task initialization routine 50, 55
Task initialization structure 54
Task initialization structures 53
Task priorities

number 58
TCP/IP 22
Technical support 18
telnet 22
Terminate session with ICP 135
Termination Message

internal 148
Test message

internal 149
Test mode register 42
Test programs 167
This element field 94
Tick length 61
Time constants

ICP2432B
16X clock rate 164
1X clock rate 163

Time slice length 61
TOKEN_BUF 99
TOKEN_QE 99
Toolkit overview 26
Toolkit software components 29

block diagram 27, 28
Transmit

control 80
SPS/ISR interface 82

Transmit buffer empty interrupt 87
Transmit data processing 77
Transmit underrun interrupt 86
TSI configuration

process 114, 115
see Configuration, TSI

TSI connections
define 25

tsicfg preprocessor program 117
179

Freeway ® Protocol Software Toolkit Programmer’s Guide
U

UNIX
configuration process 117
loopback test 167

User stack pointer 35
User state 35
User-application module 50
usProtCommand field 151
Utility task 97

V

Vector base register 36
Vector table 36
Vectors reserved for system software 37
VMS

configuration process 117
loopback test 167

VxWorks 20

W

WAN interface processor 20
Windows NT

configuration process 117
loopback test 167

Write request processing 78, 79
Writing data to ICP 144
Writing link configuration to the ICP 142
Writing request for link statistics from ICP 143
Writing to ICP link 141
WRS compiler/assembler/linker 33

X–Z

XIO interface
system resources 108

XIO services 29
xmton subroutine 82
Z16C32 40
180
 DC 900-2007A

Freeway ® Protocol Software Toolkit Programmer’s Guide

DC 900-2007A
PROTOGATE
Customer Report Form

We are constantly improving our products. If you have suggestions or problems you would

like to report regarding the hardware, software or documentation, please complete this form

and mail it to Protogate at 12225 World Trade Drive, Suite R, San Diego, CA 92128, or fax it

to (877)473-0190.

If you are reporting errors in the documentation, please enter the section and page number.

Your Name:

Company:

Address:

Phone Number:

Product:

Problem or

Suggestion:

Protogate, Inc.
Customer Service

12225 World Trade Drive, Suite R
San Diego, CA 92128

	Freeway���® Protocol Software Toolkit Programmer’s Guide
	DC�900-2007A

	Preliminary June 11, 2002
	Contents
	Preface 13
	1 Introduction 19
	2 Wind River for the ICP 31
	3 Memory Organization 43
	4 ICP Download, Configuration, and Initialization 45
	5 Debugging 63
	6 ICP Software 69
	7 Host/ICP Interface 89
	8 Client Applications 113
	9 Messages Exchanged between Client and ICP 151
	A Application Notes 161
	B Data Rate Time Constants for IUSC Programming 163
	C Error Codes 165
	D Test Programs 167
	Index 173
	List of Figures
	List of Tables

	Preface
	Purpose of Document
	Intended Audience
	Required Equipment
	Organization of Document
	References� ���
	Freeway general support:
	DC�900�2002
	DC�900�2003
	DC�900�2004
	DC�900-2005
	��25�000�0374
	DC�900�1555
	DC�900�1510
	DC�900�1333

	Freeway programming support:
	DC�900�1303
	DC�900�1385
	DC�900�2008
	DC�900-1355
	DC�900�1325
	DC�900�1386
	DC�900�2006

	Freeway protocol support:
	DC�900�1317
	DC�900�1324
	DC�900�1340
	DC�900�1349
	DC�900�1406
	DC�900�1343
	DC�900�1339
	DC�900�1359
	DC�900�1344
	DC�900�1341
	DC�900�1392
	DC�900�1345
	DC�900�1307

	Other Documents (Available from Vendor):
	Vendor
	��Zilog, DC8292-01

	Other Documents (Development Tools and Environment):
	Vendor
	WRS

	Document Conventions
	Revision History
	November 4, 1994
	Original release
	November 22, 1994
	Update file names for Release 2.1
	Add Appendix�D, “Test Programs”
	July 1995
	Update file names
	Add ICP2424 information
	February 1996
	Minor modifications throughout
	Add ICP6030 information
	Add new dlControl function to Table�8–3 on page�125
	Add Windows NT to Appendix�D
	Delete HIO task information
	November 1997
	Add Freeway embedded product information
	Add ICP2432 information
	Document changes in directory structure
	June 2002
	Port the 1338 document to Protogate, Inc.

	Customer Support

	1 Introduction
	1.1� Freeway Overview
	1.1.1� Freeway Server Product
	Figure 1–1:� �Freeway Server Product Configuration

	1.1.2� Freeway Embedded Product
	Figure 1–2:� Freeway Embedded Product Configuration

	1.2� Freeway Environments�
	1.2.1� Freeway Server Client-Server Environment
	Figure 1–3:� A Typical Freeway Server Environment

	1.2.1.1� Establishing�Freeway Server Internet Addresses
	1.2.2� Freeway Embedded Client-Service Environment
	Figure 1–4:� A Typical Freeway Embedded Environment

	1.2.3� Defining the DLI and TSI Configuration
	1.2.4� Application Operations
	1.2.4.1� Opening a Freeway Session
	1.2.4.2� Exchanging Data with the Remote Application
	1.2.4.3� Closing a Freeway Session

	1.3� Protocol Toolkit Overview
	Figure 1–5:� ICP PROM and Toolkit Software Components - Freeway Server
	Figure 1–6:� ICP PROM and Toolkit Software Components - Freeway Embedded
	1.3.1� Toolkit Software Components

	2 Wind River for the ICP
	2.1� Board-level Protocol-executable Modules
	2.2� Development Tools
	2.2.1� WRS Compiler/Assembler/Linker

	2.3� Interfacing to the Operating System
	2.4� Motorola ColdFire® Programming Environment
	2.4.1� Processor Privilege States
	2.4.2� Stack Pointers
	2.4.3� Exception Vector Table
	Table 2–1:� Vectors Reserved for System Software
	Auto vector level 1
	Auto vector level 2
	Auto vector level 3
	Auto vector level 4
	TRAP # 0
	TRAP # 1
	TRAP # 2
	TRAP # 3
	TRAP # 4
	TRAP # 5
	TRAP # 15
	Figure 2–1:� Assembly Language Shell

	2.4.4� Interrupt Priority Levels
	Table 2–2:� ICP Interrupt Priority Assignments
	ICP2432B
	NMI and Bus Error Logic
	Integrated Universal Serial Controllers (IUSC)
	Integrated periodic timer interrupt
	PCIbus

	2.5� ICP2432B Hardware Device Programming
	2.5.1� Programming the ColdFire®
	Table 2–3:� LED Control Information
	0x3000_0248
	0x01
	Green LED on
	0x3000_0248
	0x02
	Red LED on
	0x3000_0248
	0x00
	Both on
	0x3000_0248
	0x03
	Both off

	2.5.2� Programming the Integrated Universal Serial Controllers
	2.5.3� Programming Sipex’s Multi-Mode Serial Transceivers
	Table 2–4:� SP503 or SP506 Electrical Interface Values
	RS-232
	0x02
	RS-422 w/0 term
	0x04
	RS-422 w term
	0x05
	RS-449 or EIA-530
	0x0d
	V.35
	0x0e

	2.5.4� Programming the Test Mode Register
	Figure 2–2:� Test Mode Register, ICP2432

	3 Memory Organization
	3.1� ICP2432B
	Table 3–1:� ICP2432B Device and Register Addresses
	Base address of IUSC for Port 0
	40000_0000
	Base address of IUSC for Port 1
	40000_1000
	Base address of IUSC for Port 2
	40000_2000
	Base address of IUSC for Port 3
	40000_3000
	Base address of IUSC for Port 4
	40000_4000
	Base address of IUSC for Port 5
	40000_5000
	Base address of IUSC for Port 6
	40000_6000
	Base address of IUSC for Port 7
	40000_7000
	SP503 or 506 for Port 0
	40000_8000
	SP503 or 506 for Port 1
	40000_9000
	SP503 or 506 for Port 2
	40000_A000
	SP503 or 506 for Port 3
	40000_B000

	4 ICP Download, Configuration, and Initialization
	4.1� Download Procedures
	4.1.1� Freeway Server Download Procedure
	4.1.1.1� Downloading Without the Debug Monitor
	spsload
	osp_2432B.mem
	sps_fw_2432B.mem
	Figure 4–1:� Protocol Toolkit Download Script File (spsload) �

	4.1.1.2� Downloading With the SingleStep Monitor
	spsload
	icp2432bc.mem
	sps_fw_2432b.mem

	4.1.2� Freeway Embedded Download Procedure

	4.2� OS/Protogate Configuration and Initialization
	Figure 4–2:� ICP2432B Memory Layout with Application Only
	Figure 4–3:� ICP2432B Memory Layout with Application and SingleStep Monitor
	4.2.1� Configuration Table
	Figure 4–4:� Sample Configuration Table

	4.2.2� Task Initialization Structures
	Figure 4–5:� Sample Configuration Table with Task Initialization Structures

	4.2.3� Task Initialization Routine
	1. Load the configuration table address into register A0.
	2. Loads the operating system initialization entry point address into register A1.
	3. Jumps to the operating system initialization entry point “osinit.”

	4.2.4� OS/Protogate Initialization
	1. Initialize system stack pointer, exception vector table, and clock interrupts (using the tick ...
	2. Build data structures (task control blocks, queue control blocks, and so on) according to para...
	3. Allocate space for the timer task’s stack and create the task.
	4. Use the task initialization structures included in the configuration table to create one or mo...
	5. Transfer control to the kernel’s dispatcher to begin normal run-time operations.

	4.3� Determining Configuration Parameters
	4.3.1� OS/Protogate Memory Requirements
	Table 4–1:� System Data Requirements
	Supervisor stack
	1024
	Timer task’s stack
	512
	Task control blocks
	Number of tasks x 24
	Queue control blocks
	Number of queues x 20
	Partition control blocks
	Number of partitions x 28
	Resource control blocks
	Number of resources x 16
	Alarm control blocks
	Number of alarms x 28
	Task alarm control blocks
	Number of tasks x 28
	Dispatch queues
	((Number of priorities + 1) x 8) + 4
	Table 4–2:� Sample Calculation of System Data Requirements

	Supervisor stack
	1024
	Timer task’s stack
	512
	Task control blocks
	8 x 24
	=
	192
	Queue control blocks
	30 x 20
	=
	600
	Partition control blocks
	4 x 28
	=
	112
	Resource control blocks
	0 x 16
	=
	0
	Alarm control blocks
	10 x 28
	=
	280
	Task alarm control blocks
	8 x 28
	=
	224
	Dispatch queues
	((5 + 1) x 8) + 4
	=
	52

	2996
	or
	0xBB4

	4.3.2� Configuration and System Performance
	cf_ntask
	Task control blocks and task alarm control blocks
	cf_nque
	Queue control blocks
	cf_nalarm
	Alarm control blocks
	cf_npart
	Partition control blocks
	cf_nresrc
	Resource control blocks

	4.3.2.1� Number of Configured Task Control Structures
	4.3.2.2� Number of Configured Priorities
	0 (timer task)
	1 (reserved)
	2
	2
	3
	0 (timer task)
	50 (reserved)
	75
	75
	200

	4.3.2.3� Tick and Time Slice Lengths

	5 Debugging
	5.1� PEEKER Debugging Tool
	^
	Close current location, open previous location (in address space), and display contents
	=
	Close current location, open current location (in address space), and display contents
	space
	Close current location, open next location (in address space), and display contents
	return
	Close current location and return PEEKER to its initial state, waiting for a new address or Contr...
	b
	Open by byte
	circumflex (^)
	Close current location, open previous location (in address space), and display contents
	comma
	Field delimiter between address and data
	Control-X (exit)
	Return to whomever called PEEKER
	delete
	Return PEEKER to its initial state
	equal sign
	Close current location, open current location (in address space), and display contents
	l
	Open by longword
	linefeed Control-J
	Close current location, open next location (in address space), and display contents
	space
	Close current location, open next location (in address space), and display contents
	n (next)
	Close current location, open next location (in address space), and display contents
	p
	Close current location, open previous location (in address space), and display contents
	period
	Ignore, but echo
	r or R
	Publish registers and return PEEKER to initial state
	<return> <esc>
	Close and return to initial state
	u (up)
	Close current location, open previous location (in address space), and display contents
	underscore
	Ignore, but echo
	w
	Open by word (default)

	5.2� SingleStep Debugging Tool
	1. In the spsload file, uncomment (remove the pound sign) the LOAD command for the debug monitor.
	2. Install cables that connect the serial port on the �SingleStep host machine with the “serial p...
	3. Reboot the �Freeway server or rerun icpload on the embedded product to download the SPS softwa...

	5.3� System Panic Codes

	6 ICP Software
	6.1� ICP-resident Modules
	Figure 6–1:� Block Diagram of the Sample Protocol Software - Freeway Server
	Figure 6–2:� Block Diagram of the Sample Protocol Software - Freeway Embedded
	6.1.1� System Initialization
	6.1.2� Protocol Task
	6.1.3� Utility Task (spshio)
	1. Keeps reads posted on the main and priority nodes
	2. Distributes incoming buffers to the correct server-to-board queues
	3. Posts buffers from the board-to-server queues to the appropriate nodes
	Figure 6–3:� Sample Protocol Software Message Format

	6.1.3.1� Read Request Processing
	Figure 6–4:� ICP Read Request (Transmit Data) Processing
	1. To obtain messages from the �ICP’s host, the utility task creates read request queue elements ...
	2. The utility task issues read requests to XIO for each queue element created in Step�1.
	3. For each read request, XIO posts a read to the Read Request Queue associated with the node ide...
	4. When the �ICP’s host sends a write request to its driver, XIO transfers the message to the dat...
	5. XIO posts the header and the data buffer to the utility task’s data and header input queues fo...
	6. The protocol and utility tasks then do the following:
	a. Based on the �session or �link field of the ICP header, the utility task multiplexes and trans...
	b. The protocol task removes data buffers from the server-to-board queue, processes the requests,...
	c. The utility task obtains additional data buffers from partition D and links them to header buf...

	6.1.3.2� Write Request Processing
	Figure 6–5:� ICP Write Request (Receive Data) Processing
	1. The protocol task obtains a data buffer from partition D, to be filled with data received on a...
	2. When the utility task finds the data buffer on the board-to-server queue, it links the buffer ...
	3. After filling out the data length and session fields of the ICP and PROT headers, the utility ...
	4. XIO posts a write to the Write Request Queue associated with the node identified in the host r...
	5. When the �ICP’s host sends a read request to its driver with a matching node number, XIO trans...
	6. As instructed by the disposition flags, XIO releases the header and data buffers to their resp...

	6.2� Control of Transmit and Receive Operations
	6.2.1� Link Control Tables
	6.2.2� SPS/ISR Interface for Transmit Messages
	6.2.3� SPS/ISR Interface for Received Messages
	Figure 6–6:� Sample Link-to-Board Queue

	6.3� Interrupt Service
	Table 6–1:� Summary of Communication Modes
	IUSC mode
	Asynchronous
	Byte synchronous
	Bit synchronous
	Data transfer method
	Character interrupts
	Character interrupts/DMA
	DMA
	Start block detection (receive)
	ISR search for start character
	IUSC detects SYNC character
	IUSC detects opening flag
	End block detection (receive)
	ISR search for end character
	Byte count in header
	IUSC detects closing flag
	CRC calculation
	Software
	Software
	IUSC
	ISR programming �language
	C
	Assembly/C
	C
	6.3.1� ISR Operation in HDLC/SDLC Mode
	6.3.2� ISR Operation in Asynchronous Mode
	6.3.3� ISR Operation in BSC Mode

	7 Host/ICP Interface
	7.1� ICP’s Host Interface Protocol
	7.2� Queue Elements
	Figure 7–1:� Sample Singly-linked Queue with Three Elements
	Figure 7–2:� Sample Doubly-linked Queue with Three Elements
	7.2.1� System Buffer Header
	Next Element
	Previous Element
	This Element
	Next Buffer
	Partition ID
	Data Length
	Disposition Flag
	Disposition modifier
	Queue ID
	Non-zero value to be cleared
	Resource ID
	Queue ID
	Non-zero value to be cleared
	Resource ID
	Not used

	7.2.2� Queue Element Initialization
	7.2.3� Node Declaration Queue Element
	Figure 7–3:� Node Declaration Queue Element

	7.2.3.1� System Buffer Header Initialization
	7.2.3.2� Completion Status
	0
	=
	Good completion
	1
	=
	The node number is out of range or already declared
	2
	=
	A queue create system call failed (the queue ID is out of range or the queue already exists)

	7.2.4� Host Request Queue Element
	Figure 7–4:� Host Request Queue Element with Data Area

	7.2.4.1� System Buffer Header Initialization
	7.2.4.2� Host Request Header Initialization
	0x02
	=
	Write request
	0x08
	=
	Read request

	7.2.4.3� Completion Status
	0
	=
	Good completion
	1
	=
	The queue to which the host request queue element was posted is defined for a node number other t...
	3
	=
	The host request queue element was posted to a host read request queue but contains a write funct...

	7.3� Reserved System Resources: XIO Interface
	Queue IDs
	1 and 2 (ID 1 = node declaration queue)
	Vector numbers
	25 and 26 (hexadecimal offsets 64 and 68)
	GST entries
	gs_unused [0] (task entry point)
	gs_unused [1] (panic code)

	7.4� Executive Input/Output
	7.4.1� Node Declaration (s_nodec)
	7.4.2� XIO Read/Write (s_xio)

	7.5� Diagnostics

	8 Client Applications
	8.1� Summary of DLI Concepts
	8.1.1� Configuration in the Freeway Server or Embedded Environment
	8.1.1.1� DLI Configuration for Raw Operation
	Figure 8–1:� Typical DLI “main” Configuration plus Two Sessions

	8.1.1.2� DLI and TSI Configuration Process
	1. Create or modify a TSI text configuration file specifying the configuration of the TSI connect...
	2. Create or modify a DLI text configuration file specifying the DLI session configuration for al...
	3. If you have a UNIX or Windows NT system, skip this step. If you have a VMS system, run the mak...
	4. From the freeway/client/test/sps directory, execute tsicfg with the text file from Step�1 as i...
	5. From the freeway/client/test/sps directory, execute dlicfg with the text file from Step�2 as i...
	6. If you have a UNIX system, move the TSI and DLI binary configuration files that you created in...
	7. If you have a VMS system, run the move.com command file from the [FREEWAY. CLIENT.TEST.SPS] di...
	8. If you have a Windows NT system, move the TSI and DLI binary configuration files that you crea...
	Figure 8–2:� DLI and TSI Configuration Process

	8.1.2� Blocking versus Non-blocking I/O
	8.1.3� Buffer Management

	8.2� Example Call Sequences
	Table 8–1:� DLI Call Sequence for Blocking I/O
	Table 8–2:� DLI Call Sequence for Non-blocking I/O

	8.3� Overview of DLI Functions
	Table 8–3:� DLI Functions: Syntax and Parameters (Listed in Typical Call Order)
	int dlInit
	(char *cfgFile, �char *pUsrCb, int (*fUsrIOCH)(char *pUsrCb));
	DLI binary configuration file name Optional I/O complete control block Optional IOCH and parameter
	int dlOpena
	(char *cSessionName, int (*fUsrIOCH) �� (char *pUsrCB, int iSessionID));
	Session name in DLI config file Optional I/O completion handler Parameters for IOCH
	int dlPoll
	(int iSessionID, �int iPollType, char **ppBuf, int *piBufLen, char *pStat, DLI_OPT_ARGS **ppOptAr...
	Session ID from dlOpen Request type Poll type dependent buffer Size of I/O buffer (bytes) Status ...
	char *dlBufAlloc
	(int iBufLen);
	Minimum buffer size
	int dlRead
	(int iSessionID, char **ppBuf, int iBufLen, DLI_OPT_ARGS *pOptArgs);
	Session ID from dlOpen Buffer to receive data Maximum bytes to be returned Optional arguments str...
	int dlWrite
	(int iSessionID, char *pBuf, int iBufLen, int iWritePriority, DLI_OPT_ARGS *pOptArgs);
	Session ID from dlOpen Source buffer for write Number of bytes to write Normal or expedite write ...
	int dlPost
	(void);
	char *dlBufFree
	(char *pBuf);
	Buffer to return to pool
	int dlClose
	(int iSessionID, int iCloseMode);
	Session ID from dlOpen Mode (normal or force)
	int dlTerm
	(void);
	int dlControl
	(char *cSessionName, int iCommand, int (*fUsrIOCH) �� (char *pUsrCB, int iSessionID));
	Session name in DLI config file Command (e.g. reset/download) Optional I/O completion handler Par...
	a�It is critical for the client application to receive the dlOpen completion status before making...

	8.4� Client and ICP Interface Data Structures
	Figure 8–3:� “C” Definition of DLI Optional Arguments Structure
	Figure 8–4:� “C” Definition of api_msg Data Structure
	Figure 8–5:� “C” Definition of icp_hdr and prot_hdr Data Structures
	Table 8–4:� Equivalent Fields between DLI_OPT_ARGS and ICP_HDR/PROT_HDR
	client’s packet type
	client’s command sent or received
	client’s status of I/O operations
	old su_id
	old sp_id
	data size
	ICP’s command
	ICP’s command status
	ICP’s extra parameters
	protocol command
	protocol command's modifier
	protocol link ID
	protocol circuit ID
	protocol session ID
	protocol sequence
	protocol extra parameters
	second XParms field

	8.5� Client and ICP Communication
	8.5.1� Sequence of Client Events to Communicate to the ICP
	1. Initiate a session with the Freeway server or the embedded product’s driver
	2. Initiate a session with the ICP link
	3. Configure the link
	4. Activate the link
	5. Send data to and receive data from the link
	6. Deactivate the link
	7. End the session with the ICP link
	8. End the session with the Freeway server or the embedded product’s driver

	8.5.2� Initiating a Session with the ICP
	8.5.3� Initiating a Session with an ICP Link
	8.5.4� Terminating a Session with an ICP Link
	8.5.5� Activating an ICP Link
	8.5.6� Deactivating an ICP Link
	8.5.7� Writing to an ICP Link
	8.5.7.1� Writing the Link Configuration to the ICP
	8.5.7.2� Writing a Request For Link Statistics From the ICP
	8.5.7.3� Writing Data to an ICP Link
	8.5.8� Reading from the ICP Link
	8.5.8.1� Reading ICP Statistics
	8.5.8.2� Reading Normal Data

	8.6� Additional Command Types Supported by the SPS
	8.6.1� Internal Termination Message
	8.6.2� Internal Test Message
	8.6.3� Internal Ping

	9 Messages Exchanged between Client and ICP
	9.1� Messages Sent From Client to the ICP
	9.1.1� DLI_PROT_CFG_LINK – Client Link Configuration Request
	9.1.2� DLI_PROT_GET_STATISTICS – Client Link Statistics Request
	9.1.3� DLI_PROT_SEND_NORM_DATA – Client Send ICP Link Data

	9.2� Messages Sent From ICP To Client
	9.2.1� DLI_PROT_CFG_LINK – ICP Acknowledge Link Configuration
	9.2.2� DLI_PROT_GET_STATISTICS – ICP Statistics Report
	9.2.3� DLI_PROT_SEND_NORMAL_DATA – ICP Send Data To Client
	9.2.4� DLI_PROT_RESP_LOCAL_ACK – ICP Acknowledge Message

	A Application Notes
	B Data Rate Time Constants for IUSC Programming
	Table B–1:� IUSC Time Constants for 1X Clock Rate for ICP2432B
	Table B–2:� IUSC Time Constants for 16X Clock Rate for ICP2432B

	C Error Codes
	C.1� DLI Error Codes
	C.2� ICP Global Error Codes
	Table C–1:� ICP Error Status Codes used by the ICP
	0
	DLI_ICP_ERR_NO_ERR
	A data block has been successfully transmitted or received on the line or a command has been succ...
	–101
	DLI_ICP_ERR_BAD_NODE
	An invalid node number was passed to the ICP from the DLI.
	–102
	DLI_ICP_ERR_BAD_LINK
	The link number from the client program is not a legal value.
	–103
	DLI_ICP_ERR_NO_CLIENT
	The maximum number of clients are registered for the link.
	–105
	DLI_ICP_ERR_BAD_CMD
	The command from the client program is not a legal value.
	–115
	DLI_ICP_ERR_BUF_TOO_SMALL
	The size of the data buffer sent from the client exceeds the size of the configured buffers.
	–117
	DLI_ICP_ERR_LINK_ACTIVE
	A client request to enable (bind) a link is rejected by the ICP because the link is already enabled.
	–118
	DLI_ICP_ERR_LINK_INACTIVE
	A client request to disable (unbind) a link is rejected by the ICP because the link is already di...
	–119
	DLI_ICP_ERR_BAD_SESSID
	The session identification is invalid.
	–121
	DLI_ICP_ERR_NO_SESSION
	A client request to attach a link is rejected by the ICP because the session identification is in...
	–122
	DLI_ICP_ERR_BAD_PARMS
	The values used for the function call are illegal.
	–145
	�DLI_ICP_ERR_INBUF_OVERFLOW
	Server buffer input overflow
	–146
	�DLI_ICP_ERR_OUTBUF_OVERFLOW
	Server buffer output overflow

	C.3� ICP Error Status Codes

	D Test Programs
	Table D–1:� UNIX Loopback Test Programs and Directories
	spsslp.c
	Blocking I/O
	usr/local/�freeway/client/test/sps
	spsalp.c
	Non-blocking I/O
	usr/local/�freeway/client/test/sps
	Table D–2:� VMS Loopback Test Programs and Directories

	SPSSLP.C
	Blocking I/O
	SYS$SYSDEVICE:[FREEWAY.CLIENT.TEST.SPS]
	SPSALP.C
	Non-blocking I/O
	SYS$SYSDEVICE:[FREEWAY.CLIENT.TEST.SPS]
	Table D–3:� Windows NT Loopback Test Program and Directory

	spsslp.c
	Blocking I/O
	c:\freeway\client\test\sps
	spsalp.c
	Non-blocking I/O
	c:\freeway\client\test\sps
	1. Make sure the server TSI configuration parameter is correctly defined in the TSI text configur...
	2. Make any required changes to the DLI text configuration file for DLI session parameters or ICP...
	3. Be sure you are in the correct directory.
	4. Run the make file provided in the test directory.

	DLI:
	�spssldcfg
	�spsaldcfg
	TSI:
	�spssltcfg
	�spsaltcfg
	5. Boot the �Freeway server or run icpload on the embedded product to download the SPS software o...
	6. Connect two ICP links with loopback cables.
	7. Execute the test program from the directory where the binary DLI and TSI configuration files r...

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X–Z
	Customer Report Form

