
Protogate Inc.
12225 World T
San Diego, CA
March 2002
rade Drive, Suite R
 92128

Freeway®

Data Link Interface
Reference Guide

DC 900-1385E

Protogate, Inc.
12225 World Trade Drive, Suite R
San Diego, CA 92128
(858) 451-0865

Freeway Data Link Interface Reference Guide
© 2002 Protogate, Inc. All rights reserved
Printed in the United States of America

This document can change without notice. Protogate, Inc. accepts no liability for any errors this
document might contain.

Freeway is a registered trademark of Simpact, Inc.
All other trademarks and trade names are the properties of their respective holders.

Contents
List of Figures 9

List of Tables 11

Preface 13

1 Overview 21

1.1 Product Overview . 21

1.1.1 Freeway Server . 22

1.1.2 Embedded ICP . 22

1.2 Freeway Client-Server Environment . 26

1.2.1 Establishing Freeway Server Internet Addresses 27

1.3 Embedded ICP Environment . 27

1.4 Client Operations . 27

1.4.1 Defining the DLI and TSI Configuration 27

1.4.2 Opening a Session . 28

1.4.3 Exchanging Data with the Remote Application 28

1.4.4 Closing a Session . 28

1.5 DLI Overview and Features . 28

1.6 Protogate’s Embedded ICP2432 for the PCIbus 30

2 DLI Concepts 31

2.1 Configuration in the Freeway Environment 31

2.2 Blocking versus Non-blocking I/O . 32

2.2.1 I/O Completion Handler for Non-Blocking I/O 33

2.3 Normal versus Raw Operation . 34

2.3.1 Normal Operation . 35

2.3.1.1 Connecting to the TSI Service Layer 35

2.3.1.2 Connecting to the Message Multiplexor 36
DC 900-1385E 3

Freeway Data Link Interface Reference Guide
2.3.1.3 Connecting to the ICP . 36

2.3.1.4 Configuring the Data Link . 36

2.3.1.5 Connecting to the Remote Data Link Application 36

2.3.1.6 Exchanging Data with the Remote Data Link Application . . . 37

2.3.1.7 Disconnecting from the Remote Data Link Application 37

2.3.1.8 Disconnecting from the ICP 37

2.3.1.9 Disconnecting from the Message Multiplexor. 37

2.3.1.10 Disconnecting from the TSI Service Layer 38

2.3.2 Raw Operation . 38

2.3.2.1 Connecting to the TSI Service Layer. 39

2.3.2.2 Connecting to the Message Multiplexor 39

2.3.2.3 Exchanging Data with the Remote Data Link Application . . . 39

2.3.2.4 Disconnecting from the Message Multiplexor. 40

2.3.2.5 Disconnecting from the TSI Service Layer 40

2.4 Buffer Management . 40

2.4.1 Overview of the Freeway System Buffer Relationships 40

2.4.1.1 Example Calculation to Change ICP, Client, and Server Buffer Sizes

42

2.4.2 Client TSI Buffer Configuration . 45

2.4.2.1 TSI Buffer Pool Definition . 46

2.4.2.2 Connection-Specific Buffer Definition 48

2.4.2.3 TSI Buffer Size Negotiation 49

2.4.3 Server TSI Buffer Configuration . 50

2.4.4 Buffer Allocation and Release . 50

2.4.5 Cautions for Changing Buffer Sizes 51

2.4.6 Using Your Own Buffers . 51

2.5 System Resource Requirements . 53

2.5.1 Memory Requirements . 53

2.5.2 Signal Processing . 53

3 DLI Configuration 55

3.1 Configuration Process Overview . 55

3.2 DLI Configuration versus TSI Configuration 57

3.3 Introduction to DLI Configuration . 58

3.3.1 DLI Configuration Language . 59

3.3.2 Rules of the DLI Configuration File 59
4 DC 900-1385E

Contents
3.3.3 Binary Configuration File Management. 60

3.3.4 On-line Configuration File Processing 61

3.4 DLI Session Definition . 61

3.4.1 DLI “main” Configuration Section 62

3.4.2 DLI Session Configuration Sections 62

3.4.3 Protocol-Specific Parameters for a Session 66

3.5 Miscellaneous DLI Configuration Details 69

3.5.1 DLI Configuration Error Messages 69

3.5.2 Protogate Definition Language (PDL) Grammar 71

4 DLI Functions 73

4.1 Overview of DLI Functions . 73

4.1.1 DLI Error Handling . 73

4.1.2 Overview of DLI Functions . 74

4.1.2.1 Categories of DLI Functions. 74

4.1.2.2 Summary of DLI Functions . 75

4.1.3 DLI Data Structures . 78

4.1.3.1 DLI System Configuration. 78

4.1.3.2 DLI Session Status . 80

4.1.3.3 DLI Protocol-Specific Optional Arguments 83

4.2 dlBufAlloc . 86

4.3 dlBufFree . 89

4.4 dlClose . 90

4.5 dlControl . 95

4.6 dlInit . 99

4.7 dlListen . 103

4.8 dlOpen . 106

4.9 dlpErrString . 113

4.10 dlPoll . 114

4.11 dlPost . 121

4.12 dlRead . 122

4.13 dlSyncSelect . 128

4.14 dlTerm . 132

4.15 dlWrite . 134
DC 900-1385E 5

Freeway Data Link Interface Reference Guide
5 Tutorial Example Programs 141

5.1 Example Program using Blocking I/O 144

5.1.1 DLI Configuration for Blocking I/O and Normal Operation 144

5.1.2 TSI Configuration for Blocking I/O 146

5.1.3 Blocking I/O Example Code Listing 150

5.2 Example Program using Non-Blocking I/O 157

5.2.1 DLI Configuration for Non-Blocking I/O and Normal Operation . . 157

5.2.2 TSI Configuration for Non-Blocking I/O 159

5.2.3 Non-Blocking I/O Example Code Listing 161

5.3 Using Raw Operation . 174

5.3.1 Optional Arguments Structure . 174

5.4 Example Program using dlControl . 179

5.5 Example dlPoll Using usMaxSessBufSize Field 182

A DLI Header Files 185

B DLI Error Codes 187

B.1 Internal Error Codes . 187

B.2 Command-Specific Error Codes . 195

B.3 Error Handling for Dead Socket Detection 202

C UNIX, VxWorks, and VMS I/O 205

C.1 UNIX Environment . 205

C.1.1 Blocking I/O Operations . 206

C.1.2 Non-blocking I/O Operations . 206

C.1.3 SOLARIS use of SIGALRM . 206

C.1.4 Polling I/O Operations . 207

C.2 VxWorks Environment . 208

C.2.1 Blocking I/O Operations . 208

C.2.2 Non-blocking I/O Operations . 208

C.3 VMS Environment . 209

D DLI Logging and Tracing 211

D.1 DLI Logging . 211

D.2 DLI Tracing. 212

D.2.1 Trace Definitions . 212
6 DC 900-1385E

Contents
D.2.2 Decoded Trace Layout . 214

D.2.3 Example dlidecode Program Output 218

D.2.4 Trace Binary Format . 221

D.3 Freeway Server Tracing . 222

Index 223
DC 900-1385E 7

Freeway Data Link Interface Reference Guide
8 DC 900-1385E

List of Figures
Figure 1–1: Freeway Configuration . 23

Figure 1–2: Embedded ICP Configuration . 24

Figure 1–3: A Typical Freeway Server Environment 26

Figure 2–1: Client DLI Configuration File Changes (BSC Example) 43

Figure 2–2: Client TSI Configuration File Changes . 43

Figure 2–3: Server MuxCfg TSI Configuration File Changes 44

Figure 2–4: TSI Buffer Size Example. 47

Figure 2–5: DLI Buffer Size Example . 48

Figure 2–6: Comparison of malloc and dlBufAlloc Buffers 52

Figure 2–7: Using the malloc Function for Buffer Allocation 52

Figure 3–1: DLI Overall Architecture . 57

Figure 3–2: DLI Example “main” Configuration Section. 62

Figure 3–3: DLI Configuration Text File for Two Links. 67

Figure 4–1: DLI System Configuration Data Structure 78

Figure 4–2: DLI Session Status Data Structure . 80

Figure 4–3: “C” Definition of DLI Optional Arguments Structure 83

Figure 4–4: Freeway DLI Data Format. 84

Figure 5–1: Environment for Example Programs . 142

Figure 5–2: DLI Text Configuration File for Blocking I/O (fmpssdcfg) 145

Figure 5–3: TSI Text Configuration File for Blocking I/O (fmpsstcfg) 147

Figure 5–4: FMP Blocking I/O Example (fmpssp.c) . 154

Figure 5–5: DLI Text Configuration File for Non-Blocking I/O (fmpasdcfg) 158

Figure 5–6: TSI Text Configuration File for Non-Blocking I/O (fmpastcfg) 160

Figure 5–7: FMP Non-Blocking I/O Example (fmpasp.c) 167

Figure 5–8: Link Statistics Report using Raw Operation 176
DC 900-1385E 9

Freeway Data Link Interface Reference Guide
Figure 5–9: Example dlControl Program . 179

Figure 5–10: Example dlPoll Program Using usMaxSessBufSize Field 182

Figure D–1: DLI Trace File Format . 221

Figure D–2: TRACE_FCB ‘C’ Structure . 221

Figure D–3: DLI_TRACE_HDR “C” Structure . 222
10 DC 900-1385E

List of Tables
Table 2–1: Required Values for Calculating New maxBufSize Parameter 42

Table 3–1: DLI “main” Parameters and Defaults . 63

Table 3–2: DLI Client-Related Parameters and Defaults. 64

Table 3–3: DLI Protocol-Specific ICP Link Configuration Parameters 66

Table 4–1: DLI Function Categories . 74

Table 4–2: DLI Functions: Syntax and Parameters (Listed in Typical Call Order) . . . 76

Table 4–3: DLI System Configuration Data Structure Fields 79

Table 4–4: DLI Session Status Data Structure Fields. 81

Table 4–5: DLI Protocol-Specific Optional Arguments Data Structure. 84

Table 5–1: TSI “main” Parameters . 148

Table 5–2: TSI Connection-Related Parameters . 149

Table 5–3: Optional Arguments Required for Raw dlWrite Requests 175

Table A–1: DLI Header Files. 185

Table B–1: DLI Command-specific Error Codes . 195
DC 900-1385E 11

Freeway Data Link Interface Reference Guide
12 DC 900-1385E

Preface
Purpose of Document

This document describes Protogate’s data link interface (DLI) that helps you develop

applications using Protogate’s protocol services on a Freeway communications server

or embedded intelligent communications processor (ICP).

The information in this document supports the programmer’s guide for your particular

protocol software running on the Freeway server or embedded ICP. You will need both

documents while developing your application.

Note
The DLI information in this document also applies to an embed-

ded ICP using the DLITE interface. If you are using an embedded

ICP, also refer to the user guide for your ICP and operating system

(for example, the ICP2432 User Guide for Windows NT) for more

information on the differences between DLI and DLITE.

Intended Audience

This document should be read by application programmers. You should understand the

concepts of the client-server interface and be familiar with the C programming lan-

guage. You should also be familiar with your particular protocol programmer’s guide

(see the “Protogate References” section below).
DC 900-1385E 13

Freeway Data Link Interface Reference Guide

11/16/99
Leslie: Add
1567 to the
“Specials”
table.
Required Equipment

Freeway communications server or embedded ICP.

Organization of Document

Chapter 1 is an overview of Freeway and the DLI.

Chapter 2 describes various DLI concepts that you should understand before writing an

application program.

Chapter 3 describes the DLI configuration preprocessor program (dlicfg) and its rela-

tionship to the TSI configuration preprocessor program (tsicfg).

Chapter 4 describes each DLI function.

Chapter 5 presents some tutorial example programs demonstrating how to use the DLI

functions.

Appendix A describes the DLI header files provided to develop your application.

Appendix B lists additional error codes that are not in the reference sections. It also pro-

vides summary tables of all the DLI error codes as they relate to specific DLI functions.

Appendix C compares I/O handling in the UNIX, VMS, and VxWorks environments.

Appendix D describes the DLI logging and tracing capabilities.

Protogate References

The following general product documentation list is to familiarize you with the avail-

able Protogate Freeway and embedded ICP products. The applicable product-specific

reference documents are mentioned throughout each document (also refer to the

“readme” file shipped with each product). Most documents are available on-line at Pro-

togate’s web site, www.protogate.com.
14 DC 900-1385E

Preface
General Product Overviews

• Freeway 1100 Technical Overview 25-000-0419

• Freeway 2000/4000/8800 Technical Overview 25-000-0374

• ICP2432 Technical Overview 25-000-0420

• ICP6000X Technical Overview 25-000-0522

Hardware Support

• Freeway 500 Hardware Installation Guide DC-900-2000

• Freeway 1100/1150 Hardware Installation Guide DC-900-1370

• Freeway 1200/1300 Hardware Installation Guide DC-900-1537

• Freeway 2000/4000 Hardware Installation Guide DC-900-1331

• Freeway 3100 Hardware Installation Guide DC-900-2002

• Freeway 3200 Hardware Installation Guide DC-900-2003

• Freeway 3400 Hardware Installation Guide DC-900-2004

• Freeway 3600 Hardware Installation Guide DC-900-2005

• Freeway 8800 Hardware Installation Guide DC-900-1553

• Freeway ICP6000R/ICP6000X Hardware Description DC-900-1020

• ICP6000(X)/ICP9000(X) Hardware Description and Theory of
Operation

DC-900-0408

• ICP2424 Hardware Description and Theory of Operation DC-900-1328

• ICP2432 Hardware Description and Theory of Operation DC-900-1501

• ICP2432 Electrical Interfaces (Addendum to DC-900-1501) DC-900-1566

• ICP2432 Hardware Installation Guide DC-900-1502

Freeway Software Installation and Configuration Support

• Freeway Message Switch User Guide DC-900-1588

• Freeway Release Addendum: Client Platforms DC-900-1555

• Freeway User Guide DC-900-1333

• Freeway Loopback Test Procedures DC-900-1533

Embedded ICP Software Installation and Programming Support

• ICP2432 User Guide for Digital UNIX DC-900-1513

• ICP2432 User Guide for OpenVMS Alpha DC-900-1511
DC 900-1385E 15

Freeway Data Link Interface Reference Guide
• ICP2432 User Guide for OpenVMS Alpha (DLITE Interface) DC-900-1516

• ICP2432 User Guide for Solaris STREAMS DC-900-1512

• ICP2432 User Guide for Windows NT DC-900-1510

• ICP2432 User Guide for Windows NT (DLITE Interface) DC-900-1514

Application Program Interface (API) Programming Support

• Freeway Data Link Interface Reference Guide DC-900-1385

• Freeway Transport Subsystem Interface Reference Guide DC-900-1386

• QIO/SQIO API Reference Guide DC-900-1355

Socket Interface Programming Support

• Freeway Client-Server Interface Control Document DC-900-1303

Toolkit Programming Support

• Freeway Server-Resident Application and Server Toolkit
Programmer Guide

DC-900-1325

• OS/Impact Programmer Guide DC-900-1030

• Protocol Software Toolkit Programmer Guide DC-900-1338

Protocol Support

• ADCCP NRM Programmer Guide DC-900-1317

• Asynchronous Wire Service (AWS) Programmer Guide DC-900-1324

• AUTODIN Programmer Guide DC-908-1558

• Bit-Stream Protocol Programmer Guide DC-900-1574

• BSC Programmer Guide DC-900-1340

• BSCDEMO User Guide DC-900-1349

• BSCTRAN Programmer Guide DC-900-1406

• DDCMP Programmer Guide DC-900-1343

• FMP Programmer Guide DC-900-1339

• Military/Government Protocols Programmer Guide DC-900-1602

• N/SP-STD-1200B Programmer Guide DC-908-1359

• SIO STD-1300 Programmer Guide DC-908-1559

• X.25 Call Service API Guide DC-900-1392

• X.25/HDLC Configuration Guide DC-900-1345
16 DC 900-1385E

Preface
Document Conventions

This document follows the most significant byte first (MSB) and most significant word

first (MSW) conventions for bit-numbering and byte-ordering. In all packet transfers

between the client applications and the ICPs, the ordering of the byte stream is pre-

served.

The term “Freeway” refers to any of the Freeway server models (for example, Freeway

500/3100/3200/3400 PCI-bus servers, Freeway 1000 ISA-bus servers, or Freeway

2000/4000/8800 VME-bus servers). References to “Freeway” also may apply to an

embedded ICP product using DLITE (for example, the embedded ICP2432 using

DLITE on a Windows NT system).

Physical “ports” on the ICPs are logically referred to as “links.” However, since port and

link numbers are usually identical (that is, port 0 is the same as link 0), this document

uses the term “link.”

Program code samples are written in the “C” programming language.

File names for the loopback tests and example applications have the format: fmpxyz…z

where: x = s (blocking I/O) or a (non-blocking I/O)
y = l (loopback test) or s (sample application)
z…z = p (program) or

dcfg (DLI configuration file) or
tcfg (TSI configuration file)

• X.25 Low-Level Interface DC-900-1307
DC 900-1385E 17

Freeway Data Link Interface Reference Guide
Revision History

The revision history of the Freeway Data Link Interface Reference Guide, Protogate doc-

ument DC 900-1385E, is recorded below:

Revision Release Date Description

DC 900-1334A March 1994 Original release

DC 900-1334B
(Preliminary)

September 1994 Add Index
Reorganize and consolidate
Add tutorial examples in Chapter 5

DC 900-1334C October 1994 Full release

DC 900-1334D November 1994 Minor corrections and updates throughout
Change usICPStatus field to iICPStatus and usProtModifier field to

iProtModifier (Table 4–5 on page 84)
Update error codes throughout
Update Appendix D, “DLI Logging and Tracing”

DC 900-1334E February 1995 Minor corrections and updated tutorial example programs in
Chapter 5.

DC 900-1334F January 1996 Minor modifications throughout document
Add Section 2.5.2 on page 53, “Signal Processing”
Add Section 3.3.3 on page 60, “Binary Configuration File Man-

agement”
Modify Table 3–1 on page 63, Table 3–2 on page 64, and

Figure 3–3 on page 67
Add blocking I/O caution on page 115
Add the dlControl function and example code (Section 4.5 on

page 95 and Section 5.4 on page 179)
Add “QIO/SQIO API User Guide” Appendix
Update error codes in Table B–1 on page 195

DC 900-1385A February 1997 Special version for Freeway Server 2.5 release (changes later
incorporated into DC 900-1385B)
18 DC 900-1385E

Preface
Customer Support

If you are having trouble with any Protogate product, call us at (858) 451-0865 Monday

through Friday between 8 a.m. and 5 p.m. Pacific time.

You can also fax your questions to us at (877) 473-0190 any time. Please include a cover

sheet addressed to “Customer Service.”

We are always interested in suggestions for improving our products. You can use the

report form in the back of this manual to send us your recommendations.

DC 900-1385B October 1997 This is a major revision (using new document number)
Transfer “QIO/SQIO API User Guide” Appendix to a separate

document, DC-900-1355
Add information for users of Simpact’s embedded ICP2432

PCIbus board (Section 1.6 on page 30)
Document DLI_CTRL errors (Section 4.5 on page 95)
Add dlpErrString function (Section 4.9 on page 113)
Add Freeway Server 2.5 Release modifications (previously

released as DC900-1385A), including:
Add browser interface for configuration
Modify Buffer Management Section 2.4 on page 40
Check for NULL value of the piBufLen parameter in the dlPoll

request (page 117)
Enhance error detection and reporting (Chapter 4 and

Appendix B)
Add dlPoll example program in Section 5.5 on page 182
Add Error Handling for Dead Socket Detection (Section B.3 on

page 202)

DC 900-1385C June 1998 Modify Section 1.1 through Section 1.4 to discuss embedded
ICPs

Remove browser interface support
Add Section 3.3.4 on page 61, “On-line Configuration File Pro-

cessing”
Modify Table 3–1 on page 63 and Table 3–2 on page 64
Add dlSyncSelect function (Section 4.13 on page 128)
Add new error codes to Chapter 4 and Appendix B

DC 900-1385D December 1999 Correct Figure 4–3 on page 83

DC 900-1385E March 2002 Update contact information for Protogate, Inc. Add references
to new Freeway models.

Revision Release Date Description
DC 900-1385E 19

Freeway Data Link Interface Reference Guide
20 DC 900-1385E

Chapter

Most recent
modification
date:
6/1/99 Ginni
Added
1200/1300 to
FW list
1 Overview
This document describes the data link interface (DLI) to Protogate’s data link family of

protocol services running on Protogate’s Freeway communications server. The DLI

presents a consistent, high-level, common interface across multiple clients, operating

systems, and transport services. The DLI provides session-oriented data services to your

application with a subroutine library that implements functions that permit your client

application to use data link services to access, configure, establish and terminate ses-

sions, and transfer data across multiple data link protocols.

1.1 Product Overview

Protogate provides a variety of wide-area network (WAN) connectivity solutions for

real-time financial, defense, telecommunications, and process-control applications.

Protogate’s Freeway server offers flexibility and ease of programming using a variety of

LAN-based server hardware platforms. Now a consistent and compatible embedded

intelligent communications processor (ICP) product offers the same functionality as

the Freeway server, allowing individual client computers to connect directly to the

WAN.

All models of the Freeway server use the same data link interface (DLI) regardless of the

clients’ operating system. Also, the embedded ICP uses the DLITE interface which is a

subset of DLI. Therefore, migration between the two environments simply requires

linking your client application with the proper library. Various client operating systems

are supported (for example, Solaris, VMS, and Windows NT).

:

DC 900-1385E 21

Freeway Data Link Interface Reference Guide
All Protogate protocols are downloaded to the ICPs and run under the ICP’s own CPU

and operating system. Programs running on the client operating system interface with

the protocols through DLI and TCP/IP (Freeway) or DLITE and an ICP device driver

(embedded ICP).

1.1.1 Freeway Server

Protogate’s Freeway communications servers enable client applications on a local-area

network (LAN) to access specialized WANs through the DLI. The Freeway server can be

any of several models (for example, Freeway 3100, Freeway 3200, Freeway 3400, or Free-

way 3600). The Freeway server is user programmable and communicates in real time. It

provides multiple data links and a variety of network services to LAN-based clients.

Figure 1–1 shows the Freeway configuration.

To maintain high data throughput, Freeway uses a multi-processor architecture to sup-

port the LAN and WAN services. The LAN interface is managed by a single-board com-

puter, called the server processor. It uses the commercially available VxWorks or BSD

UNIX operating system to provide a full-featured base for the LAN interface and lay-

ered services needed by Freeway.

Freeway can be configured with multiple WAN interface processor boards, each of

which is a Protogate ICP. Each ICP runs the communication protocol software using

Protogate’s real-time operating system.

1.1.2 Embedded ICP

The embedded ICP connects your client computer directly to the WAN (for example,

using Protogate’s ICP2432 PCIbus board). The embedded ICP provides client applica-

tions with the same WAN connectivity as the Freeway server, using the same data link

interface (via the DLITE embedded interface). The ICP runs the communication pro-

tocol software using Protogate’s real-time operating system. Figure 1–2 shows the

embedded ICP configuration.
22 DC 900-1385E

1: Overview
Figure 1–1: Freeway Configuration

WAN
Interface

Processors

Freeway

Ethernet LAN

ICP

ICP

34
13

Client n

Application

WAN Protocol
Options

In
du

str
y S

ta
nd

ar
d

Bu
s

Client 2

Application

API API

Server Software

Client 1

Application

DLI
API

DLI DLI

Commercial

Financial

Government

Military

S C A D A
DC 900-1385E 23

Freeway Data Link Interface Reference Guide
Figure 1–2: Embedded ICP Configuration

Client Computer

3
4
1
4

lWAN Protoco
Options

In
d

u
st

ry
 S

ta
n

d
ar

d
 B

u
s

Client
Appl 1

 DLITE
API

IC
P

 D
ev

ic
e

D
ri

ve
r

Embedded ICP

Protogate
WAN Protocol

Software

Client
Appl 2

 DLITE
API

Client
Appl 3

 DLITE
API

Commercial

Financial

Government

Military

S C A D A
24 DC 900-1385E

1: Overview
Summary of product features:

• Provision of WAN connectivity either through a LAN-based Freeway server or

directly using an embedded ICP

• Elimination of difficult LAN and WAN programming and systems integration by

providing a powerful and consistent data link interface

• Variety of off-the-shelf communication protocols available from Protogate which

are independent of the client operating system and hardware platform

• Support for multiple WAN communication protocols simultaneously

• Support for multiple ICPs (two, four, or eight communication lines per ICP)

• Wide selection of electrical interfaces including EIA-232, EIA-449, EIA-530, and

V.35

• Creation of customized server-resident and ICP-resident software, using Proto-

gate’s software development toolkits

• Freeway server standard support for Ethernet and Fast Ethernet LANs running

the transmission control protocol/internet protocol (TCP/IP)

• Freeway server management and performance monitoring with the simple net-

work management protocol (SNMP), as well as interactive menus available

through a local console, telnet, or rlogin
DC 900-1385E 25

Freeway Data Link Interface Reference Guide
1.2 Freeway Client-Server Environment

The Freeway server acts as a gateway that connects a client on a local-area network to a

wide-area network. Through Freeway, a client application can exchange data with a

remote data link application. Your client application must interact with the Freeway

server and its resident ICPs before exchanging data with the remote data link applica-

tion.

One of the major Freeway server components is the message multiplexor (MsgMux)

that manages the data traffic between the LAN and the WAN environments. The client

application typically interacts with the Freeway MsgMux through a TCP/IP BSD-style

socket interface (or a shared-memory interface if it is a server-resident application

(SRA)). The ICPs interact with the MsgMux through the DMA and/or shared-memory

interface of the industry-standard bus to exchange WAN data. From the client applica-

tion’s point of view, these complexities are handled through a simple and consistent

data link interface (DLI), which provides dlOpen, dlWrite, dlRead, and dlClose functions.

Figure 1–3 shows a typical Freeway connected to a locally attached client by a TCP/IP

network across an Ethernet LAN interface. Running a client application in the Freeway

client-server environment requires the basic steps described in Section 1.4.

Figure 1–3: A Typical Freeway Server Environment

Freeway

ICP0

ICP1

ICP2

ICP3

TCP/IP

client1
192.52.107.99

freeway2
192.52.107.100

DLI
Client

Application TSI
TSI

Msg
Mux

Ethernet

WAN
Protocols

TCP/IP
Socket Interface

Client

31
25

St
an

da
rd

 B
u

s
In

du
st

ry

SRA

Shared Memory
Interface
26 DC 900-1385E

1: Overview
1.2.1 Establishing Freeway Server Internet Addresses

The Freeway server must be addressable in order for a client application to communi-

cate with it. In the Figure 1–3 example, the TCP/IP Freeway server name is freeway2,

and its unique Internet address is 192.52.107.100. The client machine where the client

application resides is client1, and its unique Internet address is 192.52.107.99. Refer to

the Freeway User Guide to initially set up your Freeway and download the operating sys-

tem, server, and protocol software to Freeway.

1.3 Embedded ICP Environment

Refer to the user guide for your embedded ICP and operating system (for example, the

ICP2432 User Guide for Windows NT) for software installation and setup instructions.

The user guide also gives additional information regarding the data link interface

(DLITE) and embedded programming interface descriptions for your specific environ-

ment. Refer back to Figure 1–2 on page 24 for a diagram of the embedded ICP environ-

ment. Running a client application in the embedded ICP environment requires the

basic steps described in Section 1.4, except that DLITE is used instead of DLI and the

ICP device driver is used in place of TSI and TCP/IP.

1.4 Client Operations

1.4.1 Defining the DLI and TSI Configuration

You must define the DLI sessions and the transport subsystem interface (TSI) connec-

tions between your client application and Freeway (or an embedded ICP). To accom-

plish this, you first define the configuration parameters in DLI and TSI ASCII

configuration files, and then you run two preprocessor programs, dlicfg and tsicfg, to

create binary configuration files (see Chapter 3). The dlInit function uses the binary

configuration files to initialize the DLI environment.
DC 900-1385E 27

Freeway Data Link Interface Reference Guide
1.4.2 Opening a Session

After the DLI and TSI configurations are properly defined, your client application uses

the dlOpen function to establish a DLI session with an ICP link. As part of the session

establishment process, the DLI establishes a TSI connection with the Freeway MsgMux

through the TCP/IP BSD-style socket interface for the Freeway server, or directly to the

ICP driver for the embedded ICP environment. Section 4.8 on page 106 describes how

to use the dlOpen function.

1.4.3 Exchanging Data with the Remote Application

After the link is enabled, the client application can exchange data with the remote appli-

cation using the dlWrite and dlRead functions. Section 4.12 on page 122 and

Section 4.15 on page 134 describe these functions. Also refer to your protocol-specific

programmer guide.

1.4.4 Closing a Session

When your application finishes exchanging data with the remote application, it calls the

dlClose function to disable the ICP link, close the session with the ICP, and disconnect

from Freeway or the embedded ICP driver. Section 4.5 on page 95 describes dlClose.

1.5 DLI Overview and Features

The data link interface (DLI) provides a set of flexible and easy-to-use functions to

establish, maintain and terminate a session with a remote data link application through

Protogate’s Freeway communication server. The DLI allows the application program-

mer to exchange commands and responses with the remote data link application by

shielding the application from the details of interacting with the Freeway server and the

data link protocols supported by Freeway. Your application might not need all the

capabilities that the DLI provides; however, careful system design and consideration

will allow your application not only to have a longer useful life but also to be ported

across various operating environments.
28 DC 900-1385E

1: Overview
The DLI requires the underlying Freeway transport subsystem interface (TSI). Similar

to the DLI, the TSI provides a set of flexible and easy-to-use functions to establish,

maintain, and terminate a connection with a remote transport application. For more

information on the TSI, refer to the Freeway Transport Subsystem Interface Reference

Guide.

The DLI’s flexible configuration services across different data link protocols are easily

portable to various operating environments. For example, DLI can be configured to

operate in an environment where both system and network resources are scarce. These

configuration services are provided through a free-formatted, procedure-like definition

language that is simple to use and yet powerful enough to satisfy your complex data link

application requirements.

The DLI provides your application with the choice of Normal or Raw operation, plus

the choice of blocking or non-blocking I/O. These can be chosen in any combination.

These concepts are explained in Chapter 2.

The DLI major features are summarized as follows:

• Uses Protogate’s TSI services to communicate with the Freeway server

• Provides both protocol-independent (Normal) and protocol-dependent (Raw)

data link operations

• Permits transport-service-independent applications (using the TSI)

• Supports multiple TSI connections to multiple servers

• Supports blocking I/O

• Supports non-blocking I/O, using notification by I/O completion handler

(IOCH) or polling
DC 900-1385E 29

Freeway Data Link Interface Reference Guide
• Provides advanced queuing techniques to minimize internal task switches under

the VxWorks operating system

• Provides efficient buffer management to avoid excess memory movement

• Provides flexible text-based configuration services

• Provides off-line configuration preprocessor programs (dlicfg and tsicfg) to

increase syntax and semantic checking capability and to reduce real-time (on-

line) processing of the configuration parameters

• Provides configuration for most data link protocol-specific parameters

• Provides configuration for all significant DLI service parameters

1.6 Protogate’s Embedded ICP2432 for the PCIbus

Protogate’s ICP2432 PCIbus board can be installed in a Freeway server (such as the

Freeway 3400), or embedded in a PCIbus computer. Programmers writing an applica-

tion interfacing to the embedded ICP2432 use the DLITE interface which provides

access to a particular ICP2432 device driver. Since DLITE is a subset of DLI, the effort

to port existing Freeway DLI applications to the embedded ICP environment is mini-

mal.

Windows NT users can use the DLITE through the “NTsi” local interface. For details on

using DLITE with NTsi, refer to the ICP2432 User Guide for Windows NT in conjunc-

tion with this Freeway Data Link Interface Reference Guide.
30 DC 900-1385E

Chapter
2 DLI Concepts
Note
The DLI concepts in this chapter also apply to an embedded ICP

using the DLITE interface. If you are using an embedded ICP, also

refer to the user guide for your ICP and operating system for con-

cepts specific to DLITE.

The following DLI concepts are described in this chapter:

• configuration at various levels of the Freeway environment

• blocking versus non-blocking I/O

• Normal versus Raw operation

• buffer management

• system resource requirements

2.1 Configuration in the Freeway Environment

There are several types of configuration required for a client application to run in the

Freeway environment:

• Freeway server configuration

• data link interface (DLI) session configuration
DC 900-1385E 31

Freeway Data Link Interface Reference Guide
• transport subsystem interface (TSI) connection configuration

• protocol-specific ICP link configuration

The Freeway server is normally configured only once, during the installation proce-

dures described in the Freeway User Guide. DLI session and TSI connection configura-

tions are defined by specifying parameters in DLI and TSI ASCII configuration files and

then running two preprocessor programs, dlicfg and tsicfg, to create binary configura-

tion files. Chapter 5 covers some of the TSI configuration parameters in conjunction

with the tutorial programs; see the Freeway Transport Subsystem Interface Reference

Guide for complete details.

ICP link configuration can be performed using any of the following methods:

• The dlOpen function (Section 4.8 on page 106) can configure the ICP links during

the DLI session establishment process using the default ICP link configuration

values provided by the protocol software.

• You can specify ICP link parameters in the DLI ASCII configuration file and then

run the dlicfg preprocessor program (Chapter 3). The dlOpen function

(Section 4.8 on page 106) uses the resulting DLI binary configuration file to per-

form the link configuration during the DLI session establishment process.

• You can perform ICP link configuration within the client application (refer to

your particular protocol programmer’s guide). This method is useful if you need

to change link configuration without exiting the application.

2.2 Blocking versus Non-blocking I/O

Note
Earlier Freeway releases used the term “synchronous” for blocking

I/O and “asynchronous” for non-blocking I/O. Some parameter

names reflect the previous terminology.
32 DC 900-1385E

2: DLI Concepts
Non-blocking I/O applications are useful when doing I/O to multiple channels with a

single process where it is not possible to “block” (sleep) on any one channel. Blocking

I/O applications are useful when it is reasonable to have the calling process wait for I/O

completion. For example, if you wish to design an application requiring the input of a

keyboard as well as background processing, non-blocking I/O would be more efficient,

because your process can perform other tasks while waiting for keyboard input.

In the Freeway environment, the term blocking I/O indicates that the dlOpen, dlClose,

dlRead and dlWrite functions do not return until the I/O is complete. For non-blocking

I/O, these functions might return after the I/O has been queued at the client, but before

the transfer to the Freeway server is complete. The client must handle I/O completions

at the software interrupt level in the completion handler established by the dlInit or

dlOpen function, or by periodic use of dlPoll to query the I/O completion status.

The asyncIO DLI configuration parameter (page 63) specifies whether an application

session uses blocking or non-blocking I/O (set asyncIO to “no” to use blocking I/O,

which is the default). The alwaysQIO DLI configuration parameter (page 64) further

qualifies the operation of non-blocking I/O activity.

The effects on different DLI functions, resulting from the choice of blocking or non-

blocking I/O, are explained in each function description of Chapter 4. The tutorial

example programs in Chapter 5 demonstrate the use of blocking and non-blocking I/O.

2.2.1 I/O Completion Handler for Non-Blocking I/O

When your application uses non-blocking I/O and an I/O condition occurs, the current

task is preempted by a high-priority task called an I/O completion handler (IOCH)

which is designated to handle the I/O. This high-priority IOCH is written by the appli-

cation programmer and should adhere to the following real-time criteria to prevent the

IOCH from impacting overall system performance:

• minimize the amount of processing performed within the IOCH so other vital

system operations are not prevented from executing
DC 900-1385E 33

Freeway Data Link Interface Reference Guide
• allow the non-preemptive priority routines to complete the processing

• avoid activities such as disk I/O which might block the operations

2.3 Normal versus Raw Operation

There are two choices for the protocol DLI configuration parameter (page 65):

• A session is opened for Normal operation if you set protocol to a specific protocol

(for example, “FMP” or “BSC3780”); then the DLI software configures the ICP

links using the values in the DLI configuration file and transparently handles all

headers and I/O.

• A session is opened for Raw operation if you set protocol to “raw”; then your appli-

cation must handle all configuration, headers, and I/O details. Raw operation is

recommended for data transfer where responses might be received out of

sequence (for example, when using the BSC 3270 protocol).

Normal and Raw operations can be mixed. For example, the client application session

can be configured for Normal operation (allowing DLI to handle link startup and con-

figuration), but the read and write requests (Section 4.12 on page 122 and Section 4.15

on page 134) can use Raw operation by including the optional arguments structure

containing the protocol-specific information (Section 4.1.3.3 on page 83).

Note
The protocol-specific writeType DLI configuration parameter

(page 66) specifies the type of data to be sent on the line (typically

normal or transparent). This parameter should not be confused with

Normal operation.

The details of Normal and Raw operation are explained in Section 2.3.1 and

Section 2.3.2 to assist you in writing and debugging your DLI applications.
34 DC 900-1385E

2: DLI Concepts
2.3.1 Normal Operation

In Normal operation, your application is not concerned with the interactive commands

and responses exchanged between your application and the Freeway server or with the

details of various supported data link protocols. DLI Normal operation uses the follow-

ing hierarchy:

1. The DLI uses the transport subsystem interface (TSI) component to interact with

the locally attached Freeway server.

2. The DLI communicates directly to the message multiplexor (MsgMux) that oper-

ates on the Freeway main processor board.

3. Through the MsgMux, the DLI communicates with the ICP and the ICP-resident

protocol services.

4. Through the ICP and its protocol service, the DLI exchanges data with the remote

data link application.

Normal operation is broken into the steps listed in Section 2.3.1.1 through

Section 2.3.1.10. The DLI handles these actions automatically as the application uses

the dlOpen, dlRead, dlWrite and dlClose functions during Normal operation. Refer back

to Figure 1–3 on page 26 for an overview of the DLI operating environment.

2.3.1.1 Connecting to the TSI Service Layer

The dlOpen function connects to the locally attached Freeway using the tConnect func-

tion in the TSI service layer. Your session definition must specify to the DLI which TSI

connection name your session will use (transport parameter on (page 65). After dlOpen

makes the TSI connection, it is ready to communicate with the MsgMux component of

the Freeway server.
DC 900-1385E 35

Freeway Data Link Interface Reference Guide
2.3.1.2 Connecting to the Message Multiplexor

The dlOpen function then sends a DLI_FW_OPEN_SESS_CMD to the Freeway MsgMux.

The MsgMux responds with a DLI_FW_OPEN_SESS_RSP control packet if it is available

to manage one more session with the DLI. If the MsgMux is able to accept the session

request, dlOpen proceeds to connect to the desired ICP.

2.3.1.3 Connecting to the ICP

The dlOpen function then sends a protocol-specific request to start communications

with the designated ICP on Freeway. For example, for the FMP and BSC protocols,

dlOpen sends a DLI_ICP_CMD_ATTACH request (without a protocol-specific com-

mand) to the ICP protocol service. The ICP responds whether or not it is able to honor

the request. If this step completes successfully, dlOpen proceeds to configure the data

link.

Note
The protocol between the DLI and the ICP-resident protocol ser-

vices is subject to change in future releases.

2.3.1.4 Configuring the Data Link

If your session definition requires data link configuration prior to its use, dlOpen then

sends the protocol-specific configuration request prior to connecting to the remote

data link application. After configuring the data link, dlOpen proceeds to connect to the

remote data link application.

2.3.1.5 Connecting to the Remote Data Link Application

The dlOpen function then sends a protocol-specific request to connect with the desig-

nated remote data link application. For example, for the FMP and BSC protocols,

dlOpen sends a DLI_ICP_CMD_BIND request (without a protocol-specific command) to

the defined ICP and port. If the session is configured for blocking I/O, dlOpen returns a
36 DC 900-1385E

2: DLI Concepts
session ID to your application when it successfully connects to the remote data link

application. Data can now be exchanged between the two applications.

2.3.1.6 Exchanging Data with the Remote Data Link Application

After receiving the session ID from dlOpen, your application can now exchange data

with the remote data link application using the dlWrite and dlRead requests. However,

your application cannot issue commands either to the Freeway server to open or close

sessions, or to the ICP protocol server to disconnect from the remote data link applica-

tion or to detach your application from the ICP. In Normal operation, these commands

are reserved for the DLI only.

Your application can also exchange data with the Freeway MsgMux component, and

the ICP protocol service using Raw operation.

2.3.1.7 Disconnecting from the Remote Data Link Application

To terminate a connection between an ICP link and a remote data link application,

dlClose sends a protocol-specific command to the ICP. For the FMP and BSC protocols,

dlClose sends the DLI_ICP_CMD_UNBIND request.

2.3.1.8 Disconnecting from the ICP

To disconnect from the ICP, the dlClose function then sends a protocol-specific com-

mand to the ICP protocol service. For the FMP and BSC protocol, dlClose sends the

DLI_ICP_CMD_DETACH request.

2.3.1.9 Disconnecting from the Message Multiplexor

Next, the dlClose function sends the DLI_FW_CMD_CLOSE_SESS_CMD request to the

Freeway MsgMux. If the MsgMux accepts the request, dlClose proceeds to disconnect

from the TSI service layer.
DC 900-1385E 37

Freeway Data Link Interface Reference Guide
2.3.1.10 Disconnecting from the TSI Service Layer

The dlClose function issues a tDisconnect request to the TSI service layer to close the TSI

connection.

2.3.2 Raw Operation

If your application requires protocol-specific information such as ICP link statistics or

link configuration, or performs data transfer requests other than for single packets, it

can use Raw operation to do these functions. Use of Raw operation is recommended

whenever your application must interface with the protocol software for any reason

outside of simple data transfer.

Recall that to be a DLI fully Raw application, your application must open a session with

the protocol DLI configuration parameter (page 65) defined as “raw”. In Raw operation,

your application takes full control of the I/O operations between it, Freeway, and the

remote data link application. The DLI manages only the connection between your

application and the message multiplexor (MsgMux) subsystem component of the

Freeway server. You must fully understand the interactive commands and responses

required between your application and the Freeway server, as well as each data link pro-

tocol that your application must program.

To perform Raw read and write requests, your application must use the optional argu-

ments structure (Section 4.1.3.3 on page 83) to pass all necessary protocol-specific

information to the DLI. By providing the optional arguments instead of the actual DLI

headers, the DLI extends its portability and minimizes software modification between

DLI releases.

Raw operation is similar to Normal operation. In Raw operation, however, dlOpen com-

pletes after it successfully connects to the Freeway MsgMux component. For the closing

process, dlClose disconnects from the Freeway MsgMux and then calls tDisconnect to

close the TSI connection. Your DLI application must ensure proper disconnection

from the remote data link as well as the ICP protocol service. Improper disconnection
38 DC 900-1385E

2: DLI Concepts
could cause the Freeway MsgMux, as well as the ICP protocol service, to enter an unde-

fined state.

Raw operation allows the addition of WAN protocols developed with the protocol tool-

kit product provided by Protogate, described in the Protocol Software Toolkit Program-

mer Guide. Raw operation is broken into the steps listed in Section 2.3.2.1 through

Section 2.3.2.5. The DLI handles these actions automatically as the application uses the

dlOpen, dlRead, dlWrite and dlClose functions during Raw operation.

2.3.2.1 Connecting to the TSI Service Layer

The dlOpen function connects to the locally attached Freeway using the tConnect func-

tion in the TSI service layer. Your session definition must specify to the DLI which TSI

connection name your session will use (transport parameter on page 65). After dlOpen

makes the TSI connection, it is ready to communicate with the MsgMux component of

the Freeway server.

2.3.2.2 Connecting to the Message Multiplexor

The dlOpen function then sends a DLI_FW_OPEN_SESS_CMD to the Freeway MsgMux.

The MsgMux responds with a DLI_FW_OPEN_SESS_RSP control packet if it is available

to manage one more session with the DLI. If the MsgMux is able to accept the session

request, dlOpen completes its opening process and returns a session ID to your applica-

tion.

2.3.2.3 Exchanging Data with the Remote Data Link Application

After receiving the session ID, your application can now exchange data with the

Freeway MsgMux, the ICP, and subsequently with the remote data link application

using the dlWrite and dlRead requests. The DLI will not interfere with your data transfer

procedures, except it will not allow commands to the Freeway MsgMux component to

open or close sessions. These commands are reserved for the DLI only.
DC 900-1385E 39

Freeway Data Link Interface Reference Guide

Techpubs —
This section i
identical in
the DLI and
TSI manuals
except for
Section 2.4.6
and some of
the references
to specific
sections in th
TSI manual.

Techpubs —
This section
will always
have a few
unresolved x-
refs to the DL
manual. You
will have to
update them
each time
(assuming th
DLI manual
changes). Jus
use the globa
“Edit/Update
References”
menu choice.
2.3.2.4 Disconnecting from the Message Multiplexor

After completion of data transfer, your application uses the dlClose function to send the

DLI_FW_CMD_CLOSE_SESS_CMD request to the Freeway MsgMux. If the MsgMux

accepts the request, dlClose proceeds to disconnect from the TSI service layer.

2.3.2.5 Disconnecting from the TSI Service Layer

The dlClose function issues a tDisconnect request to the TSI service layer to close the TSI

connection.

2.4 Buffer Management

This section describes how the Freeway buffer management system operates. For users

who do not need a detailed understanding of the system design, Section 2.4.1 gives a

system buffer overview and an example for reconfiguring your system buffers.

Section 2.4.2 through Section 2.4.6 give the detailed information for those interested.

Note
Freeway buffer management is implemented in the TSI; however

DLI uses the TSI system for its own buffer management. There-

fore, the DLI perspective is also presented throughout this section.

If your application interfaces to the TSI only (not the DLI), you

can disregard the DLI-specific information.

2.4.1 Overview of the Freeway System Buffer Relationships

In the Freeway environment, user-configurable buffers exist in the ICP, the client, and

the server. These buffers must be coordinated for proper operation between the client

application, the Freeway server, and the ICP. The default sizes for each of these buffers

are designed for operation in a typical Freeway system. However, if your system requires

reconfiguration of buffer sizes, the basic procedure is as follows (Section 2.4.1.1 gives an

example calculation):

s

,

e

I

e

t
l

40 DC 900-1385E

2: DLI Concepts
Step 1: As a general rule, define the ICP buffer size first. ICP buffers must be large

enough to contain the largest application data buffer transmitted or received. Most Pro-

togate protocols on a Freeway ICP provide a data link interface (DLI) configuration

parameter (such as msgBlkSize for BSC) through which the user can configure the ICP

message buffer size. The typical default ICP buffer size for most Protogate protocols is

1024. Refer to your protocol-specific Programmer’s Guide to determine the parameter

name and default.

Note
If your application does not interface to the DLI, the protocol-spe-

cific ICP buffer size is also software configurable. Refer to your

protocol-specific Programmer’s Guide.

Step 2: Define the client buffers in the client’s TSI configuration file. The TSI buffer

pool is defined in the configuration file’s “main” section. An optional connection-spe-

cific maximum buffer size is allowed in each connection definition. These two configu-

rations are detailed in Section 2.4.2.1 and Section 2.4.2.2, respectively. The buffer size

specified in the associated connection definition must be large enough to contain the

ICP buffer size.

Note
If your application uses the DLI, the client buffer size must also be

large enough to contain the DLI header.

Step 3: Define the server buffers in the MuxCfg server TSI configuration file, which is

located in your boot directory. This file is similar to the client TSI configuration file. As

with the client, define the TSI buffer pool size in the MuxCfg file’s “main” section. Then

define the optional connection-specific maximum buffer size for each connection. Sim-

ply define the connection buffer size for the largest associated client requirement. The

buffer pool size must be at least as large as the largest connection buffer size. The
DC 900-1385E 41

Freeway Data Link Interface Reference Guide
Freeway Transport Subsystem Interface Reference Guide discusses the MuxCfg file in

detail.

2.4.1.1 Example Calculation to Change ICP, Client, and Server Buffer Sizes

Step 1: Determine the maximum bytes of data your application must be able to trans-

fer. For this example calculation, we are assuming a maximum of 1500 bytes to be trans-

ferred using the BSC protocol and interfacing to Protogate’s DLI. This is the value that

must be assigned to the ICP buffer size (the DLI msgBlkSize parameter for BSC).

Step 2: Based on the above 1500-byte msgBlkSize parameter, calculate a new maxBufSize

for the ICP, client and server. Table 2–1 summarizes the values used in this example.

maxBufSize = msgBlkSize + DLI header size

maxBufSize = 1500 bytes + 96 bytes = 1596 bytes

Step 3: Make the required changes to the protocol-specific portion of the client DLI

configuration file as shown in Figure 2–1.

Step 4: Make the required changes to the client TSI configuration file as shown in

Figure 2–2.

Table 2–1: Required Values for Calculating New maxBufSize Parameter

Item Requirement Description

BSC msgBlkSize parameter1

1 For BSC, the protocol-specific DLI parameter is msgBlkSize (default is 1024 bytes).

1500 bytes ICP buffer size (the maximum actual data size)

DLI header size 96 bytes2

2 On most client platforms the DLI header is 76 bytes; however, this size is platform dependent. For initial
installations Protogate recommends assuming a DLI header size of 96 bytes to calculate buffer sizes in the con-
figuration files.

If your application uses the DLI, the buffer size
must include this DLI header size
42 DC 900-1385E

2: DLI Concepts
Step 5: Make the required changes to the server MuxCfg TSI configuration file (located

in your boot directory) as shown in Figure 2–3.

main // DLI “main” section: //
{

…
}
Session1 // Session-specific parameters //
{

…

// BSC protocol-specific parameters for Session1: //

msgBlkSize = 1500;
…

} // End of Session1 parameters //

Figure 2–1: Client DLI Configuration File Changes (BSC Example)

main // TSI “main” section: //
{

maxBufSize = 1596 ; // Must be 1596 (or greater) //
…

}
Conn1 // Connection-specific parameters //
{

maxBufSize = 1596;
…

}

Figure 2–2: Client TSI Configuration File Changes
DC 900-1385E 43

Freeway Data Link Interface Reference Guide
main // MuxCfg “main” section: //
{

maxBufSize = 1596 ; // Must be 1596 (or greater) //
…

}
MuxConn1 // Connection-specific parameters //
{

maxBufSize = 1596;
…

}

Figure 2–3: Server MuxCfg TSI Configuration File Changes
44 DC 900-1385E

2: DLI Concepts
2.4.2 Client TSI Buffer Configuration

For users who need to understand the details of the buffer management system, review

Section 2.4.2 through Section 2.4.6 carefully. After you define the ICP buffer size as

described in Step 1 on page 41, the next step is to define the client TSI buffers.

The TSI provides its own buffer management scheme. Definitions in the client TSI con-

figuration file allow you to create fixed-sized buffers in a TSI-controlled buffer pool (see

Section 2.4.2.1). Each connection can then optionally be assigned a unique maximum

buffer size (see Section 2.4.2.2). TSI applications can then access these buffers using the

tBufAlloc and tBufFree TSI functions.

Note
For applications using Protogate’s data link interface, the DLI uses

the TSI buffer management system for its own buffer manage-

ment. The dlBufAlloc and dlBufFree DLI functions provide access

to buffers in the TSI buffer pool.

Your application is not required to use the TSI buffer management facilities, but Proto-

gate highly recommends it for the following reasons:

• TSI allocates all buffers up front, resulting in better real-time performance than

allocation through C malloc and free functions

• The number of TSI buffers is configurable for operating environments with lim-

ited system resources

• TSI allocates the buffer pool on boundaries which minimize memory access over-

head

• TSI overhead is invisible to the user
DC 900-1385E 45

Freeway Data Link Interface Reference Guide
2.4.2.1 TSI Buffer Pool Definition

The TSI buffer pool is configured through two parameter definitions in the “main” sec-

tion of the client TSI configuration file. The maxBufSize parameter specifies the maxi-

mum size of each buffer in the TSI buffer pool. The maxBuffers parameter specifies the

maximum number of buffers available in the TSI buffer pool and must support the

maximum number of I/O requests that could be outstanding at any one time. After

adjusting maxBufSize as described below, the product of the maxBufSize and maxBuffers

parameters defines the TSI buffer pool size.

The maxBufSize parameter defines the maximum size of each buffer. This is the actual

data size the TSI user application has available for its own use. When the buffer pool is

defined, TSI calculates an “effective” buffer size which is maxBufSize plus the additional

bytes required for a TSI header plus any alignment bytes. Alignment bytes are required

only if the value of maxBufSize plus the TSI header bytes is not divisible by 4.

This “effective” buffer size is invisible to the user application (regardless of whether it

interfaces to the DLI or the TSI); all interactions with the TSI buffer management facil-

ities are based on maxBufSize and the connection-specific parameter described in

Section 2.4.2.2. If you define maxBufSize as 1000 bytes, TSI assures that the buffer pool

can provide 1000 bytes for TSI application data.

Figure 2–4 illustrates an example buffer calculation assuming the following sizes:

• maxBufSize is 1000 bytes

• The TSI header is 18 bytes

• The necessary alignment to make the total divisible by 4 is 2 bytes

TSI adds 18 bytes to the maxBufSize value to include the TSI header, making the actual

size of the buffer allocated by TSI 1018 bytes. Because this actual size is not divisible by

4, TSI increments the value to the next modulo-4 value, in this case, 1020. Regardless of

the final size, your TSI application has control of only maxBufSize bytes.
46 DC 900-1385E

2: DLI Concepts
The TSI application program can obtain the value of maxBufSize using a tPoll request

for the system configuration. Refer to the TSI_POLL_GET_SYS_CFG option (described

in the Freeway Transport Subsystem Interface Reference Guide), which returns the

iMaxBufSize field.

Note
The Figure 2–4 example, as viewed from the DLI application’s per-

spective is shown in Figure 2–5. Of the 1000 bytes specified by the

TSI maxBufSize parameter, 76 bytes are required for the DLI

header. After calling dlOpen, the DLI application program can call

dlPoll with the DLI_POLL_GET_SESS_STATUS option, which

returns the usMaxSessBufSize field. This value is the actual data

size available to the DLI application (924 bytes in the Figure 2–5

example).

Figure 2–4: TSI Buffer Size Example

iMaxBufSize = 1000 bytes

TSI Header

TSI Data AreaMaxBufSize = 1000 bytes

usOverhead = 20 bytes

tBufAlloc
(18 bytes)

(1000 bytes)

Alignment (2 bytes)
DC 900-1385E 47

Freeway Data Link Interface Reference Guide
2.4.2.2 Connection-Specific Buffer Definition

After the TSI buffer pool is defined, you have the option of defining a unique maximum

buffer size for each connection in the client TSI configuration file. If undefined, the

connection buffer size defaults to the maxBufSize “main” definition for the TSI buffer

pool described in the previous Section 2.4.2.1.

Note
The maximum connection buffer size should be at least as large as

the defined ICP buffer size, plus any additional client require-

ments. For example, if you are using the DLI, you must include

DLI overhead bytes in the total size of the application data area

(see Figure 2–5).

To define a unique buffer size for a connection, use the connection-specific maxBufSize

parameter. This connection buffer size is the buffer size the system allows the user for

tWrite requests. No connection buffer size can be larger than maxBufSize defined for the

TSI buffer pool.

Figure 2–5: DLI Buffer Size Example

TSI Header (20 bytes)

DLI Header (76 bytes)

User’s Data Requirement

TSI Header

User Data Area

Freeway Header

ICP Header

Protocol HeaderTotal DLI Buffer Size
dlBufAlloc

= 1000 bytes
(TSI MaxBufSize

= 924 bytes
Connection Definition)
48 DC 900-1385E

2: DLI Concepts
The connection buffer size does not change the actual size of the buffer (actual buffers

are all maxBufSize as defined for the TSI buffer pool); it only limits the acceptable size of

application write buffers given to TSI through a tWrite request. It enforces a maximum

data size that can be sent to the server in any one tWrite request. The tWrite function

returns a TSI_WRIT_ERR_INVALID_LENGTH error if the write is attempted with a

buffer exceeding the connection’s maximum buffer size.

The tRead requests are not limited by the connection buffer size. The size of read

requests, when using tRead, is defined by maxBufSize for the TSI buffer pool (in the

“main” definition of the TSI configuration file).

2.4.2.3 TSI Buffer Size Negotiation

A connection’s maximum buffer size can be changed “silently.” When the client’s con-

nection to the Freeway server is accomplished, the client TSI and the server TSI negoti-

ate a maximum buffer size for the established connection. If the sizes are different, the

side with the larger connection buffer size changes its size to that of the smaller. After

the connection is established, the negotiated maximum buffer size is available using a

tPoll request for connection status. Refer to the TSI_POLL_GET_CONN_STATUS

option (described in the Freeway Transport Subsystem Interface Reference Guide), which

returns the usMaxConnBufSize field. Note that this “final” size is not available until the

connection has been successfully established.

Note
The DLI application program can obtain the actual data size (after

the TSI negotiation process during dlOpen) using a dlPoll request

with the DLI_POLL_GET_SESS_STATUS option, which returns

the usMaxSessBufSize field. See the example program in

Section 5.5 on page 182.
DC 900-1385E 49

Freeway Data Link Interface Reference Guide
2.4.3 Server TSI Buffer Configuration

After defining the ICP buffers and the client TSI buffers, the final step is to define the

server TSI buffers. The same TSI buffer management design details apply to the server

TSI buffers that were described in Section 2.4.2 on page 45 for the client TSI buffers.

The only difference is that the server buffer definitions are specified in the MuxCfg

server TSI configuration file, which is located in your boot directory. As with the client,

define the TSI buffer pool size in the MuxCfg file’s “main” section. Then define the

optional connection-specific maximum buffer size for each connection. Simply define

the connection buffer size for the largest associated client requirement. The buffer pool

size must be at least as large as the largest connection buffer size. The Freeway Transport

Subsystem Interface Reference Guide discusses the MuxCfg file in detail. Refer back to

Section 2.4.1.1 on page 42 for a sample calculation of ICP, client, and server buffer sizes.

2.4.4 Buffer Allocation and Release

The TSI application obtains a buffer from the TSI buffer pool using the tBufAlloc func-

tion. The returned buffer address points to the available data area as shown in

Figure 2–4 on page 47. The size returned is always the maxBufSize defined for the buffer

pool. While the entire data area is available for user data, note the restrictions discussed

previously in Section 2.4.2.2 regarding limits placed on tWrite requests by the connec-

tion’s maximum buffer size definition. The user application releases a buffer back to the

TSI buffer pool using the tBufFree function.

Note
DLI applications use the dlBufAlloc and dlBufFree functions to

access buffers in the TSI buffer pool.
50 DC 900-1385E

2: DLI Concepts
2.4.5 Cautions for Changing Buffer Sizes

If you need to change the buffer size of your application, keep the following cautions in

mind:

• If you increase the ICP buffer size, there may be corresponding changes required

in the client and server buffer sizes.

• If you have limited resources and increase the client or server maxBufSize param-

eter, consider decreasing the number of buffers allocated in the buffer pool (the

maxBuffers parameter in the client TSI configuration file and the server MuxCfg

file).

• Client read buffers too small for an inbound data buffer are returned to the client

application with a TSI_READ_ERR_OVERFLOW error indication. Write requests

with buffers too large are returned with a TSI_WRIT_ERR_INVALID_LENGTH

error indication.

2.4.6 Using Your Own Buffers

If your DLI application needs to use its own buffers, it must know the exact number of

overhead bytes used to store the TSI and DLI header information. Your application

should call dlPoll to get the DLI system configuration information (Section 4.10 on

page 114) so that it can allocate buffers correctly. Each buffer must be at least

iMaxBufSize + usOverhead bytes in size (these values are described on page 79). Your

application must give DLI the address of the memory buffer that is at usOverhead bytes

from the beginning of the data area. Figure 2–6 shows a comparison of using the “C”

malloc function versus the DLI dlBufAlloc function for buffer allocation. Figure 2–7 is a

“C” code fragment demonstrating the use of the malloc function.
DC 900-1385E 51

Freeway Data Link Interface Reference Guide
Note
For information about using your own buffers in a TSI applica-

tion, see the Freeway Transport Subsystem Interface Reference

Guide.

Figure 2–6: Comparison of malloc and dlBufAlloc Buffers

...
PCHAR pBuf;
DLI_SYS_CFG sysCfg;
int iBufSize, iSessID;
...
dlPoll (0, DLI_POLL_GET_SYS_CFG, (PCHAR*)NULL, (PINT)NULL,

 (PCHAR)&sysCfg, (PDLI_OPT_ARGS*)NULL);
iBufSize = (int) sysCfg. usOverhead + sysCfg. iMaxBufSize;
pBuf = (PCHAR) malloc (iBufSize);
...
dlWrite (iSessID, &pBuf[sysCfg. usOverhead], 100,
 DLI_WRITE_NORMAL, (PDLI_OPT_ARGS*)NULL);
...

Figure 2–7: Using the malloc Function for Buffer Allocation

Address returned by malloc

Address returned by dlBufAlloc

Increasing memory addresses

TSI + DLI

DLI Data Area

(used in DLI function calls
that reference the buffer)

usOverhead

iMaxBufSize

Overhead Area
52 DC 900-1385E

2: DLI Concepts
2.5 System Resource Requirements

2.5.1 Memory Requirements

Since the DLI operates on the TSI service layer, you must consider TSI resource require-

ments as well as DLI system resource requirements. For more information on calculat-

ing the TSI system resource requirements, refer to the Freeway Transport Subsystem

Interface Reference Guide. The DLI system requirements can be calculated as follows:

Total memory requirements = program size

+ (number of buffers x size of buffer)

+ (number of sessions x 300)

+ (number of sessions x size of I/O queues x 44)

+ 32,000

Where:

• “number of buffers” is defined by the TSI maxBuffers parameter (page 148)

• “size of buffer” is defined by the TSI maxBufSize parameter (page 148)

• “number of sessions” is defined by the DLI maxSess parameter (page 63)

• “size of I/O queues” is defined by the sum of the DLI maxInQ parameter (page 64)

and the DLI maxOutQ parameter (page 65)

2.5.2 Signal Processing

Both the DLI and TSI disable all signals during processing. The signals are ultimately

delivered when they are re-enabled at the end of the DLI or TSI call. If this constraint

causes a problem for your client application, consider implementing one of the follow-

ing:

• use non-blocking I/O as described in Section 2.2 on page 32

• use the timeout TSI configuration parameter (page 149)

Under VMS, ASTs are disabled instead of signals.
DC 900-1385E 53

Freeway Data Link Interface Reference Guide
54 DC 900-1385E

Chapter
3 DLI Configuration
Note
The DLI configuration in this chapter also applies to an embedded

ICP using the DLITE interface. If you are using an embedded ICP,

also refer to the user guide for your ICP and operating system for

configuration specific to DLITE.

3.1 Configuration Process Overview

The data link interface (DLI) consists of two major components:

• The dlicfg configuration preprocessor program defines the DLI environment

prior to run time, using a text configuration file that you create or modify.

• The DLI reference library is used to build your DLI application. The DLI uses the

transport subsystem interface (TSI).

The advantage of using the dlicfg preprocessor program is that you do not have to

rebuild your application when you redefine the DLI or TSI environment.

The DLI and TSI configuration process is a part of the installation procedure and the

loopback testing procedure described in the Freeway User Guide. However, during your

client application development and testing, you might need to perform DLI and TSI

configuration repeatedly.

The DLI and TSI configuration process is summarized as follows:
DC 900-1385E 55

Freeway Data Link Interface Reference Guide
1. Create or modify a text file specifying the DLI session configuration for all ICPs

and serial communication links in your Freeway system. Refer to your particular

protocol programmer’s guide for the protocol-specific link configuration options

(if you need to change the default values).

2. Create or modify a text file specifying the configuration of the transport sub-

system interface (TSI) connections.

3. Execute the dlicfg preprocessor program with the text file from Step 1 as input.

This creates the DLI binary configuration file. If the optional DLI binary configu-

ration filename is supplied, the binary file is given that name plus the .bin exten-

sion. If the optional filename is not supplied, the binary file is given the same

name as your DLI text configuration file plus the .bin extension.

dlicfg DLI-text-configuration-filename [DLI-binary-configuration-filename]

4. Execute the tsicfg preprocessor program with the text file from Step 2 as input.

This creates the TSI binary configuration file. If the optional TSI binary configu-

ration filename is supplied, the binary file is given that name plus the .bin exten-

sion. If the optional filename is not supplied, the binary file is given the same

name as your TSI text configuration file plus the .bin extension.

tsicfg TSI-text-configuration-filename [TSI-binary-configuration-filename]

Note
You must rerun dlicfg or tsicfg whenever you modify the text con-

figuration file so that the DLI or TSI functions can apply the

changes.

When your application calls the dlInit function, the DLI and TSI binary configuration

files are used to configure the DLI sessions and TSI connections.
56 DC 900-1385E

3: DLI Configuration
Note
The Freeway User Guide describes the make files and command

files provided to automate the above process and copy the resulting

binary configuration files to the appropriate directories. Addition-

ally, each protocol programmer’s guide describes the related proto-

col specifics of the DLI/TSI configuration process.

3.2 DLI Configuration versus TSI Configuration

As shown in Step 2 and Step 4 of the previous Section 3.1, the transport subsystem

interface (TSI) configuration is an integral part of the overall DLI configuration process

(also see Figure 3–1).

Figure 3–1: DLI Overall Architecture

Application

DLI

TSI

Transport
Environment

28
36

dlicfg

DLI Text
Configuration File

DLI Binary
Configuration File

DLI Configuration
Preprocessor

tsicfg

TSI Text
Configuration File

TSI Configuration
Preprocessor

TSI Binary
Configuration File
DC 900-1385E 57

Freeway Data Link Interface Reference Guide
The main distinction between the DLI and TSI configuration processes is that the DLI

configures sessions associated with ICP links, and the TSI configures transport

connections for the DLI sessions. Otherwise, the TSI configuration process is very simi-

lar to the DLI configuration process. Both processes use a preprocessor program (dlicfg

or tsicfg) to translate your text configuration file into a binary configuration file. In both

cases, the text file consists of a “main” section to configure parameters independent of

sessions or connections, plus additional sections to configure individual sessions or

connections.

The tutorial example program in Chapter 5 gives example DLI and TSI text configura-

tion files to support the example program. Refer to the Freeway Transport Subsystem

Interface Reference Guide for the TSI configuration details beyond the scope of the

example program. If your application uses the DLI functions, you do not need an in-

depth understanding of the TSI functions. However, if your application requires that

you access the TSI functions directly, you need a detailed understanding of the Freeway

Transport Subsystem Interface Reference Guide.

3.3 Introduction to DLI Configuration

The dlicfg program is a configuration preprocessor that translates a DLI text configura-

tion file into a binary configuration file. During the translation process, dlicfg verifies

and processes each configuration entry in the text configuration file, and the results are

stored in the binary configuration file. This process ensures the validity of the configu-

ration parameters before their use by the DLI reference library. The DLI configuration

services provide the following features:

• Free-formatted configuration language

• Informative parameter names

• Procedure-like definition entry for each session definition

• Extensive syntax checking capability
58 DC 900-1385E

3: DLI Configuration
• Extensive semantic checking capability

• Session-based definition capability

• Use of CCITT CRC-16 to detect any corruption of the binary configuration file

The DLI reference library is a set of function calls used by applications to exchange data

between two or more locations in a Freeway-supported network on a well-defined data

link protocol (i.e. BSC, FMP, X.25, etc.). The DLI reference library uses the DLI binary

configuration file to configure DLI services as well as sessions managed by the DLI.

Together with the DLI configuration services, the DLI reference library provides data

link applications with a flexible network programming environment.

3.3.1 DLI Configuration Language

Each session definition entry in the DLI text configuration file defines a unique data

link session to be established between your DLI application and a remote data link

application. Refer to Section 3.5.2 for details of the language grammar. The DLI config-

uration can be described as follows:

session-name
{

parameter-name = parameter-value; // comments are ignored //
}

Each session-name you choose must uniquely identify a session within the same config-

uration file; dlicfg makes no attempt to ensure the uniqueness of names within the same

configuration file. Each parameter-name is uniquely defined by dlicfg. Comments are

considered white spaces and are ignored by dlicfg.

3.3.2 Rules of the DLI Configuration File

A session name or a parameter name must adhere to the following naming rules:

1. It is similar to variable names in the C language.
DC 900-1385E 59

Freeway Data Link Interface Reference Guide
2. It can be a string of alphabetic (A through Z, a through z, and _) and numeric

(0 through 9) characters.

3. The first character must be alphabetic.

4. The length must not be more than 20 characters.

5. A session name is case-sensitive while a parameter name is not.

6. The first definition entry can be defined as “main” for the DLI main configuration

parameters. If no “main” entry is defined as the first definition entry, a default

“main” entry is defined and included as the first entry in the binary configuration

file.

7. A session name must be unique within the same configuration file. Otherwise,

DLI selects the first one of the identical session names.

8. DLI does not verify the duplication of session definition entries at the session level

or at the parameter level. That means if you have defined the same session entry

more than once, the first one is used. If you have defined a parameter within a ses-

sion definition entry more than once, the last value is used.

3.3.3 Binary Configuration File Management

The binary configuration file is created in the same directory as the location of the text

configuration file (unless a different path is supplied with the optional filename

described in Section 3.1 on page 55). On all but VMS systems, if a file already exists in

that directory with the same name, the existing file is renamed by appending the .BAK

extension. If the renamed file duplicates an existing file in the directory, that existing file

is removed by the configuration preprocessor program.

Note
The default binary configuration name contains the period ‘.’

character which plays a special role in the processing of the config-

uration files. See Section 3.3.4.
60 DC 900-1385E

3: DLI Configuration
3.3.4 On-line Configuration File Processing

The DLI and TSI can perform the configuration processing on-line. While this feature

is available, Protogate recommends adherence to the off-line configuration file process

previously described in Section 3.1 on page 55, which is better managed and slightly

more efficient.

The off-line process can be performed on-line during DLI and TSI initialization (dlInit)

by providing a configuration filename without an embedded ‘.’ character. When such a

filename is recognized, the DLI/TSI attempts to open the file as a text file and calls the

DLI configuration preprocessor program (dlicfg). The output file is named

“filename”.bin. An error in the configuration file aborts the dlInit processing with an

appropriate error in the DLI/TSI log file.

This on-line method requires the configuration text files and the dlicfg and tsicfg pre-

processor programs to reside in the same directory as the application executable. The

resulting .bin file is placed in this same directory.

Note
Unless on-line configuration is desired, be sure a ‘.’ character

appears in the configuration filename provided to dlInit.

3.4 DLI Session Definition

The information exchange between your application and the DLI is managed by a

session. A session allows your application to communicate with one serial link on one

ICP. A separate session is required for each serial link on each ICP, though for some

protocols multiple sessions can be defined for a link. Associated with each session are

client parameters such as queue lengths plus the protocol-specific link configuration

parameters (described in your particular protocol programmer’s guide).
DC 900-1385E 61

Freeway Data Link Interface Reference Guide
Two types of configuration sections are included in the DLI text configuration file. The

first section (called “main”) specifies the configuration for non-session-specific opera-

tions. Subsequent sections define one or more specific sessions.

The dlicfg program processes your DLI text configuration file and creates a DLI binary

configuration file. Your application then specifies the binary configuration filename as

a parameter when it calls the DLI initialization function, dlInit.

3.4.1 DLI “main” Configuration Section

The first section in the DLI text configuration file, which is called “main,” specifies the

DLI configuration for non-session-specific operations. Figure 3–2 is an example of the

“main” section. Notice that the DLI “main” section must specify the TSI binary config-

uration filename (the tsiCfgName DLI parameter) if it is different from the default

name. If you use all the default values, the “main” section is optional.The “main” DLI

parameters are shown in Table 3–1, along with the defaults. You need to include only

those parameters whose values differ from the defaults.

3.4.2 DLI Session Configuration Sections

Each additional section of the DLI text configuration file specifies a session associated

with a particular ICP link (port). Each Freeway serial communication link can be con-

figured independently of the other links. The parameters are divided into two groups:

client-related parameters and protocol-specific link characteristics. Each DLI session

has an associated TSI connection (the transport DLI parameter). The DLI client-related

parameters are shown in Table 3–2, along with the defaults.

main
{

tsiCfgName = “tsisynccfg.bin”; // TSI binary configuration file //
}

Figure 3–2: DLI Example “main” Configuration Section
62 DC 900-1385E

3: DLI Configuration
Table 3–1: DLI “main” Parameters and Defaults

Parameter Default
Valid

Values Description

asyncIO “no” boolean A value of “no” specifies blocking I/O. If set to “yes”, the
TSI must also be configured for non-blocking I/O in
order for this flag to be effective

callbackQsize 500 1–5000 The size of an internal DLI queue that saves callback
requests. If this queue overflows, a DLI_CALLBACK_
Q_OVRFLOW error (page 188) is saved in the DLI log file,
and the application’s callback might be lost. Change this
value with caution. Users with heavy I/O requirements
should examine the DLI log file during development for
evidence of this error.

logLev 0 0–7 An integer value defining the level of logging DLI per-
forms. 0 = no logging; 1 = most severe; 7 = least severe

logName “dlilog” string
(ð 255)

A string of characters defining the name (path) of the file
to store the DLI logging information. To direct logging
information to the screen, define logName to be stdout. If
the path is not included, the current directory is assumed.

maxSess 128 1–1024 An integer value that defines the maximum number of
sessions DLI can manage at the same time

sessPerConn 16 1–16 An integer value specifying the number of sessions that
are allowed to operate simultaneously on one transport
connection

traceLev 0 0–31 An integer value defining the level of tracing (or the sum
of several levels) which the DLI performs for this session.
See also Appendix D.

0 = no trace 1 = read only
2 = write only 4 = interrupt only
8 = application IOCH 16 = user’s data

traceName “dlitrace” string
(ð 255)

A string of characters defining the name (path) of the file
to store the DLI tracing information. If the path is not
included, the current directory is assumed.

traceSize 0 512–
1048576

An integer value defining the size of the trace file defined
by the traceName parameter.

tsiCfgName “tsicfg.bin” string
(ð 255)

A string of characters specifying the name (path) of the
TSI binary configuration file. If the path is not included,
the current directory is assumed. If the default names
were not used in generating the binary files, ensure cor-
rect use of the ‘.’ character (Section 3.3.4 on page 61).
DC 900-1385E 63

Freeway Data Link Interface Reference Guide
Table 3–2: DLI Client-Related Parameters and Defaults

Parameter Default Valid Values Description

alwaysQIO “no” boolean Specifies whether or not the DLI always queues the
I/O request. If “yes” then the request is queued even
if it can be satisfied immediately. Setting alwaysQIO
to “yes” could ease your application implementation.

asyncIO “no” boolean A value of “no” specifies blocking I/O. If set to “yes”,
the TSI must also be configured for non-blocking I/O
in order for this flag to be effective

boardNo 0 0–128 An integer value specifying a particular ICP within
the locally attached Freeway to be used for this ses-
sion

cfgLink “yes” boolean Specifies whether or not DLI configures the link
before opening it

enable “yes” boolean If set to “yes,” dlOpen also enables the ICP link.

family “protocol” string
(ð 20)

A string of characters specifying the protocol family
to be used

localAck “yes” boolean Specifies whether or not DLI should handle the pro-
tocol-specific local data acknowledgment. The cur-
rent DLI implementation uses the user’s buffer to
receive the localAck packet to be processed by DLI. If
your application needs to see this local acknowledg-
ment message, set the localAck parameter to “no.”
Your application must then read the localAck mes-
sage using the dlRead function with the optional
arguments parameter (Raw operation). Note: When
using non-blocking I/O, there must be at least one
outstanding read request before DLI receives the
localAck packet from the ICP.

logLev 0 0–7 An integer value specifying the level of logging DLI
performs for this session. If specified, this value over-
rides the logLev parameter in the “main” section.
0 = no logging; 1 = most severe; 7 = least severe.

maxErrors 100 10–100 An integer value specifying the maximum number of
consecutive I/O errors DLI can tolerate before declar-
ing the session is unusable

maxInQ 10 2–100 An integer value specifying the maximum number of
entries allowed in the DLI internal input queue
64 DC 900-1385E

3: DLI Configuration
maxOutQ 10 2–100 An integer value specifying the maximum number of
entries allowed in the DLI internal output queue

mode “shrmgr” string
(ð 20)

A string of characters specifying the protocol-specific
access mode when DLI interacts with the ICP. Refer
to your particular protocol programmer’s guide.

portNo 0 0–64 An integer value specifying a particular link in the
above defined ICP (boardNo) to be used for this ses-
sion

protocol no default “raw” or a spe-
cific protocol
(“BSC3780”,
“FMP”, etc.)

A string of characters (maximum of 20) specifying
“raw” (Raw operation) or the data link protocol
(Normal operation) for this session. This is a required
parameter.

reuseTrans “no” boolean Specifies whether or not DLI reuses the existing
transport connection for the same session services.
This is to declare the use of multiple sessions per con-
nection capability provided by DLI

traceLev 0 0–31 An integer value defining the level of tracing (or the
sum of several levels) which the DLI performs for this
session. If specified, this value overrides the “main”
traceLev parameter. See also Appendix D.

0 = no trace 1 = read only
2 = write only 4 = interrupt only
8 = application IOCH 16 = user’s data

transport no default string
(ð 20)

A string of characters specifying the connection name
defined in the TSI configuration file to be used by this
session. This is a required parameter.

Table 3–2: DLI Client-Related Parameters and Defaults (Cont’d)

Parameter Default Valid Values Description
DC 900-1385E 65

Freeway Data Link Interface Reference Guide
The example shown in Figure 3–3 on page 67 defines one session for Raw operation and

one session for Normal operation using the FMP protocol. The parameter names are

not case sensitive; the definition in upper and lower case is for readability only. You

need to include only those parameters whose values differ from the defaults. The pro-

tocol-specific parameters, which would follow at the end of the session definition as

indicated at the end of the figure, are described in your particular protocol program-

mer’s guide.

3.4.3 Protocol-Specific Parameters for a Session

See your particular protocol programmer’s guide for information on the protocol-spe-

cific ICP link configuration parameters. The parameters listed in Table 3–3 are included

here since they are used by most protocols; however, your particular protocol software

might have protocol-specific configuration methods for these parameters.

Table 3–3: DLI Protocol-Specific ICP Link Configuration Parameters

Parameter Default Valid Values Most Common Usage

msgBlkSize 1024 256–8192 Allows DLI to configure ICP message buffer
size (applies to all links on an ICP)

writeType “Normal” string (ð20)
(protocol
specific)

A string of characters specifying the type of
data to be exchanged when using Normal
operation (Section 2.3 on page 34)
66 DC 900-1385E

3: DLI Configuration
//--//
// This line is a comment line, ignored by dlicfg //
//--//

main // DLI “main” section: //
{

tsiCfgName = “tsiCfg.bin”; // TSI binary config file //
maxSess = 256;
asyncIO = “Yes”; // Non-blocking I/O //
logLev = 3;
traceLev = 4;
traceSize = 64000;
traceName = “stdout”;
logName = “stdout”;

}
//---//
// This configuration section defines a generic session for a //
// raw operation interface to the Freeway system. The data link //
// protocol-specific parameters are not defined in this example. //
//---//

RawSess1 // First session name: raw operation on link 1 of ICP 0 //
{

protocol = "Raw"; // Raw session type //
transport = "FW1"; // Transport connection name //

// defined in TSICfgName file //
mode = "User"; // Access mode for ICP //
family = "Protocol"; // Family -- Protocol only //
boardNo = 0; // ICP board number -- based 0 //
portNo = 1; // Link number //
traceLev = 1;
logLev = 0;
maxInQ = 20; // Max # entries in input Q //
maxOutQ = 20; // Max # entries in output Q //
maxErrors = 100;
localAck = "Yes";
asyncIO = "yes"; // Non-blocking I/O //

}

Figure 3–3: DLI Configuration Text File for Two Links
DC 900-1385E 67

Freeway Data Link Interface Reference Guide
link0icp1 // Second session name: FMP session at link 0 on ICP 1 //
{

protocol = “FMP”;
transport = “tcp2”;
mode = “user”; // Access mode for ICP //
family = “protocol”;
boardNo = 1; // ICP 1. //
portNo = 0; // link 0 on that ICP. //
logLev = 0; // NO log.... //
traceLev = 0; // NO trace either... //
maxInQ = 20;
maxOutQ = 30;
maxErrors = 100; // reject request after 100 errors! //
localAck = “Yes”; // implement Local ack //
cfgLink = “Yes”; // configure link prior to its use. //

// Optional protocol-specific parameters start here: //
.
.
.

}

Figure 3–3: DLI Configuration Text File for Two Links (Cont’d)
68 DC 900-1385E

3: DLI Configuration
3.5 Miscellaneous DLI Configuration Details

After you are familiar with the fundamentals of working with the dlicfg preprocessor

program, the additional details described in this section might be of interest.

3.5.1 DLI Configuration Error Messages

The dlicfg program can display one of the error or warning messages listed below. Refer

to Table 3–1 on page 63 and Table 3–2 on page 64 for the DLI configuration parameter

descriptions.

Invalid type specified — STRING expected Your parameter value does not match the

expected type. Action: Review your text configuration file for errors, and try again.

Invalid type specified — BOOLEAN expected You must use a Boolean value (“yes” or

“no”) for this parameter. Action: Review your text configuration file for errors

and try again.

Invalid type specified — DEC/HEX/OCT expected The expected type is decimal,

hexadecimal, or octal data format. Action: Review your text configuration file for

errors and try again.

Invalid type specified — FLOAT expected The expected type is floating point format.

Action: Review your text configuration file for errors and try again.

Invalid range specified The provided parameter value is out of range. Action: Review

your text configuration file for errors and try again.

Internal error! This is an internal error in the dlicfg program. Action: Rerun dlicfg with

your text configuration file. If this error consistently occurs, save your text config-

uration file and contact Protogate for further assistance.

No “main” — Default is used This is a warning message that your text configuration

file does not have the “main” section specified as the first entry. Action: None if
DC 900-1385E 69

Freeway Data Link Interface Reference Guide
you do not wish to define the “main” section yourself. Otherwise, consider adding

the “main” section as the very first section in the DLI text configuration file.

Redefined “main” — Definition ignored This is a warning message. Either you

defined the “main” section twice or you did not code the “main” section as the

very first entry in your DLI text configuration file. Action: Review your text con-

figuration file, correct the problem, and rerun dlicfg.

Invalid session name You specified a protocol parameter value (page 65) that is not rec-

ognized by DLI. Action: Review your text configuration file. Correct the error and

try again.

Undefined parameter name The provided parameter name is not defined. Action:

Review your text configuration file for errors and try again.

Invalid parameter for specified protocol This parameter does not belong to this pro-

tocol. Action: Refer to your particular protocol programmer’s guide, review your

text configuration file for errors, and try again.

Invalid mode specified The ICP mode parameter (page 65) is invalid. Action: Refer to

your particular protocol programmer’s guide for the valid access modes, review

your text configuration file for errors, and try again.

Invalid protocol family specified The family parameter value (page 64) is undefined.

Action: Review your text configuration file for errors and try again.

Failed processing file dlicfg failed to complete processing your configuration file.

Action: Review your text configuration file for errors and try again.

syntax error - cannot backup This is an internal LEX/YACC error. Action: Retry the

operation.

out of memory This is an internal LEX / YACC error. Action: Retry the operation.
70 DC 900-1385E

3: DLI Configuration
yacc stack overflow This is an internal YACC error. Action: Retry the operation.

syntax error A syntax error was encountered in your text configuration file. Action:

Locate and correct the error and try the operation again.

3.5.2 Protogate Definition Language (PDL) Grammar

The following extended BNF metalanguage describes the language used to create the

DLI text configuration file. The following is a brief description of the symbols used:

1. A string inside of <> is a non-terminal symbol. Its definition is located somewhere

down the list.

2. Strings inside of {} separated by a vertical bar (|) make up a list of options. You

can select one or none of the options.

3. A string inside of [] is an optional string.

4. Terminal symbols are those not surrounded by <>.

Context Free Grammar

<config_entry> ::= <session_name> <leftbr> <config_stmt_list> <rightbr>

<session_name> ::= <identifier>

<config_stmt_list> ::= <config_stmt>{<config_stmt_list>}

<config_stmt> ::= [<parameter_name> <equal><parameter_value>;]

<paramter_name> ::= <identifer>

<parameter_value> ::= {<string> | 0x<hex> | <decimal> | 0<octal>

0b<binary> | <float>}

<string> ::= <doublequote><str><doublequote>

<str> ::= [<char>{<str>}]

<decimal> ::= <decdigit>[<decimal>]

<octal> ::= <octdigit>[<octal>]

<binary> ::= <bindigit>[<binary>]

<hex> ::= <hexdigit>[<hex>]
DC 900-1385E 71

Freeway Data Link Interface Reference Guide
<float> ::= <decimal>.<decimal>

<equal> ::= =

<leftbr> ::= {

<rightbr> ::= }

<doublequote> ::= "

<char> ::= 1..255

<decdigit> ::= 0..9

<hexdigit> ::= <decdigit>, a–f

<octdigit> ::= 0..7

<bindigit> ::= 0..1

<alpha> ::= a–z, A–Z, _

<digit> :: <decdigit>

<identifer> ::= <alpha>[<restid>]

<restid> ::= <alphadigit>[<restid>]

<alphadigit> ::= <alpha> | <digit>
72 DC 900-1385E

Chapter
4 DLI Functions
Note
The DLI functions in this chapter also apply to an embedded ICP

using the DLITE interface. If you are using an embedded ICP, also

refer to the user guide for your ICP and operating system for func-

tions specific to DLITE.

4.1 Overview of DLI Functions

This chapter describes the data link interface (DLI) functions used by your application

to interface to Freeway’s supported data link protocols. After you are familiar with the

function calls, Chapter 5 presents some tutorial example programs to help you write

your application.

The DLI shields your application from the detailed interfaces between your Freeway

server and your operating environment. These detailed interfaces include network

transport protocol, data exchange protocol between your application and the Freeway

server, and the intelligent communication processors (ICPs).

The DLI is provided as a C library to link with your application. Appendix A describes

the header files that your application needs to include at compilation time.

4.1.1 DLI Error Handling

The dlerrno variable is globally available to your application and offers similar services

to errno provided in the C language. DLI uses dlerrno to store all its error codes. Your

application should check this value on all returns from DLI function calls (see the

dlpErrString function described in Section 4.9 on page 113). Applicable error codes are
DC 900-1385E 73

Freeway Data Link Interface Reference Guide
listed with each function call described in this chapter. Appendix B gives a complete list

of DLI error codes.

Note
While developing your DLI application, if a particular error occurs

consistently, contact Protogate for further assistance.

4.1.2 Overview of DLI Functions

After the protocol software is downloaded to the Freeway ICP, the client and Freeway

can communicate by exchanging messages. These messages configure and activate each

ICP link and transfer data. The client application issues reads and writes to transfer

messages to and from the ICP.

4.1.2.1 Categories of DLI Functions

The DLI library functions are categorized as shown in Table 4–1.

Table 4–1: DLI Function Categories

Category DLI Functions Usage

Preparation and
termination

dlInit, dlTerm Initialize and terminate DLI services

Session handling dlOpen, dlListen, dlClose Establish and terminate a session with a
remote data link application

Data transfer dlRead, dlWrite, dlPoll, dlPost a,
dlpErrString, dlSyncSelect

Exchange data with a remote application
and obtain status or error information
related to the session

Control functions dlControl Reset/download ICP

Buffer management dlBufAlloc, dlBufFree Obtain and release fixed-size DLI buffers

a Server-resident application only
74 DC 900-1385E

4: DLI Functions
4.1.2.2 Summary of DLI Functions

The DLI functions used in writing a client application are presented alphabetically in

Section 4.2 through Section 4.15. For easy reference after you are familiar with the

details of each function call, Table 4–2 summarizes the DLI function syntax and param-

eters, listed in the most likely calling order.

Caution
When using non-blocking I/O, there must always be at least one

dlRead request queued to avoid loss of data or responses from the

ICP.

An overview of using the DLI functions is:

• Start up communications (dlInit, dlOpen, dlBufAlloc)

• Send requests and data using dlWrite

• Receive responses using dlRead

• For blocking I/O, use dlSyncSelect to query read availability status for multiple

sessions

• For non-blocking I/O, handle I/O completions at the software interrupt level in

the completion handler established by the dlInit or dlOpen function, or by periodic

use of dlPoll to query the I/O completion status

• Monitor errors using dlpErrString

• If necessary, reset and download the protocol software to the ICP using dlControl

• Shut down communications (dlBufFree, dlClose, dlTerm)
DC 900-1385E 75

Freeway Data Link Interface Reference Guide
Table 4–2: DLI Functions: Syntax and Parameters (Listed in Typical Call Order)

DLI Function Parameter(s) Parameter Usage

int dlInit
(see page 99)

(char *cfgFile,
char *pUsrCb,

 int (*fUsrIOCH)(char *pUsrCb));

DLI binary configuration file name
Optional I/O complete control block
Optional IOCH and parameter

int dlPost
(see page 121)

(void);

int dlListen
(see page 103)

(char *cSessionName,
 int (*fUsrIOCH)

 (char *pUsrCB, int iSessionID));

Session name in DLI config file
Optional I/O completion handler
Parameters for IOCH

int dlOpen
(see page 106)

(char *cSessionName,
 int (*fUsrIOCH)

 (char *pUsrCB, int iSessionID));

Session name in DLI config file
Optional I/O completion handler
Parameters for IOCH

int dlPoll
(see page 114)

(int iSessionID,
int iPollType,

 char **ppBuf,
 int *piBufLen,
 char *pStat,
 DLI_OPT_ARGS **ppOptArgs);

Session ID from dlOpen
Request type
Poll-type dependent parameter
Size of I/O buffer (bytes)
Status or configuration buffer
Optional arguments for dlRead

int dlpErrString
(see page 113)

(int dlErrNo); DLI error number (global variable
dlerrno)

char *dlBufAlloc
(see page 86)

(int iBufLen); Minimum buffer size

int dlRead
(see page 122)

(int iSessionID,
 char **ppBuf,
 int iBufLen,
 DLI_OPT_ARGS *pOptArgs);

Session ID from dlOpen
Buffer to receive data
Maximum bytes to be returned
Optional arguments structure

int dlWrite
(see page 134)

(int iSessionID,
 char *pBuf,
 int iBufLen,
 int iWritePriority,
 DLI_OPT_ARGS *pOptArgs);

Session ID from dlOpen
Source buffer for transfer
Number of bytes to write
Normal or expedite write
Optional arguments structure
76 DC 900-1385E

4: DLI Functions
int dlSyncSelect
(see page 128)

(int iNbrSessID,
 int sessIDArray[],
 int readStatArray[]);

Number of session IDs
Packed array of session IDs
Array containing read status for IDs

char *dlBufFree
(see page 89)

(char *pBuf); Buffer to return to pool

int dlClose
(see page 95)

(int iSessionID,
 int iCloseMode);

Session ID from dlOpen
Mode (normal or force)

int dlTerm
(see page 132)

(void);

int dlControl (char *cSessionName,
 int iCommand,
 int (*fUsrIOCH)

 (char *pUsrCB, int iSessionID));

Session name in DLI config file
Command (e.g. reset/download)
Optional I/O completion handler
Parameters for IOCH

Table 4–2: DLI Functions: Syntax and Parameters (Listed in Typical Call Order) (Cont’d)

DLI Function Parameter(s) Parameter Usage
DC 900-1385E 77

Freeway Data Link Interface Reference Guide
4.1.3 DLI Data Structures

This section describes the following DLI data structures that your application can use:

• the DLI system configuration structure used by dlPoll

• the DLI session status structure used by dlPoll

• the DLI optional arguments structure used by dlRead and dlWrite for Raw opera-

tion

4.1.3.1 DLI System Configuration

After initializing the DLI services using dlInit, your application obtains system configu-

ration parameters from DLI by calling dlPoll with the DLI_POLL_GET_SYS_CFG

option (Section 4.10). The iMaxBufSize field reports the size of the buffers allocated in

the TSI buffer pool (data size), and the usOverhead field reports overhead DLI requires

in each data buffer (this size is actually the total overhead required, including both DLI

and TSI requirements). This information is useful if your application uses its own buff-

ers instead of DLI buffer management’s (see Section 2.4.6 on page 51). Your application

receives the system configuration information in the data structure shown in

Figure 4–1. Table 4–3 describes the fields.

typedef struct _DLI_SYS_CFG
{
 unsigned short usMaxSess; /* Max # of sessions defined */
 unsigned short usMaxBufs; /* Max # of buffers defined */
 unsigned short usNumActiveSess; /* # of cur. active sessions */
 unsigned short usNumBufsUsed; /* # of buffers used */
 unsigned short usNumBufsAvail; /* # of buffers avail */
 unsigned short usOverhead; /* # of bytes for int bufs */
 BOOLEAN tfAsyncIO; /* yes = non-blocking I/O */
 int iMaxBufSize; /* Max buffer size defined */

unsigned char cTraceFileName[DLI_MAX_FILENAME+1]; /*trace file*/
} DLI_SYS_CFG;

Figure 4–1: DLI System Configuration Data Structure
78 DC 900-1385E

4: DLI Functions
Table 4–3: DLI System Configuration Data Structure Fields

Field Description

usMaxSess The maximum number of sessions that can be active simultaneously. This value
is configurable through the DLI configuration file. The parameter’s name is
maxSess in the “main” configuration section (page 63).

usMaxBufs The maximum number of buffers available for your application. This value is
configurable through the TSI configuration file. The parameter’s name is
maxBuffers in the “main” configuration section (page 148).

usNumActiveSess The number of sessions currently in use. This number should be less than or
equal to the usMaxSess value.

usNumBufsUsed The number of buffers currently in use. This number should be less than or
equal to the usMaxBufs above.

usNumBufsAvail The number of buffers currently available for use. This number should be less
than or equal to the usMaxBufs above.

usOverhead The number of additional bytes that must precede your data area in a buffer
that your application requests DLI to read or to write. Your application needs
to be aware of this value only if it does not wish to use the DLI buffer manage-
ment scheme (see Section 2.4 on page 40).

tfAsyncIO A boolean value indicating the DLI was configured to use blocking or non-
blocking I/O (“yes” = non-blocking I/O). If you require non-blocking I/O, both
DLI and TSI must be configured for non-blocking I/O, else the default is block-
ing I/O.

iMaxBufSize The maximum data length available in the TSI buffer pool.

cTraceFileName The name of the file containing the trace after the application terminates nor-
mally.
DC 900-1385E 79

Freeway Data Link Interface Reference Guide
4.1.3.2 DLI Session Status

To obtain information related to an active session, your application calls dlPoll with the

DLI_POLL_GET_SESS_STATUS option (Section 4.10). This information contains the

negotiated buffer size in the usMaxSessBufSize field, which is the actual data size avail-

able for this session’s user data (Section 5.5 on page 182 gives an example program for

using the usMaxSessBufSize field). You can get the session status information any time

after a dlOpen returns successfully. Your application receives the session status informa-

tion in the data structure shown in Figure 4–2. Table 4–4 describes the fields.

Caution
Calling dlPoll with the DLI_POLL_GET_SESS_STATUS option is

costly because it checks the entire input and output queues for I/O

completion status; therefore, this call should be made sparingly.

typedef struct _DLI_SESS_STAT
{

short iQReadSize; /* size of read/input q */
short iQWriteSize; /* size of write/output q */
short iQNumRead; /* # of entries in read q */
short iQNumWrite; /* # of entries in write q */
short iQNumReadDone; /* # of IO complete in read q */
short iQNumWriteDone; /* # of IO complete in write q*/
short iMaxErrors; /* max # of IO errs allowed */
short iNumErrors; /* # of IO errors */
short iSessStatus; /* current session status */
short iICPMode; /* ICP mode of operation */
short iBoardNo; /* ICP board number defined */
short iPortNo; /* ICP link number */
unsigned short usMaxSessBufSize; /* maximum user data area */
char cServerVer[DLI_MAX_STRING+1]; /* Freeway Server version */

} DLI_SESS_STAT;

Figure 4–2: DLI Session Status Data Structure
80 DC 900-1385E

4: DLI Functions
Table 4–4: DLI Session Status Data Structure Fields

Field Description

iQReadSize The size of the input queue, configured using the maxInQ DLI configuration param-
eter (page 64) in the session definition section.

iQWriteSize The size of the output queue, configured using the maxOutQ DLI configuration
parameter (page 65) in the session definition section.

iQNumRead The current number of read requests in the read queue. This value is less than or
equal to iQReadSize.

iQNumWrite The current number of write requests in the write queue. This value is less than or
equal to iQWriteSize.

iQNumReadDone The current number of read requests that are complete or timed out in the input
queue. This value is less than or equal to iQReadSize. When using blocking I/O, this
field is always zero and must not be used to determine when to queue a dlRead
request.

iQNumWriteDone The current number of write requests that are complete or timed out in the output
queue. This value is less than or equal to iQWriteSize.

iMaxErrors The maximum number of errors this session can tolerate before it rejects I/O requests
from your application. This value is configured using the maxErrors DLI configura-
tion parameter (page 64).

iNumErrors The number of I/O errors for this session since the session establishment. Your appli-
cation can monitor this value for the health of an active session.

iSessStatus The current status of the session. The valid session status values are:

DLI_STATUS_DEAD_SOCKET DLI has detected a failure on this session’s con-
nection to Freeway. Your application can retrieve any pending buffers and
close the session (dlClose). Attempts to read or write to Freeway after this state
is entered will result in failures (I/O requests are returned with the
“…INVALID_STATE” error code).

DLI_STATUS_FAILED The current DLI session is not available for use because it
failed to establish a session with Freeway (Raw operation) or with the remote
data link application (Normal operation).

DLI_STATUS_NOT_READY DLI is still trying to establish a session with Freeway
or with the remote data link application.

DLI_STATUS_READY DLI successfully established a session with Freeway or the
remote data link application. Your application can now read or write to this
session.
DC 900-1385E 81

Freeway Data Link Interface Reference Guide
iICPMode The mode parameter (page 65) of the ICP specified in the configuration for this ses-
sion.

iBoardNo The boardNo parameter (page 64) of the ICP specified in the configuration file.

iPortNo The portNo parameter (page 65) of the ICP specified in the configuration file.

usMaxSessBufSize The maximum buffer area available to the user for the transfer of data. This value
originates with the buffer size defined in the connection definitions (TSI configura-
tion file) associated with this session. It might be modified during the dlOpen process
when the maximum buffer sizes are negotiated between the client TSI and the server
TSI. This value includes the DLI overhead requirements.

cServerVer A string containing the version of the Freeway server.

Table 4–4: DLI Session Status Data Structure Fields

Field Description
82 DC 900-1385E

4: DLI Functions
4.1.3.3 DLI Protocol-Specific Optional Arguments

If your data link application uses Raw operation (or a mixture of Normal and Raw oper-

ation), you must fully understand this important data structure, the data flow of the

underlying data link protocol used by your application, and the internal architecture of

the Freeway server (refer back to Figure 1–3 on page 26). The optional arguments struc-

ture is used by dlRead and dlWrite to pass the protocol-specific information required for

Raw operation.

The DLI data format (which is internal to the DLI) includes a Freeway header, an ICP

header, a Protocol header, and the data portion. The Freeway header is used exclusively

between the DLI layer and the MsgMux component of Freeway. The ICP header and

the Protocol header are used between the DLI layer and the ICP protocol service. The

data portion is used between the DLI application and the remote data link application.

The optional arguments data structure shown in Figure 4–3 below implements the

Freeway DLI data format shown in Figure 4–4.

typedef struct _DLI_OPT_ARGS
{

unsigned short usFWPacketType; /* Server’s packet type */
unsigned short usFWCommand; /* Server’s cmd sent or rcvd */
unsigned short usFWStatus; /* Server’s status of I/O ops*/
unsigned short usICPClientID; /* old su_id */
unsigned short usICPServerID; /* old sp_id */
unsigned short usICPCommand; /* ICP’s command. */
short iICPStatus; /* ICP’s command status */
unsigned short usICPParms[3]; /* ICP’s extra parameters */
unsigned short usProtCommand; /* protocol command */
short iProtModifier; /* protocol cmd’s modifier */
unsigned short usProtLinkID; /* protocol link ID */
unsigned short usProtCircuitID; /* protocol circuit ID */
unsigned short usProtSessionID; /* protocol session ID */
unsigned short usProtSequence; /* protocol sequence */
unsigned short usProtXParms[2]; /* protocol extra parms */

} DLI_OPT_ARGS;
typedef DLI_OPT_ARGS *PDLI_OPT_ARGS;
#define DLI_OPT_ARGS_SIZE sizeof(DLI_OPT_ARGS)

Figure 4–3: “C” Definition of DLI Optional Arguments Structure
DC 900-1385E 83

Freeway Data Link Interface Reference Guide
Figure 4–4: Freeway DLI Data Format

Table 4–5: DLI Protocol-Specific Optional Arguments Data Structure

Field Description

usFWPacketType This field contains the type of Freeway data packet, either FW_CONTROL or
FW_DATA. Your application must fill this field correctly if it uses Raw opera-
tion.

usFWCommand This field contains the command that your application wishes to send to the
Freeway server to request its services. These services include local session man-
agement as well as message multiplexing between client applications and the ICP
protocol service. Your application can communicate directly with the Freeway
services through this command field using Raw operation. Your application can
use all commands that are supported by the Freeway server, except the
FW_OPEN_SESS_CMD, and FW_CLOSE_SESS_CMD commands. Regard-
less of the type of operation, Raw or Normal, the DLI rejects these commands if
they are issued to the Freeway server. If you wish to use these two commands,
your application must bypass DLI services and use TSI services directly. Like-
wise, DLI returns packets received from the Freeway server in any combination
of usFWPacketType and usFWCommand, with one exception: it does not return
a packet that has usFWPacketType equal to FW_CONTROL, and
usFWCommand equal to FW_OPEN_SESS_RSP or FW_CLOSE_SESS_RSP.
Valid commands are: FW_ICP_WRITE, FW_ICP_WRITE_EXP,
FW_ICP_READ, FW_GET_TIME_CMD, FW_SET_TIME_CMD, and
FW_GET_VERSION_CMD. Also refer to the Freeway Client-Server Interface
Control Document.

usFWStatus This field contains the status of a request that was received and processed by the
Freeway server. This field should be set to a value agreed upon between your
application and the Freeway server. When your application issues a write request
to the Freeway server, it should zero out the usFWStatus field. On return from
the Freeway server, usFWStatus might contain useful information related to
your request. Refer to the Freeway Client-Server Interface Control Document.

usICPClientID This field (formerly called su_id) is provided for compatibility. This field is used
exclusively by the X.25 protocol service.

Freeway Header ICP Header Protocol Header Data
84 DC 900-1385E

4: DLI Functions
usICPServerID This field (formerly called sp_id) is provided for compatibility. This field is used
exclusively by the X.25 protocol service.

usICPCommand This field contains the protocol-specific command that your application wishes
to send to the protocol service on the ICP. Your application can issue any com-
mands that are supported by the protocol service.

iICPStatus This field contains the status of a request that was received and processed by the
ICP protocol service

usICPParms This field contains additional protocol-specific parameters.

usProtCommand This field contains the protocol-specific command that your application wishes
to send to the ICP protocol service.

iProtModifier This field contains the protocol-specific subcommand that your application
wishes to send to the ICP protocol service.

usProtLinkID This field contains the protocol-specific link ID.

usProtCircuitID This field contains the protocol-specific circuit ID.

usProtSessionID This field contains the protocol-specific session ID.

usProtSequence This field contains the protocol-specific sequence ID.

usProtXParms This field contains additional protocol-specific session parameters.

Table 4–5: DLI Protocol-Specific Optional Arguments Data Structure (Cont’d)

Field Description
DC 900-1385E 85

Freeway Data Link Interface Reference Guide
4.2 dlBufAlloc

The dlBufAlloc function allocates a fixed-size buffer that is maintained by DLI services.

Buffers obtained through dlBufAlloc are normally used for data transmission; however,

your application can use them for other purposes. To avoid a buffer depletion problem,

your application must return all unused buffers to DLI using dlBufFree (Section 4.3).

Though you are not required to use dlBufAlloc, you should consider using it for all DLI

I/O operations for the following reasons:

• DLI uses TSI buffer services and handles all buffer overhead requirements

• DLI allocates all buffers up front, resulting in better real-time performance than

the normal C malloc and free functions

• The number of buffers is configurable for operating environments with limited

system resources (maxBuffers TSI parameter, page 148)

The DLI requires appropriate headers that are prefixed to the data to be transmitted to

the Freeway server. To enhance performance, the DLI implementation uses the mem-

ory area just before the data area to store its headers. Due to this implementation, if

your application does not wish to use the DLI buffer management, it must allocate

memory that contains not only its data but also the DLI headers. To obtain the amount

of memory required for the DLI overhead, your application can call dlPoll with the

DLI_POLL_GET_SYS_CFG option (usOverhead field on page 79). Refer to Section 2.4

on page 40 for information on buffer management issues.

Synopsis

char *dlBufAlloc (
int iBufLen); /* Minimum size required */
86 DC 900-1385E

4: DLI Functions
Parameters

int iBufLen The length of the buffer to be allocated by DLI. It must not be larger than

the maximum buffer size value. After calling dlInit, call dlPoll using the

DLI_POLL_GET_SYS_CFG option to obtain the maximum buffer size allowed by

the DLI (iMaxBufSize field of the DLI_SYS_CFG structure, page 79).

Note
Currently the DLI buffer pool is built with buffers all having the

same length, so each call to dlBufAlloc yields a buffer of the length

specified in the iMaxBufSize field of the DLI_SYS_CFG structure

(page 79), regardless of the value of iBufLen.

Returns

If the dlBufAlloc function completes successfully, it returns the address of the buffer

data area to be used by your application. Immediately preceding the buffer (at lower-

numbered memory addresses than the buffer address) are headers that are manipulated

by DLI (refer back to Figure 2–5 on page 48). These areas must not be modified by the

application. If an error occurs, dlBufAlloc returns NULL, and dlerrno contains one of the

following error codes (listed alphabetically):

DLI_BUFA_ERR_NEVER_INIT DLI was never initialized (dlInit).

Action: Review your application and try again.

DLI_BUFA_ERR_NO_BUFS DLI exhausted buffers.

Action: Severe error; consider increasing the number of buffers in the TSI

configuration services. Review your application and ensure it releases

unused buffers to DLI.
DC 900-1385E 87

Freeway Data Link Interface Reference Guide
DLI_BUFA_ERR_SIZE_EXCEEDED iSize value is too large.

Action: Use dlPoll to get the maximum buffer size allowed or consider your

configuration file.

For additional error codes, refer to Appendix B.
88 DC 900-1385E

4: DLI Functions
4.3 dlBufFree

Your application must use dlBufFree to release a DLI buffer that it allocated using

dlBufAlloc. It must also release any read buffer that DLI allocated in dlRead

(Section 4.12). The buffer is returned to the DLI internal free buffer pool. It is the

responsibility of your application to prevent buffer depletion problems by releasing the

unused DLI buffers.

Synopsis

char *dlBufFree (
char *pBuf); /* Buffer to return to buffer pool */

Parameters

char *pBuf The address of the DLI buffer that was allocated by dlBufAlloc.

Returns

If the dlBufFree function completes successfully, it returns the value of pBuf. Otherwise

it returns NULL, and dlerrno contains one of the following error codes (listed alphabet-

ically):

DLI_BUFF_ERR_INVALID_BUF Your application requested DLI to free a buffer

that points to NULL.

Action: Revise your application logic, and try again.

DLI_BUFF_ERR_NEVER_INIT DLI was never initialized (dlInit).

Action: Review your application and try again.

DLI_BUFF_ERR_TSI_FREE_ERR DLI called tBufFree to free a buffer and TSI

returned an error.

Action: Review TSI error codes, review your application and try again.

For additional error codes, refer to Appendix B.
DC 900-1385E 89

Freeway Data Link Interface Reference Guide
4.4 dlClose

In Normal operation, the dlClose function terminates an active session between your

application, the Freeway server, and the remote data link application. If dlOpen was

invoked for Raw operation, dlClose terminates a session only with the Freeway server

for this session. The underlying transport connection is also disconnected. When using

non-blocking I/O, your application should call dlPoll to cancel all outstanding I/O

requests before it issues the dlClose call.

All resources associated with a session are released with a dlClose request. If you observe

“…INVALID_STATE” errors in the DLI and TSI log files with close requests, these may

be normal since close processing is forced to completion when some types of abnormal

conditions are recognized by DLI/TSI.

Synopsis

int dlClose (
int iSessionID, /* Session ID from dlOpen */
int iCloseMode); /* Close mode (normal or force) */

Parameters

int iSessionID The session ID returned by the dlOpen or dlListen function call.

int iCloseMode This parameter allows your application to request DLI to terminate an

active session in the following close modes:

DLI_CLOSE_FORCE When your application issues a force close for an active ses-

sion, DLI empties the I/O queues and proceeds with the session termination

process without considering the status of I/O queues. Note that when your

application issues a dlTerm while active sessions exist, DLI itself issues a

force close request before it frees the DLI service structure.

DLI_CLOSE_NORMAL DLI rejects a normal close request if its internal input

and output queues contain outstanding I/O requests. If either queue is not
90 DC 900-1385E

4: DLI Functions
empty, DLI rejects the normal close request. To successfully issue a normal

close request for an active session, your application must first empty the I/O

queues using dlPoll calls.

Returns

If the dlClose function completes successfully, it returns OK. Otherwise, it returns

ERROR, and dlerrno contains one of the following error codes (listed alphabetically):

DLI_EWOULDBLOCK The session was configured for non-blocking I/O, and

could not be closed immediately.

Action: Use dlPoll to check if your request completed. You might wish to

program your application to be awakened by your own interrupt service

routine that you provided when you called the dlInit, dlOpen, or dlListen

function. Refer to Section 2.2 on page 32 for information on non-blocking

I/O.

DLI_CLOS_ERR_FW_INVALID_RSP DLI encountered an invalid response from

the Freeway server.

Action: Review your trace file and verify the Freeway version.

DLI_CLOS_ERR_FW_INVALID_SESS Freeway did not recognize the session ID

provided by DLI on the close session request.

Action: Check your application’s logic, and evaluate the DLI trace and error

logs.

DLI_CLOS_ERR_FW_QADD_FAILED DLI failed to access its internal I/O

queues.

Action: Severe error; terminate your application and try again.
DC 900-1385E 91

Freeway Data Link Interface Reference Guide
DLI_CLOS_ERR_FW_TOO_MANY_ERRORS DLI encountered too many I/O

error conditions while it attempted to close this session.

Action: Review your operating environment and your DLI session configu-

ration.

DLI_CLOS_ERR_FW_UNK_STATUS Freeway’s returned status is not recognized

by DLI.

Action: Verify the versions of your Freeway and DLI services.

DLI_CLOS_ERR_ICP_INVALID_RSP DLI encountered an invalid response from

the ICP.

Action: Verify the ICP version.

DLI_CLOS_ERR_ICP_INVALID_STATUS The ICP returned status is not recog-

nized by DLI.

Action: Verify the versions of your Freeway, ICP, and DLI services.

DLI_CLOS_ERR_ICP_QADD_FAILED DLI failed to access its internal I/O

queues.

Action: Severe error; terminate your application and try again.

DLI_CLOS_ERR_ICP_TOO_MANY_ERRORS DLI encountered too many I/O

error conditions while it attempted to close this session.

Action: Review your operating environment and your DLI session configu-

ration.

DLI_CLOS_ERR_INVALID_MODE Invalid mode for close request (use

DLI_CLOSE_NORMAL or DLI_CLOSE_FORCE).

Action: Review your application logic.
92 DC 900-1385E

4: DLI Functions
DLI_CLOS_ERR_INVALID_SESSID The provided session ID is invalid.

Action: Review your application logic.

DLI_CLOS_ERR_INVALID_STATE DLI encountered an invalid state in its state

processing machine.

Action: Review the DLI trace and error logs.

DLI_CLOS_ERR_LINK_INVALID_RSP The protocol service’s returned response

is not recognized by DLI.

Action: Verify the versions of your Freeway, ICP, protocol service, and DLI

services.

DLI_CLOS_ERR_LINK_INVALID_STATUS The ICP returned status is not rec-

ognized by DLI.

Action: Verify the versions of your Freeway, ICP, and DLI services.

DLI_CLOS_ERR_LINK_QADD_FAILED DLI failed to access its internal I/O

queues.

Action: Severe error; terminate your application and try again.

DLI_CLOS_ERR_LINK_TOO_MANY_ERRORS DLI encountered too many I/O

error conditions while it attempted to close this session.

Action: Review your operating environment and your DLI session configu-

ration.

DLI_CLOS_ERR_NEVER_INIT DLI was never initialized. You must call dlInit

before using this function.

Action: Correct your application and try again.
DC 900-1385E 93

Freeway Data Link Interface Reference Guide
DLI_CLOS_ERR_Q_NOT_EMPTY Your application requested close on a given

session, and the internal I/O queues for that session are not empty.

Action: Review your application and try again. Consider using dlClose with

the DLI_CLOSE_FORCE option.

DLI_CLOS_ERR_TOO_MANY_ERRORS DLI encountered too many I/O error

conditions while it attempted to close this session.

Action: Review your operating environment and your DLI session configu-

ration.

For additional error codes, refer to Appendix B.
94 DC 900-1385E

4: DLI Functions
4.5 dlControl

The dlControl function sends control messages to Freeway. Currently, the only control

message supported is DLI_CTRL_RESET_ICP which resets an ICP and downloads the

protocol software from the boot server. Refer to Section 5.4 on page 179 for example

dlControl code and application program detection of ICP reset.

When an ICP download is requested, each client connected to the affected ICP receives

a Freeway control packet with the usFWStatus field set to FW_ICP_DWNLD_ACTIVE. At

this point the application should not issue any further dlWrite requests.

To detect that an ICP reset is complete, an application must issue dlRead requests (see

Section 4.12) using optional arguments. It must then examine the usFWPacketType,

usFWCommand, and usFWStatus fields (refer to the DLI protocol-specific optional argu-

ments in Section 4.1.3.3 on page 83).

In a control packet, the usFWPacketType field will be set to FW_CONTROL. Freeway

control packets do not contain the ICP or Protocol header fields. The usFWCommand

field will be set to FW_ICP_STATUS_RSP for an ICP reset/download packet.

When the ICP download completes, each client connected to the affected ICP receives

a Freeway control packet with the usFWStatus field set to FW_ICP_DWNLD_OK. At this

time the application should cancel all pending reads and writes and call dlClose to ter-

minate the session. After the session is closed, it can be reopened and reused.

Synopsis

int dlControl (
char *cSessionName, /* Session name in DLI config file */
int iCommand, /* Control command */
int (*fUsrIOCH) (char *pUsrCB, int iSessionID));

/* Optional IOCH */
DC 900-1385E 95

Freeway Data Link Interface Reference Guide
Parameters

char *cSessionName A string of characters that specifies the name of the desired session

definition entry in the DLI binary configuration file. The associated configuration

entry defines the characteristics of the data link session on the ICP you are about

to reset.

int iCommand Valid values: DLI_CTRL_RESET_ICP

int (*fUsrIOCH) (char *pUsrCB, int iSessionID) The optional address of the IOCH func-

tion that you wish DLI to invoke immediately after it services a non-blocking I/O

condition for this session as specified by iSessionID. You must write this function

yourself. The DLI passes the pUsrCB value (that you provided with the dlInit func-

tion) and the session ID of the session that receives the I/O condition notification.

Returns

If the dlControl function completes successfully, it returns OK. Otherwise, it returns

ERROR, and dlerrno contains one of the following error codes (listed alphabetically).

Also see dlOpen in Section 4.8 on page 106 for a list of possible dlControl error returns.

DLI_CTRL_ERR_FAILED DLI failed to open a control session with a remote

data link application.

Action: Review your session configuration parameters. You can review DLI

trace and error log for additional information.

DLI_CTRL_ERR_FW_FTP_FAIL DLI failed to ftp the ICP code to Freeway.

Action: Verify that the ICP code exists and its path is valid.

DLI_CTRL_ERR_FW_ICP_FAIL DLI failed to download the ICP code to an ICP.

Action: Verify that a valid ICP code is used.
96 DC 900-1385E

4: DLI Functions
DLI_CTRL_ERR_FW_INVALID_ICP Freeway encountered a non-existent ICP.

Action: Check your session configuration and Freeway hardware configura-

tion.

DLI_CTRL_ERR_FW_INVALID_RSP DLI encountered an invalid response from

the Freeway server.

Action: Verify the DLI and Freeway software versions.

DLI_CTRL_ERR_FW_INVALID_TYPE DLI encountered an invalid type from

the Freeway response packet.

Action: Check the Freeway session configuration and its operational status.

DLI_CTRL_ERR_FW_SCRIPT_ERR DLI encountered an invalid ICP script.

Action: Verify that a valid ICP script is used, that the download script exists,

and that its path is valid.

DLI_CTRL_ERR_FW_UNK_STATUS Freeway’s returned status is unknown to

DLI.

Action: Verify the DLI and Freeway software versions.

DLI_CTRL_ERR_INIT_FAILED The dlControl function failed to initialize itself

through dlInit.

Action: Check your binary configuration file. If the default binary configu-

ration file (dlicfg.bin) was used by DLI, verify its existence.

DLI_CTRL_ERR_INVALID_STATE The dlControl function encountered an

invalid state in its state processing machine.

Action: Review the DLI trace and error logs.
DC 900-1385E 97

Freeway Data Link Interface Reference Guide
DLI_CTRL_ERR_SESS_INIT_FAILED DLI failed to initialize the session entry

for this control request.

Action: Check the DLI error log for additional error messages.

DLI_CTRL_ERR_TOO_MANY_ERRORS DLI encountered too many I/O error

conditions that exceeded the maxErrors DLI parameter value specified for

this session.

Action: Review your operating environment and your DLI session configu-

ration.

For additional error codes, refer to Appendix B.
98 DC 900-1385E

4: DLI Functions
4.6 dlInit

The dlInit function is the first DLI function your application calls. It initializes the DLI

services based upon the user’s binary configuration file (described in Chapter 3) pro-

vided through the first parameter, cCfgFile.

Your application must call dlInit to ensure proper operation of the Freeway server.

Synopsis

int dlInit (
char *cCfgFile, /* DLI binary configuration file name */
char *pUsrCB, /* I/O complete control block */
int (*fUsrIOCH) (char *pUsrCB)); /* Optional IOCH */

Parameters

char *cCfgFile The DLI binary configuration file that contains all DLI run-time param-

eters as well as data link session parameters. This file results from execution of the

DLI configuration preprocessor program, dlicfg. If this parameter is NULL, the

default file (dliCfg.bin) is used. Whether or not you supply the configuration file

name, the binary configuration file must exist in order for DLI to operate. An

optional on-line configuration method is described in Section 3.3.4 on page 61.

char *pUsrCB The address of a user-defined control block that DLI passes as the first

parameter to your supplied I/O completion handler (IOCH); see the fUsrIOCH

parameter below. The DLI does not examine or change the contents of this struc-

ture. For blocking I/O, this parameter should be NULL.

int (*fUsrIOCH) (pchar *pUsrCB) The optional address of your general-purpose IOCH

function that DLI invokes immediately after it services any I/O condition when

DLI is configured for non-blocking I/O. This IOCH is called for any session that

DLI is currently managing. You must write this function yourself. If your applica-

tion uses blocking I/O, or you do not wish DLI to invoke an IOCH function, this

parameter should be NULL. Either the dlInit or the dlOpen function can be used to
DC 900-1385E 99

Freeway Data Link Interface Reference Guide
supply the IOCH; however, the dlOpen IOCH requires a session ID, and is called

for that particular session only.

Returns

The dlInit function returns immediately because it does not involve any I/O operations.

If dlInit completes successfully, it returns OK. Otherwise it returns ERROR, and dlerrno

contains one of the following error codes (listed alphabetically):

DLI_INIT_ERR_ACT_ADD_REM_FAILED DLI failed during the initialization

process.

Action: Severe error; terminate your application and try again.

DLI_INIT_ERR_ACT_QINIT_FAILED DLI failed to initialize its internal active

session queue.

Action: Check your system resources. Refer to Section 2.5 on page 53 to cal-

culate system resources required by DLI and TSI.

DLI_INIT_ERR_ALREADY_INIT Your application already issued dlInit before. It

either proceeds with DLI services or calls dlTerm before it can call this func-

tion again.

Action: Review your application and try again.

DLI_INIT_ERR_CFG_LOAD_FAILED DLI failed to load the system configura-

tion parameters from the provided binary configuration file.

Action: Check the binary configuration file used by DLI. If your application

calls this function directly, make sure the binary configuration file contain-

ing the configuration your application provides exists. If your application

does not call this function directly, DLI calls this function for you; make

sure the default configuration file (dliCfg.bin) exists. Review your applica-

tion and try again.
100 DC 900-1385E

4: DLI Functions
DLI_INIT_ERR_DLICB_ALLOC_FAILED DLI failed to allocate memory for its

internal system control block.

Action: Check your system resources. Refer to Section 2.5 on page 53 to cal-

culate system resources required by DLI and TSI.

DLI_INIT_ERR_GET_TSI_CFG_FAILED DLI’s request for TSI status failed.

Action: Check your TSI services, terminate your application and try again.

DLI_INIT_ERR_LOG_INIT_FAILED DLI failed to initialize its internal logging

and tracing facility.

Action: Check your logging and tracing related parameters in the currently

used DLI configuration file.

DLI_INIT_ERR_NAME_TOO_LONG The DLI configuration file name is too

long.

Action: Reduce the DLI configuration file name length.

DLI_INIT_ERR_NO_RESOURCE No memory resource is available for DLI to

start its services.

Action: Make sure your operating environment provides sufficient memory

resources for your application. Refer to Section 2.5 on page 53 for more

details.

DLI_INIT_ERR_NO_TRACE_BUF DLI is unable to allocate memory for the

requested trace buffer.

Action: Review your configuration parameters and your system resources. If

necessary, reduce the value of the traceSize parameter (page 63).
DC 900-1385E 101

Freeway Data Link Interface Reference Guide
DLI_INIT_ERR_TASK_VAR_FAILED DLI failed to add its control block to the

task variable list within VxWorks.

Action: This error occurs only with server-resident applications on

VxWorks. Check your VxWorks system configuration.

DLI_INIT_ERR_TEXT_OPEN_FAILED DLI failed to open the DLI text configu-

ration file.

Action: Check the supplied configuration file name. If a binary file is sup-

plied, verify the name contains a ‘.’ character. If a text file is supplied, verify

the file name and its existence in the current directory (where the applica-

tion program is executing)

DLI_INIT_ERR_TSI_INIT_FAILED DLI failed to initialize TSI services.

Action: Check your TSI configuration services, terminate your application

and try again.

For additional error codes, refer to Appendix B.
102 DC 900-1385E

4: DLI Functions

Jim Colston
had me
remove the
following
statement
(because the
timeout DLI
config param
was deleted).
But he may
have to add i
back later (he
says no one
uses dlListen
currently). —
If no incomin
connection
request arrive
after the
specified
timeout DLI
configuration
parameter
(page 65), the
dlListen
session
terminates.
4.7 dlListen

The dlListen function waits for a connection establishment from a remote data link

application. This function does not apply to all data link protocols. For those protocols

that do not have “listening” capability, use the dlOpen function with Normal operation.

Unlike dlOpen, dlListen does not allow Raw operation. The dlListen function is similar to

the dlOpen function, except that it waits for a connection request to arrive instead of

sending a connection request to a predefined destination. You should give special con-

sideration in configuring the session timeout value, because your application might have

to wait a long period of time before receiving any connection requests from remote data

link applications.

Synopsis

int dlListen (
char *cSessionName, /* Session name in DLI config file */
int (*fUsrIOCH) (char *pUsrCB, int iSessionID));

/* Optional IOCH */

Parameters

char *cSessionName A string of characters that specifies the name of the desired session

definition entry in the DLI binary configuration file. The associated configuration

entry defines the characteristics of the data link session your application wishes to

connect with when the connection request arrives.

int (*fUsrIOCH) (char *pUsrCB, int iSessionID) The optional address of the IOCH func-

tion that you wish DLI to invoke immediately after it services a non-blocking I/O

condition for this session as specified by iSessionID. You must write this function

yourself. The DLI passes the pUsrCB value (that you provided with the dlInit func-

tion) and the session ID of the session that receives the I/O condition notification.

You can provide a different fUsrIOCH for each dlListen call, or you can use the

same fUsrIOCH in multiple dlListen calls. If your application uses blocking I/O, or

you do not wish DLI to invoke an IOCH function, this parameter should be

t

g

s

DC 900-1385E 103

Freeway Data Link Interface Reference Guide
NULL. The dlInit function can also be used to define a general-purpose IOCH that

is not restricted to one particular session. If the IOCH is given as a parameter in

the dlListen call, that IOCH will be invoked when the session is either successfully

established or has failed.

Returns

The dlListen function returns a non-negative session ID if it successfully connects to the

remote data link application or if it is in the process of connecting your application to

the remote application. This ID uniquely identifies a DLI session between your applica-

tion and the remote application. The session ID has a value between zero and the max-

imum number of sessions (DLI maxSess configuration parameter on page 63) minus 1.

If your application is configured for non-blocking I/O, it must either use dlerrno or call

dlPoll with the DLI_POLL_GET_SESS_STATUS option to determine the status of the

connection. If your application is configured for blocking I/O, the returned session ID

indicates a successful connection.

If this function returns ERROR, the connection failed, and dlerrno contains one of the

following error codes (listed alphabetically). Also see the DLI_OPEN error return codes

on page 109.

DLI_EWOULDBLOCK This value is set only if the return value is a valid session

ID. The session was configured for non-blocking I/O, and a connection was

not established immediately.

Action: Use dlPoll to check if your request completed. You might wish to

program your application to be awakened by your own IOCH that you pro-

vided when you called the dlInit function or this function. Refer to

Section 2.2 on page 32 for information on non-blocking I/O.
104 DC 900-1385E

4: DLI Functions
DLI_LSTN_ERR_INIT_FAILED DLI failed to initialize its services. This error

occurs only if your application did not explicitly call the dlInit function.

Action: Check your DLI binary configuration file. If the default file

(dliCfg.bin) was used by DLI, verify its existence.

DLI_LSTN_ERR_INVALID_STATE DLI encountered an invalid state in its state

processing machine.

Action: Review the DLI trace and error logs.

DLI_LSTN_ERR_SESS_INIT_FAILED DLI failed to initialize the session entry

for this listen request.

Action: Check the DLI error log for additional error messages.

For additional error codes, refer to the dlOpen function (Section 4.8) and Appendix B.
DC 900-1385E 105

Freeway Data Link Interface Reference Guide
4.8 dlOpen

In Normal operation, the dlOpen function establishes a data link session with a remote

application. If dlOpen is invoked for Raw operation (that is, the protocol DLI configura-

tion parameter on page 65 is set to “raw”), it establishes a connection to the Freeway

server only. However, there are occasions in Normal operation that require a Raw write

or read request; refer to Section 2.3 on page 34 and to the dlRead and dlWrite functions

for more information about Raw operation.

The dlOpen function configures the ICP link only if there are protocol-specific parame-

ters in the session definition and the cfgLink DLI configuration parameter (page 64) is

set to “yes,” which is the default. The dlOpen function enables the link only if the enable

parameter (page 64) is set to “yes,” which is the default.

Note
If you need to request session status to obtain the maximum buffer

size (which may change due to negotiation procedures during

dlOpen), your application should wait until after a successful

dlOpen before calling dlPoll with the

DLI_POLL_GET_SESS_STATUS option (Section 4.1.3.2 on

page 80). See Section 2.4.2.3 on page 49 for details of the negotia-

tion process.

Caution
It is critical for the client application to receive the dlOpen comple-

tion status before making any other DLI requests; otherwise, sub-

sequent requests will fail. After the dlOpen completion, however,

you do not have to maintain a one-to-one correspondence

between DLI requests and dlRead calls.
106 DC 900-1385E

4: DLI Functions
Synopsis

int dlOpen (
char *cSessionName, /* Session name in DLI config file */
int (*fUsrIOCH) (char *pUsrCB, int iSessionID));

/* Optional IOCH */

Parameters

char *cSessionName A string of characters that specifies the name of the desired session

definition entry in the DLI binary configuration file. The associated configuration

entry defines the characteristics of the data link session you are about to open.

However, in Raw operation all data link related parameters that are defined for

this session are ignored.

int (*fUsrIOCH) (char *pUsrCB, int iSessionID) The optional address of the IOCH func-

tion that you wish DLI to invoke immediately after it services a non-blocking I/O

condition for this session as specified by iSessionID. You must write this function

yourself. The DLI passes the pUsrCB value (that you provided with the dlInit func-

tion) and the session ID of the session that receives the I/O condition notification.

You can provide a different fUsrIOCH for each dlOpen call, or you can use the

same fUsrIOCH in multiple dlOpen calls. If your application uses blocking I/O, or

you do not wish DLI to invoke an IOCH function, this parameter should be

NULL. The dlInit function can also be used to define a general-purpose IOCH that

is not restricted to one particular session. If the IOCH is given as a parameter in

the dlOpen call, that IOCH will be invoked when the session is either successfully

established or has failed.

Returns

The dlOpen function returns a non-negative session ID if it successfully connects to the

remote data link application or if it is in the process of connecting your application to

the remote application. This ID uniquely identifies a DLI session between your applica-

tion and the remote application. The session ID has a value between zero and the max-

imum number of sessions (maxSess DLI configuration parameter on page 63) minus 1.
DC 900-1385E 107

Freeway Data Link Interface Reference Guide
If your application is configured for non-blocking I/O, it must either use dlerrno or call

dlPoll with the DLI_POLL_GET_SESS_STATUS option to determine the status of the

connection. If your application is configured for blocking I/O, the returned session ID

indicates a successful connection.

If this function returns ERROR, the connection failed, and your application must check

dlerrno which contains one of the following error codes (listed alphabetically):

DLI_EWOULDBLOCK This value is set only if the return value is a valid session

ID. The session was configured for non-blocking I/O, and could not be

established immediately.

Action: Use dlPoll to check if your request completed. You might wish to

program your application to be awakened by your own IOCH that you pro-

vided when you called the dlInit function or this function. Refer to

Section 2.2 on page 32 for information on non-blocking I/O.

DLI_OPEN_ERR_CFG_INVALID_RSP DLI encountered an invalid response

from the ICP when it attempted to configure the link before activating it.

Action: Review the DLI trace, verify the ICP software version, and try again.

If your application is using Raw operation, review the sequence and specific

commands being sent to the ICP.

DLI_OPEN_ERR_CFG_INVALID_STATUS DLI encountered an invalid status

from the ICP when it attempted to configure the link. This often indicates

that the ICP rejected the configuration command from DLI.

Action: Review the DLI trace, verify the ICP software version, and try again.

If your application is using Raw operation, review the sequence and specific

commands being sent to the ICP.
108 DC 900-1385E

4: DLI Functions
DLI_OPEN_ERR_CFG_QADD_FAILED DLI failed to access the internal I/O

queues while attempting to configure the link.

Action: Severe error; terminate your application and try again.

DLI_OPEN_ERR_CFG_TOO_MANY_ERRORS DLI encountered too many I/O

error conditions that exceeded the maxErrors DLI parameter value specified

for this session (page 64).

Action: Review your operating environment and your DLI session configu-

ration.

DLI_OPEN_ERR_FAILED DLI failed to open a session with a remote data link

application.

Action: Review your session configuration parameters. You can review the

DLI trace and error log for additional information.

DLI_OPEN_ERR_FW_ICP_NOT_OP Freeway encountered a non-operational

ICP.

Action: Check your session configuration and Freeway operational status.

DLI_OPEN_ERR_FW_INVALID_COMMAND DLI encountered an invalid com-

mand in the Freeway response packet.

Action: Verify the DLI and Freeway software versions.

DLI_OPEN_ERR_FW_INVALID_ICP Freeway encountered a non-existent ICP.

Action: Check your session configuration and Freeway hardware configura-

tion.

DLI_OPEN_ERR_FW_INVALID_RSP DLI encountered an invalid response from

the Freeway server.

Action: Verify the DLI and Freeway software versions.
DC 900-1385E 109

Freeway Data Link Interface Reference Guide
DLI_OPEN_ERR_FW_INVALID_TYPE DLI encountered an invalid type from

the Freeway response packet.

Action: Verify the DLI and Freeway software versions.

DLI_OPEN_ERR_FW_NO_SESS Freeway failed to create an additional session

for your application.

Action: Check the Freeway session configuration and its operational status.

DLI_OPEN_ERR_FW_QADD_FAILED DLI failed to access the internal I/O

queues.

Action: Severe error; terminate your application and try again.

DLI_OPEN_ERR_FW_TOO_MANY_ERRORS DLI encountered too many I/O

error conditions that exceeded the maxErrors DLI parameter value specified

for this session (page 64).

Action: Review your operating environment and your DLI session configu-

ration.

DLI_OPEN_ERR_FW_UNK_STATUS Freeway’s returned status is unknown to

DLI.

Action: Verify the DLI and Freeway software versions.

DLI_OPEN_ERR_ICP_INVALID_RSP DLI encountered an invalid response from

the ICP protocol service.

Action: Verify the versions of the Freeway, ICP, and DLI services. This error

occurs only in Normal operation.

DLI_OPEN_ERR_ICP_INVALID_STATUS The ICP returned status is unknown

to DLI.

Action: Verify the versions of your Freeway, ICP, and DLI services. This

error occurs only in Normal operation.
110 DC 900-1385E

4: DLI Functions
DLI_OPEN_ERR_ICP_QADD_FAILED DLI failed to access its internal I/O

queues while it attempted to connect to the specified ICP.

Action: Severe error; terminate your application and try again. This error

occurs only in Normal operation.

DLI_OPEN_ERR_ICP_TOO_MANY_ERRORS DLI encountered too many I/O

error conditions that exceeded the maxErrors DLI parameter value specified

for this session (page 64).

Action: Review your operating environment and your DLI session configu-

ration.

DLI_OPEN_ERR_INIT_FAILED DLI failed to initialize its services. This error

occurs only if your application does not explicitly call dlInit function.

Action: Check your binary configuration file. If the default binary configu-

ration file (dliCfg.bin) was used by DLI, verify its existence.

DLI_OPEN_ERR_INVALID_STATE DLI encountered an invalid state in its state

processing machine.

Action: Review the DLI trace and error logs.

DLI_OPEN_ERR_LINK_INVALID_RSP DLI encountered an invalid response

from the ICP protocol service.

Action: Verify the versions of your Freeway, ICP, ICP protocol services, and

DLI services. This error occurs only with Normal operation.

DLI_OPEN_ERR_LINK_INVALID_STATUS ICP protocol service’s returned sta-

tus is unknown to DLI.

Action: Verify versions of your Freeway, ICP, and your DLI services. This

error occurs only in Normal operation.
DC 900-1385E 111

Freeway Data Link Interface Reference Guide
DLI_OPEN_ERR_LINK_QADD_FAILED DLI failed to access its internal I/O

queues while it attempted to connect to the remote data link application.

Action: Severe error; terminate your application and try again. This error

occurs only in Normal operation.

DLI_OPEN_ERR_LINK_TOO_MANY_ERRORS DLI encountered too many I/O

error conditions that exceeded the maxErrors DLI parameter value specified

for this session (page 64).

Action: Review your operating environment and your DLI session configu-

ration.

DLI_OPEN_ERR_SESS_INIT_FAILED DLI failed to initialize the session entry

for this open request.

Action: Check the DLI error log for additional error messages.

DLI_OPEN_ERR_TOO_MANY_ERRORS DLI encountered too many I/O error

conditions that exceeded the maxErrors DLI parameter value specified for

this session (page 64).

Action: Review your operating environment and your DLI session configu-

ration.

For additional error codes, refer to Appendix B.
112 DC 900-1385E

4: DLI Functions
4.9 dlpErrString

The dlpErrString function allows the user to print the text message associated with a DLI

error defined by the user input (a valid dlerrno value). This function can be invoked

without DLI initialization. The function returns a pointer to the textual description of

the DLI error number supplied with the function call.

Synopsis

char *dlpErrString (
 int dlErrNo); /* DLI error number (a valid dlerrno value) */

Parameters

int dlErrNo DLI error number of the associated text description (must be a valid dler-

rno value).

Returns

If the dlpErrString function completes successfully, it returns a pointer to a NULL-ter-

minated character string associated with the DLI error number (dlErrNo) supplied in

the function call.

If this function completes unsuccessfully, it returns NULL. The dlpErrString function

does not change the current dlerrno value, so that it will still reflect the global dlerrno

value at the time dlpErrString was invoked. If DLI logging is enabled, the following mes-

sage is logged:

DLI_PRTSTRG_ERR_UNKNOWN_ERROR_NBR

For additional error codes, refer to Appendix B.
DC 900-1385E 113

Freeway Data Link Interface Reference Guide
4.10 dlPoll

The dlPoll function queries either DLI general information or session-related status or

configuration information. When using Raw operation, dlPoll can be used to query I/O

completion status. Your application can call this function as often as it needs. This func-

tion does not involve any I/O operations.

Synopsis

int dlPoll (
int iSessionID, /* Session ID */
int iPollType, /* Request type */
char **ppBuf, /* Poll-type dependent parameter */
int *piBufLen, /* Size of I/O buffer in bytes */
char *pStat /* Status or configuration buffer */
DLI_OPT_ARGS **ppOptArgs); /* Protocol optional arguments */

Parameters

int iSessionID This session ID uniquely identifies an active session serviced by the DLI.

This ID is returned from a dlOpen or dlListen function.

int iPollType The type of poll request to the DLI. Valid poll types are:

DLI_POLL_GET_CFG_LIST Request DLI to get a list of all DLI session definition

names. The list is returned through the ppBuf parameter in NULL-termi-

nated string lists. The piBufLen parameter indicates the number of session

definition names in the list. The list does not contain the definition of the

“main” section.

DLI_POLL_GET_SESS_STATUS Request DLI to get the current session status.

The session status is returned through the DLI_SESS_STAT structure. The

pointer to the DLI_SESS_STAT structure (Section 4.1.3.2 on page 80) must

be provided through the pStat parameter. This option should be used spar-

ingly because it checks the entire input and output queues for I/O comple-

tion status.
114 DC 900-1385E

4: DLI Functions
Caution
When using blocking I/O, the iQNumReadDone field of the

DLI_SESS_STAT structure is always zero and must not be used to

determine when to queue a dlRead request.

DLI_POLL_GET_SYS_CFG Call dlPoll after the dlInit call to request DLI to get

the DLI system configuration. Set the iSessionID parameter to zero. The sys-

tem status is returned through the DLI_SYS_CFG structure (Section 4.1.3.1

on page 78). The pointer to the DLI_SYS_CFG structure must be provided

through the pStat parameter.

DLI_POLL_READ_CANCEL Request DLI to remove the first read request in its

input queue regardless of the completion status of the read request. If the

content of the ppBuf (*ppBuf) parameter is NULL, the DLI removes the first

entry in the input queue regardless of its completion status. If the content of

ppBuf is not NULL, the DLI searches through its input queue for a matching

address pointer. If it finds a match, it removes that request regardless of its

completion status. When using non-blocking I/O, your application should

call dlPoll to cancel all outstanding I/O requests before it issues the dlClose

call.

DLI_POLL_READ_COMPLETE Request DLI to remove the first read request

from this session’s input queue that is either complete, timed-out, or a read

error has occurred. The address and length of the buffer are returned

through the ppBuf and piBufLen parameters. This request removes the first

entry in the input queue if and only if the entry is marked “read complete,”

“read timed-out,” or “read error.” In all cases, the application is responsible

for freeing the returned buffer.

DLI_POLL_WRITE_CANCEL Request DLI to remove the first write request in its

output queue regardless of the completion status of the write request. If the

content of the ppBuf (*ppBuf) parameter is NULL, the DLI removes the first
DC 900-1385E 115

Freeway Data Link Interface Reference Guide
entry in the output queue regardless of its completion status. If the content

of ppBuf is not NULL, the DLI searches through its output queue for a

matching address pointer. If it finds a match, it removes that request

regardless of its completion status.

DLI_POLL_WRITE_COMPLETE Request DLI to remove the first write request in

its output queue that is either complete or timed-out. This request removes

the first entry in the output queue if and only if the request is marked “write

complete.”

DLI_POLL_TRACE_ON Turn on the DLI/TSI tracing facility. If trace is config-

ured in the DLI configuration file (traceName and traceSize parameters on

page 63), the tracing facility is automatically on. Your application can turn

tracing on or off as often as it needs.

DLI_POLL_TRACE_OFF Turn off the DLI/TSI tracing facility. If trace is not con-

figured in the DLI and TSI configuration files, this has no affect.

DLI_POLL_TRACE_STORE Write your own information into the DLI trace

buffer. Use pStat to indicate the area of memory to be copied to the trace

buffer, and iBufLen to indicate the length of the area to be copied. The

length of your trace area must be less than or equal to the size of the trace

buffer (traceSize parameter on page 63). Otherwise, your trace area will be

truncated when copied into the DLI trace buffer.

DLI_POLL_TRACE_WRITE Force the DLI/TSI to write the trace buffer into the

trace file. The name of the trace file is defined by the traceNameDLI config-

uration parameter (page 63). Your application can force the trace buffer to

be written to the trace file as often as it needs.

char *ppBuf This parameter specifies an address of a pointer to a buffer area. This

parameter must not be NULL except when the poll type is to get session or system

status.
116 DC 900-1385E

4: DLI Functions
int *piBufLen This field contains the length of the buffer pointed to by the content of

the ppBuf parameter, or the number of entries in the configuration list also

pointed to by the content of the ppBuf parameter. If a NULL value is passed, the

dlPoll request is returned with the DLI_POLL_ERR_BUF_LEN_PTR_NULL error

code.

char *pStat This field is the pointer to either the session status or the system configura-

tion. If the request is for the session status, this field is the address of the

DLI_SESS_STAT structure. Otherwise, it points to the DLI_SYS_CFG structure.

DLI_OPT_ARGS **ppOptArgs This field contains the address of a pointer to the

optional arguments structure that was provided by the dlRead or dlWrite function.

Returns

If the dlPoll function completes successfully, it returns OK. Otherwise it returns ERROR,

and dlerrno contains one of the following error codes (listed alphabetically):

DLI_POLL_ERR_BAD_PTR ppBuf pointer must not be NULL for this request.

Action: Review your application and try again.

DLI_POLL_ERR_BUF_LEN_PTR_NULL The piBufLen pointer must not be

NULL for this request.

Action: Review your application and try again.

DLI_POLL_ERR_BUF_NOT_FOUND DLI could not cancel a read or a write

request based on the buffer address provided by your application.

Action: Make sure that you provide a correct buffer address when you

request a read or write cancellation.
DC 900-1385E 117

Freeway Data Link Interface Reference Guide
DLI_POLL_ERR_GETLIST_FAILED DLI failed to get a list of session definition

entries from the DLI configuration file.

Action: Verify the configuration file.

DLI_POLL_ERR_GET_TSI_CFG_FAILED DLI’s request for TSI status failed.

Action: Check your TSI services, terminate your application and try again.

DLI_POLL_ERR_INVALID_IOQ DLI encountered an internal error with the I/O

queue.

Action: Terminate your application and try again.

DLI_POLL_ERR_INVALID_REQ_TYPE Your application issued an invalid

request type.

Action: Review your application. Verify your version of DLI.

DLI_POLL_ERR_INVALID_SESSID Your session is no longer valid.

Action: Review your error log, terminate your application and try again.

DLI_POLL_ERR_IO_FATAL A fatal I/O error occurred. The application can

assume the connection has been terminated.

Action: Cancel all outstanding read/write requests and free the buffers.

Close the session. After the session is closed, another session connection can

be attempted.

DLI_POLL_ERR_NEVER_INIT DLI was never initialized.

Action: Revise your application and try again.
118 DC 900-1385E

4: DLI Functions
DLI_POLL_ERR_OVERFLOW Your current read request has overflowed the

maximum buffer size. The buffer returned contains as much of the data as

would fit, and the remainder has been discarded.

Action: Review your TSI configurations for both the client and Freeway.

Ensure that the maxBufSize TSI configuration parameters (page 148) are

defined as intended. Increase the buffer size supplied to dlRead up to the

maximum defined for the session.

DLI_POLL_ERR_QEMPTY Your application issued a poll request on an I/O

queue that is empty.

Action: Review your application.

DLI_POLL_ERR_QREM_FAILED DLI failed to remove an I/O request from one

of the I/O queues.

Action: Severe error; terminate your application and try again.

DLI_POLL_ERR_READ_ERROR DLI encountered a severe error while reading

data from TSI.

Action: Review the DLI and TSI trace files and error logs. Terminate your

application and try again.

DLI_POLL_ERR_READ_NOT_COMPLETE There is no complete read request to

return to the caller.

Action: Your application can check the request again at a later time.

DLI_POLL_ERR_READ_QREM_FAILED DLI failed to remove an I/O request

from one of the I/O queues.

Action: Severe error; terminate your application and try again.
DC 900-1385E 119

Freeway Data Link Interface Reference Guide
DLI_POLL_ERR_READ_TIMEOUT The return read request did not complete

successfully due to timeout.

Action: Review your application. You might need to change the timeout

parameter in your DLI configuration file.

DLI_POLL_ERR_UNBIND The connection supporting this session between the

client application and Freeway has been closed. The system has performed

“Unbind” processing. The connection was closed either because of a “Force

Unbind” received from the peer entity (Freeway or client), or because of a

failure with the I/O connection.

Action: Cancel all outstanding read/write requests and free the buffers.

Close the session. After the session is closed, another session connection can

be attempted. Examine the message logs on the peer system (if the error

occurred in the client application, examine the Freeway log).

DLI_POLL_ERR_WRITE_ERROR The ICP could not send the data to the remote

system.

Action: The global variable iICPStatus and the optional arguments iICPStatus

field contain the ICP error number.

DLI_POLL_ERR_WRITE_NOT_COMPLETE There is no complete write request

to return to the caller.

Action: Your application can check the request again at a later time.

DLI_POLL_ERR_WRITE_TIMEOUT The return write request did not complete

successfully due to timeout.

Action: Review your application. Change the TSI timeout configuration

parameter (page 149).

For additional error codes, refer to Appendix B.
120 DC 900-1385E

4: DLI Functions
4.11 dlPost

The dlPost function operates only in the VxWorks environment where the basic non-

blocking I/O system services are not provided. It signals the I/O server task to begin

processing I/O requests queued by your application.

Currently, dlPost implements a controlled task switch environment for VxWorks using

binary semaphore mechanisms. Your application must call this function as the last

operation before it relinquishes the task control to the operating system (i.e. tasking

semaphore). Your application must take a special consideration in operating in a

VxWorks environment. Refer to Appendix C for designing and implementing server-

resident applications under a VxWorks environment.

Synopsis

int dlPost (void);

Parameters

None.

Returns

If the dlPost function completes successfully, it returns OK. Otherwise it returns

ERROR, and dlerrno contains one of the following error codes (listed alphabetically):

DLI_POST_ERR_NEVER_INIT The DLI was never initialized (dlInit).

Action: Correct your application and try again.

DLI_POST_ERR_TSI_POST_ERR The TSI post function failed.

Action: Check for additional error codes reported by TSI.

For additional error codes, refer to Appendix B.
DC 900-1385E 121

Freeway Data Link Interface Reference Guide
4.12 dlRead

Typically the dlRead function is used in Normal operation to interact with Freeway only

for the purpose of receiving data from the remote data link application; in this case the

optional arguments parameter is set to NULL. However, if you need to receive status or

configuration information from Freeway or process protocol-specific incoming data,

your application must issue a Raw dlRead by providing the optional arguments param-

eter for DLI to fill with the server and protocol specifics.

Synopsis

int dlRead (
int iSessionID, /* Session ID from dlOpen */
char **ppBuf, /* Buffer to receive data */
int iBufLen, /* Maximum bytes to be returned */
DLI_OPT_ARGS *pOptArgs); /* Optional arguments structure */

Parameters

int iSessionID This session ID uniquely identifies an active session serviced by DLI. This

ID is returned from the dlOpen or dlListen function call.

char **ppBuf The address of a pointer to a DLI read buffer. The buffer can be allocated

using the dlBufAlloc function or by a similar C function. However, if the buffer is

allocated by a function other than dlBufAlloc, your application must provide suf-

ficient header space for the DLI to store its internal information related to this

buffer (usOverhead field on page 79). This field must not be NULL; however, its

content can be a NULL pointer. If its content is NULL, DLI allocates a buffer for

your application. See Section 2.4 on page 40 for buffer management information.

If you let DLI allocate the read buffer, your application is still responsible for

releasing that buffer when it no longer needs it, using the dlBufFree function. You

should consider specifying the content of this field as a NULL pointer if your TSI

connection is configured for shared memory. Refer to the Freeway Transport Sub-

system Interface Reference Guide for more details on the shared memory transport
122 DC 900-1385E

4: DLI Functions
protocol. If the session is using non-blocking I/O, your application must not reuse

this buffer until the dlRead request is complete.

int iBufLen The maximum number of bytes of data to be read by DLI (excluding head-

ers). If the actual data length is more than this value, DLI discards the extra data

and returns a DLI_READ_ERR_OVERFLOW error indication to the application.

After calling dlOpen, call dlPoll using the DLI_POLL_GET_SESS_STATUS option

to obtain the maximum application data buffer size allowed by the DLI

(usMaxSessBufSize field of the DLI_SESS_STAT structure, page 82).

DLI_OPT_ARGS *pOptArgs A pointer to a structure to receive the Freeway and ICP

protocol-specific parameters required for Raw operations. If pOptArgs is NULL,

only data from the remote data link application is forwarded to your application.

If this field is not NULL, DLI fills the pOptArgs structure with information related

to the Freeway server as well as the data link protocol specifics, and forwards all

responses from the Freeway server to your application, with the exception of the

Freeway open and close responses. If the session is using non-blocking I/O, your

application must not reuse this buffer until the dlRead request is complete. See

Section 4.1.3.3 on page 83 for information on the optional arguments structure.

Returns

For blocking I/O, a successful dlRead returns the number of bytes read.

For non-blocking I/O, if the AsyncIO and AlwaysQIO parameters are both set to “yes” in

the DLI configuration file for a given session, dlRead returns zero (0) if DLI successfully

queues the I/O request to its internal I/O queue.

Protocol-specific status and error codes originating at the ICP are returned in two ways:

First, the code is returned in a global variable called iICPStatus when the read completes.

This global status is available to applications using both blocking and non-blocking I/O.

Second, if the application provides the DLI_OPT_ARGS parameter, the code is also

returned in the iICPStatus field of the DLI_OPT_ARGS structure.
DC 900-1385E 123

Freeway Data Link Interface Reference Guide
For any error condition, the dlRead return code is ERROR, and dlerrno contains one of

the following error codes (listed alphabetically):

DLI_EWOULDBLOCK The session was configured for non-blocking I/O, and no

data could be read immediately.

Action: Use dlPoll to check if your request completed. You might wish to

program your application to be awakened by your own IOCH that you pro-

vided when you called the dlInit function or this function. Refer to

Section 2.2 on page 32 for information on non-blocking I/O.

DLI_READ_ERR_BUF_MUST_BE_NULL Your application has requested a read

for a session that is configured to share a TSI connection with the Freeway

server.

Action: You must set the buffer for this request to NULL to complete the

request.

DLI_READ_ERR_INTERNAL_DLI_ERROR The DLI input queue is corrupted,

or an invalid status was encountered (blocking I/O only).

Action: Restart the application and notify Protogate.

DLI_READ_ERR_INVALID_BUF Your application provided a NULL parameter

value in place of ppBuf. This parameter must not be NULL; however, it can

specify the address of NULL pointer.

Action: Review your application and try again.

DLI_READ_ERR_INVALID_LENGTH Your requested read length (iBufLen)

must be greater than or equal to zero (0) and less than or equal to the max-

imum buffer length allowed by DLI. In Raw operation if the pOptArgs
124 DC 900-1385E

4: DLI Functions
parameter is provided, iBufLen can be zero; otherwise, it must be greater

than zero.

Action: Call dlPoll using the DLI_POLL_GET_SESS_STATUS option to

obtain the maximum buffer size allowed by the DLI (usMaxSessBufSize field

of the DLI_SESS_STAT structure, page 82). Review your application and try

again.

DLI_READ_ERR_INVALID_SESSID Your session ID is no longer valid.

Action: Review your application and try again.

DLI_READ_ERR_INVALID_STATE This session is not in a proper state to accept

a read request.

Action: Review your application and try again.

DLI_READ_ERR_IO_FATAL The DLI encountered a fatal I/O error. The appli-

cation can assume the connection has been terminated.

Action: Cancel all outstanding read/write requests and free the buffers.

Close the session. After the session is closed, another session connection can

be attempted. Review the TSI and DLI log files for specific information

about the error.

DLI_READ_ERR_NEVER_INIT DLI was never initialized. Your application must

initialize DLI using dlInit before using the DLI services.

Action: Review your application.

DLI_READ_ERR_OVERFLOW Your current read request has overflowed the

maximum buffer size. The buffer returned contains as much of the data as

would fit, and the remainder has been discarded.

Action: Review your TSI configurations for both the client and Freeway.

Ensure that the maxBufSize TSI configuration parameters (page 148) are
DC 900-1385E 125

Freeway Data Link Interface Reference Guide
defined as intended. Increase the buffer size supplied to dlRead up to the

maximum defined for the session.

DLI_READ_ERR_QADD_FAILED DLI failed to add your request to its internal

I/O queues for this session.

Action: Severe error; terminate your application and try again.

DLI_READ_ERR_QFULL DLI cannot accept more read requests, because its

input queue is full.

Action: your application must remove complete or timed-out read requests

before it can request more reads. Review your application and handle this

error accordingly.

DLI_READ_ERR_READ_ERROR A read error occurred other than those cur-

rently documented.

Action: Save the DLI and TSI log files and notify Protogate.

DLI_READ_ERR_TIMEOUT Your current read request is timed out.

Action: Consider increasing the timeout TSI configuration parameter (page

149) and try again.

DLI_READ_ERR_TOO_MANY_ERRORS This session has a large number of I/O

errors that exceeded the maximum number of errors allowed.

Action: Consider increasing the maximum I/O errors DLI configuration

parameter (maxErrors, page 64). Review your operating environment.

DLI_READ_ERR_TSI_BUFF_MISSING TSI failed to return a read buffer to DLI.

Severe internal error.

Action: Save the DLI and TSI log files and notify Protogate.

DLI_READ_ERR_UNBIND The connection supporting this session between

Freeway and the client application has been closed. The system has per-
126 DC 900-1385E

4: DLI Functions
formed “Unbind” processing. The connection was closed either because of

a “Force Unbind” received from the peer entity (Freeway or client), or

because of a failure with the I/O connection.

Action: Cancel all outstanding read/write requests and free the buffers.

Close the session. After a successful close, another session connection can

be attempted. Examine the message logs on the peer system (if the error

occurred in the client application, examine the Freeway log).

For additional error codes, refer to Appendix B.
DC 900-1385E 127

Freeway Data Link Interface Reference Guide
4.13 dlSyncSelect

The dlSyncSelect function queries a set of session IDs for a read data available condition.

This feature is available only for clients in a Freeway server environment (it is not sup-

ported in an embedded ICP environment) using blocking I/O. The client application

can query a session(s) for read data, and if available, perform the read operation with-

out blocking. This operation does not block; it interrogates the system for read data

available and immediately returns this status to the user.

The user builds a session ID array (sessIDArray) containing the list of sessions for which

read availability is requested. The number of sessions can be from 1 to the defined max-

imum number of sessions (see the DLI maxSess parameter on page 63). Session IDs

must begin at position 0 in the array (first position in the array), and be packed (no

non-used positions). The contents of this array are not modified by the interface. The

number of session IDs packed in this array is passed in iNbrSessID. In addition, a result

array is passed which will contain the returned read availability status of the sessions in

the corresponding array position of the session ID array. A session’s availability status

is either TRUE (data available) or FALSE (data not available).

Synopsis

int dlSyncSelect (
int iNbrSessID, /* # of session ids in sessIDArray */
int sessIDArray[], /* packed array of session ids for */

 /* requested read data status */
int readStatArray[]); /* array containing read data status */

/* for sessions in sessIDArray */

Parameters

int iNbrSessID The number of session IDs to be queried in the following session ID

array. If a value of 0 is passed (no session IDs to be queried), the function returns

zero (0).
128 DC 900-1385E

4: DLI Functions
int sessIDArray[] An array containing the session IDs whose read availability status is

requested. The session IDs are those returned from dlOpen. Session ids must begin

at position 0 (the first array element), and be packed (no non-used positions).

These values are not modified by the call.

int readStatArray[] An array passed to the interface for the returned TRUE/FALSE read

availability status for sessions in the corresponding positions of the session ID

array (sessIDArray). This array is modified by the interface. If an error occurs in

the call, the contents of this array are indeterminable; all elements should be

ignored.

Returns

If the dlSyncSelect function completes successfully, it returns the number of sessions in

the session ID array that have read data available (if 3 of 7 sessions in the array have read

data available, a value of 3 is returned). If no sessions have data available, 0 is returned.

Successful completion also returns the readStatArray with a TRUE/FALSE value in each

position corresponding to the session ID in the session ID array. TRUE means that ses-

sion has data available; FALSE means data is not currently available. If the function

returns a 0 or ERROR, values in this array are indeterminable; they should be ignored.

If this function is successful, it modifies iNbrSessID positions in this array.

For any error condition, the dlSyncSelect return code is ERROR, and dlerrno contains

one of the following error codes (listed alphabetically):

DLI_SYNCSELECT_ERR_INVALID_ARRAY An input array (sessIDArray or

readStatArray) is NULL.

Action: User must supply a valid array.
DC 900-1385E 129

Freeway Data Link Interface Reference Guide
DLI_SYNCSELECT_ERR_INVALID_SESSID The session ID(s) in the session ID

array (sessIDArray) is less than zero, or greater than the maximum allowed

sessions defined in the DLI configuration file.

Action: Review the session IDs in the call. These session IDs are those

returned from a successful dlOpen request.

DLI_SYNCSELECT_ERR_INVALID_STATE A session(s) in the session ID array

(sessIDArray) is not in the proper state to accept this request. Sessions must

be “opened” (in the “ready” state) before this operation can be performed.

This error is returned to the embedded application if the dlSyncSelect oper-

ation is attempted.

Action: Ensure all sessions in the session ID array have successfully opened.

DLI_SYNCSELECT_ERR_NEVER_INIT DLI has not been initialized. The appli-

cation must perform DLI initialization using dlInit before requesting this

service.

Action: Review your application and ensure the previous dlInit was success-

ful.

DLI_SYNCSELECT_ERR_NOT_SYNC A session(s) in the session ID array

(sessIDArray) is not defined as “sync”. This operation is not valid on sessions

defined as “async.”

Action: Review your DLI configuration file for correct session definition.

DLI_SYNCSELECT_ERR_TSI_ERROR An error occurred in TSI while attempt-

ing this operation.

Action: Review the TSI log file for the specific error, and take corrective

action.
130 DC 900-1385E

4: DLI Functions
Example

One session is open, dlOpen returned with a session ID of 4.

sessIDArray[0] = 4;
if ((nbrReads = dlSyncSelect(1, sessIDArray, readStatArray)) == ERROR)
{

error processing
}
if (nbrReads) /* with only one read in array, we need not look further */
{

if (readStatArray[0] == TRUE)
{

/* process read available for session sessIDArray[0] – dlRead */
}

}

With multiple sessions in array, go through readStatArray iNbrSessID times or until

nbrReads of TRUE are found.
DC 900-1385E 131

Freeway Data Link Interface Reference Guide
4.14 dlTerm

The dlTerm function closes all sessions and frees all DLI-related system resources.

Under normal conditions your application should call dlClose to close all active sessions

before calling dlTerm and exiting to the operating system. You should also make an

effort to call dlTerm when your application ends abnormally.

The dlTerm function can be called at any time during the life of your application. To use

DLI again, you must call dlInit to re-establish the DLI operating environment. It is not

recommended that you call this function too often in your application because of the

timing cost associated with it. However, in some applications this capability might be

essential if your system and network resources are scarce and your application is not

time-critical. If you call this function while there are active sessions, DLI issues a forced

dlClose on the active sessions before it brings down its service structure. Issuing dlTerm

while active sessions exist should be the last option.

Note
The successful writing of client trace files to the client file system

requires successful completion of the dlTerm function. When the

client application abnormally terminates, DLI trace files are not

written.

Synopsis

int dlTerm (void);

Parameters

None

Returns

If this function completes successfully, it returns OK. Otherwise it returns ERROR, and

dlerrno contains one of the following error codes (listed alphabetically):
132 DC 900-1385E

4: DLI Functions
DLI_TERM_ERR_ACT_REM_FAILED DLI failed to terminate its internal active

session queue.

Action: Severe error; terminate your application and try again.

DLI_TERM_ERR_ACT_TERM_FAILED DLI failed to terminate its internal

active session queue.

Action: Severe error; terminate your application and try again.

DLI_TERM_ERR_CLOSE_FAILED DLI failed to close an active session.

Action: Review the DLI session log, terminate your application and try

again.

DLI_TERM_ERR_LOG_END_FAILED DLI failed to terminate its internal log-

ging and tracing facility.

Action: Check your logging and tracing related parameters in the currently

used DLI configuration file.

DLI_TERM_ERR_NEVER_INIT DLI was never initialized before.

Action: Review your application and try again.

DLI_TERM_ERR_RES_FREE_FAILED DLI failed to free session-related

resources.

Action: Review the DLI session log, terminate your application and try

again.

DLI_TERM_ERR_TSI_TERM_FAILED DLI failed to terminate TSI services.

Action: Review your TSI configuration services and TSI error log.

For additional error codes, refer to Appendix B.
DC 900-1385E 133

Freeway Data Link Interface Reference Guide
4.15 dlWrite

Typically the dlWrite function is used in Normal operation to interact with Freeway only

for the purpose of sending data to the remote data link application; in this case the

optional arguments parameter is set to NULL, and the protocol-specific writeType DLI

configuration parameter (page 66) specifies the type of data. However, if you need to

request status or configuration information from Freeway or send protocol-specific

data, your application must issue a Raw dlWrite by providing the optional arguments

specifying the protocol specifics.

The following points apply to sending dlWrite requests to Freeway:

• In Raw operation, your application must not specify the Freeway server open and

close session commands.

• In Normal operation, in addition to the Freeway server open and close session

commands, your application must not specify any command that would affect

the operational status of your data link connection, such as a stop link command.

• Whether your application is configured for Normal or Raw operation, it can use

the DLI_OPT_ARGS structure to specify a Raw dlWrite to the Freeway server.

• The protocol-specific localAck DLI configuration parameter (page 64), specifies

whether the DLI manages the local data acknowledgment internally for every

dlWrite of WAN data.

Note
When using non-blocking I/O, a read request must be queued to

receive the local acknowledgment. The read buffer associated with

this request remains queued.
134 DC 900-1385E

4: DLI Functions
Synopsis

int dlWrite (
int iSessionID, /* Session ID returned from dlOpen */
char *pBuf, /* Source buffer for transfer */
int iBufLen, /* Number of bytes to transfer */
int iWritePriority, /* Normal or expediting queueing */
DLI_OPT_ARGS *pOptArgs); /* Optional arguments */

Parameters

int iSessionID This session ID uniquely identifies an active session serviced by DLI. This

ID is returned from a dlOpen or dlListen function call.

char *pBuf The address of a buffer whose contents are sent to Freeway or a remote data

link application. The buffer can be allocated using the dlBufAlloc function or by a

similar C function. However, if the buffer is allocated by a function other than

dlBufAlloc, your application must provide sufficient header space for the DLI to

store its internal information related to this buffer (usOverhead field on page 79).

This field must not be NULL. If the session is using non-blocking I/O, your appli-

cation must not reuse this buffer until the dlWrite request is complete. See

Section 2.4 on page 40 for buffer management information.

int iBufLen The number of bytes to be sent by DLI. This value must not be larger than

the maximum buffer size allowed by DLI. After calling dlOpen, call dlPoll using the

DLI_POLL_GET_SESS_STATUS option to obtain the maximum application data

buffer size allowed by the DLI (usMaxSessBufSize field of the DLI_SESS_STAT

structure, page 82). In Raw operation, this field can be zero if pOptArgs is used (for

example, report requests that do not include data to send).

int iWritePriority The priority of the write operation which applies only to non-block-

ing I/O (the value does not matter for blocking I/O). Your application can use this

field to expedite a request to the Freeway server or to the remote data link appli-

cation. The default type is a normal write operation. Valid types are:
DC 900-1385E 135

Freeway Data Link Interface Reference Guide
DLI_WRITE_EXPEDITE If this type is used, your current request is inserted

before any output requests whose actual output operation has not started

and after any output request that has already started or that was issued with

DLI_WRITE_EXPEDITE. This exercises the priority queue concept.

DLI_WRITE_NORMAL If this type is used, your output request is added to the

end of the session internal output queue. This exercises the FIFO concept of

queue.

DLI_OPT_ARGS *pOptArgs A pointer to a structure that contains the Freeway and ICP

protocol-specific parameters required for Raw I/O operations. DLI uses the infor-

mation provided in the pOptArgs structure to fill the header areas of the data buff-

ers. See Section 4.1.3.3 on page 83 for information on the optional arguments

structure.

Returns

If successful, the dlWrite function returns the number of bytes written, with one excep-

tion. If the AsyncIO and AlwaysQIO parameters are both set to “yes” in the DLI config-

uration file for a given session, dlWrite returns zero (0) if DLI successfully queues the

I/O request to its internal I/O queue. If dlWrite is unsuccessful, the return code is

ERROR; and dlerrno contains one of the following error codes (listed alphabetically):

DLI_EWOULDBLOCK The session was configured for non-blocking I/O, and no

data could be written immediately.

Action: Use dlPoll to check if your request completed. You might wish to

program your application to be awakened by your own IOCH that you pro-

vided when you called the dlInit function or this function. Refer to

Section 2.2 on page 32 for information on non-blocking I/O.
136 DC 900-1385E

4: DLI Functions
DLI_WRIT_ERR_BUFA_FAILED The DLI could not allocate a buffer for the

local acknowledgment (blocking I/O only).

Action: Check that the application is releasing buffers properly. Consider

increasing the maxBuffers TSI configuration parameter (page 148).

DLI_WRIT_ERR_ILLEGAL_ICP_PROT_CMD Your application attempted to

send a restricted command to the ICP or the protocol service on the ICP.

Action: Correct your request or use DLI in Raw operation to satisfy your

request.

DLI_WRIT_ERR_ILLEGAL_SERVER_CMD Your application attempted to send

a restricted command to Freeway.

Action: Correct your request or use TSI directly (bypass DLI completely) to

satisfy your request.

DLI_WRIT_ERR_INTERNAL_DLI_ERROR The DLI output queue is corrupted

or an invalid status was encountered (blocking I/O only).

Action: Restart the application and notify Protogate.

DLI_WRIT_ERR_INVALID_BUF Your application called this function with a

NULL pBuf pointer.

Action: Correct your application and try again.

DLI_WRIT_ERR_INVALID_LENGTH The buffer length (iBufLen) must be

greater than zero (0) and not greater than the maximum buffer length

allowed by DLI. In Raw operation if the pOptArgs parameter is provided,

iBufLen can be zero; otherwise, it must be greater than zero.

Action: Call dlPoll using the DLI_POLL_GET_SESS_STATUS option to

obtain the maximum application data buffer size allowed by the DLI

(usMaxSessBufSize field of the DLI_SESS_STAT structure, page 82). Correct

your application and try again.
DC 900-1385E 137

Freeway Data Link Interface Reference Guide
DLI_WRIT_ERR_INVALID_SESSID Your session ID is no longer valid.

Action: Review your log, terminate your application and try again.

DLI_WRIT_ERR_INVALID_STATE This session is not in a proper state to accept

a write request.

Action: Review your application and try again.

DLI_WRIT_ERR_INVALID_WRITE_TYPE dlWrite allows either

DLI_WRITE_NORMAL or DLI_WRITE_EXP.

Action: Review your application and try again.

DLI_WRIT_ERR_IO_FATAL The DLI encountered a fatal I/O error. The applica-

tion can assume the connection has been terminated.

Action: Cancel all outstanding read/write requests and free the buffers.

Close the session. After the session is closed, another session connection can

be attempted. Review the TSI and DLI log files for specific information

about the error.

DLI_WRIT_ERR_LOCAL_ACK_ERROR A local acknowledgment for a write was

not received from the ICP.

Action: Review the operating environment.

DLI_WRIT_ERR_NEVER_INIT DLI was never initialized. Your application must

initialize DLI (dlInit) before it can use it.

Action: Review your application.

DLI_WRIT_ERR_QADD_FAILED DLI failed to add your write request to its

internal I/O queues for this session.

Action: Severe error; terminate your application and try again.
138 DC 900-1385E

4: DLI Functions
DLI_WRIT_ERR_QFULL DLI cannot accept more write requests because its out-

put queue is full.

Action: Your application must remove complete or timed-out write

requests before it can request more writes. Review your application and

handle this error accordingly.

DLI_WRIT_ERR_TIMEOUT Your current write request is timed out.

Action: Consider increasing the timeout TSI configuration parameter (page

149) and try again.

DLI_WRIT_ERR_TOO_MANY_ERRORS This session has a large number of I/O

errors that exceeded the maximum number of errors allowed.

Action: Consider increasing the maximum I/O errors DLI configuration

parameter (maxErrors, page 64). Review your operating environment.

DLI_WRIT_ERR_UNBIND The connection supporting this session between

Freeway and the client application has been closed. The system has per-

formed “Unbind” processing. The connection was closed either because of

a “Force Unbind” received from the peer entity (Freeway or client), or

because of a failure with the I/O connection.

Action: Cancel all outstanding read/write requests and free the buffers.

Close the session. After a successful close, another session connection can

be attempted. Examine the message logs on the peer system (if the error

occurred in the client application, examine the Freeway log).

DLI_WRIT_ERR_WRITE_ERROR The ICP could not send the data to the remote

system.

Action: The global variable iICPStatus and the optional arguments iICPStatus

field contain the ICP error number.

For additional error codes, refer to Appendix B.
DC 900-1385E 139

Freeway Data Link Interface Reference Guide
140 DC 900-1385E

Chapter

7/1/98 Leslie:
At the last
minute, I
noticed that
this chapter
refers to
example FMP
programs tha
I believe no
longer exist
with the FMP
product.
There’s not
time to mess
with this now
2.8 RUSH
release.
5 Tutorial Example Programs
The example programs in this chapter, along with the supporting DLI and TSI text con-

figuration files, will help you get started writing your client application using the DLI

functions described in Chapter 4.

The example in Section 5.1 uses blocking I/O, and the example in Section 5.2 uses non-

blocking I/O. Both programs use Normal operation (described in Section 2.3.1 on

page 35) and are based on the Freeway environment shown in Figure 5–1.

The code segment in Section 5.3 on page 174 illustrates Raw operation (described in

Section 2.3.2 on page 38) to request and receive a protocol-specific report.

The example program in Section 5.4 on page 179 illustrates the dlControl function

(described in Section 4.5 on page 95) to reset and download protocol software to the

ICP.

The example program in Section 5.5 on page 182 illustrates how to use the DLI

usMaxSessBufSize field obtained by calling dlPoll with the

DLI_POLL_GET_SESS_STATUS option (described in Section 4.10 on page 114 and

Section 4.1.3.2 on page 80).

Note
The preliminary versions of this guide used the term “synchro-

nous” for blocking I/O and “asynchronous” for non-blocking I/O.

Some parameter and file names reflect the previous terminology.

t

;
DC 900-1385E 141

Freeway Data Link Interface Reference Guide

Configuration plays a very important role in both DLI and TSI services, and you should

understand the details of Chapter 3 before you begin writing your application. The

example programs in Section 5.1 and Section 5.2 demonstrate the following:

1. Initialize DLI services (dlInit).

2. Open the DLI session. This example opens two sessions, one for FMP link 0 and

the other for FMP link 1 (dlOpen).

3. Utilize DLI buffer management services (dlBufAlloc and dlBufFree).

4. Read and write data. This example writes your input from the keyboard to link 0,

then reads the loopback data from link 1 (dlRead and dlWrite).

5. Close the DLI session (dlClose).

6. Terminate the DLI services (dlTerm).

In addition, the non-blocking I/O example also demonstrates how to:

Figure 5–1: Environment for Example Programs

DLI
Client

Application

Freeway

Msg

V
M
E

A
T

Link0

TCP/IP

client1
192.52.107.99

freeway2
192.52.107.100

TSI TSI
Mux

Ethernet

TCP/IP
Socket Interface

Client

Link1

Linkn

…

ICP0

Protogate
Loopback

Cable
142 DC 900-1385E

5: Tutorial Example Programs
1. Use your I/O completion handler (IOCH) to receive notification of completed

DLI requests.

2. Poll for the status of an outstanding I/O request (dlPoll).
DC 900-1385E 143

Freeway Data Link Interface Reference Guide
5.1 Example Program using Blocking I/O

For the example program1 using blocking I/O, there are three code examples provided:

5.1.1 DLI Configuration for Blocking I/O and Normal Operation

The DLI text configuration file defines the sessions your application will use. The

fmpssdcfg file shown in Figure 5–2 is used for the blocking I/O example program. You

need to specify only those parameters whose values are different from the defaults.

The “main” section starting at the top of Figure 5–2 specifies the DLI configuration for

non-session-specific operations. Refer to Table 3–1 on page 63 for an explanation of all

parameters.

The “main” section is followed by two session-definition sections for Link00 and Link01

Link00 defines the characteristics of link 0 on ICP 0, and Link01 defines the characteris-

tics of link 1 on ICP 0. Refer to Table 3–2 on page 64 for an explanation of each param-

eter. If you need to change the default values of any of the protocol-specific ICP link

configuration parameters, they should be added to the two session-definition sections

at line 19 and line 34 of Figure 5–2.

After your DLI text configuration file is complete, run the dlicfg preprocessor program

to create the fmpssdcfg.bin file used by dlInit. Chapter 3 gives an overview of the DLI con-

figuration process. Refer to your particular programmer’s guide for the protocol specif-

ics.

fmpssdcfg DLI text configuration file input to the dlicfg preprocessor
program to create the fmpssdcfg.bin file

fmpsstcfg TSI text configuration file input to the tsicfg preprocessor
program to create the fmpsstcfg.bin file

fmpssp.c Example application program using blocking I/O

1. File name conventions are described under “Document Conventions” in the Preface.
144 DC 900-1385E

5: Tutorial Example Programs
Note
The protocol and mode DLI parameters are protocol specific. Refer

to your protocol programmer’s guide for valid values. This exam-

ple is written for the FMP data link protocol using the Shared

Manager ICP access mode. Setting protocol to “FMP” (rather than

“raw”) causes the session to be opened for Normal operation.

000001:main // DLI “main” section: //
000002:{
000003: TSICfgName = “fmpsstcfg.bin”; // TSI binary configuration file //
000004: LogLev = 7;
000005:}
000006:
000007://---//
000008:// Definition for a FMP Link //
000009://---//
000010:Link00 // First session name: //
000011:{
000012: Protocol = “FMP”; // FMP session type //
000013: LogLev = 7;
000014: Transport = “Client”; // Transport connection name //
000015: // defined in TSICfgName file //
000016: Mode = “shrmgr”; // Mode of operation for ICP //
000017: BoardNo = 0; // ICP board number -- based 0 //
000018: PortNo = 0; // link number. //
000019:}
000020:
000021:
000022://---//
000023:// Definition for a FMP Link //
000024://---//
000025:Link01 // Second session name: //
000026:{
000027: Protocol = “FMP”; // FMP session type //
000028: LogLev = 7;
000029: Transport = “Client”; // Transport connection name //
000030: // defined in TSICfgName file //
000031: Mode = “shrmgr”; // Mode of operation for ICP //
000032: BoardNo = 0; // ICP board number -- based 0 //
000033: PortNo = 1; // link number. //
000034:}
000035:

Figure 5–2: DLI Text Configuration File for Blocking I/O (fmpssdcfg)
DC 900-1385E 145

Freeway Data Link Interface Reference Guide

Techpubs: Be
sure to add to
this table any
TSI
parameters
that are
discussed
elsewhere in
this documen
(eg timeout
param in
Section 2.5.2.
5.1.2 TSI Configuration for Blocking I/O

The TSI text configuration file defines the transport connections your application will

use. The fmpsstcfg file shown in Figure 5–3 is used for the blocking I/O example pro-

gram. You need to specify only those parameters whose values differ from the defaults.

The “main” section starting at the top of Figure 5–3 specifies the TSI configuration for

non-connection-specific operations. The “main” section is followed by one connec-

tion-definition section named Client. Only one TSI connection definition is needed

since the same transport characteristics are used by both DLI sessions. Therefore, Client

is used as the value of the DLI transport parameter for both sessions previously defined

in Figure 5–2 on page 145.

Table 5–1 and Table 5–2 describe the TSI configuration parameters that are mentioned

elsewhere in this document or that are used in the blocking I/O example. Refer to the

Freeway Transport Subsystem Interface Reference Guide for a complete list of TSI config-

uration parameters.

After your TSI text configuration file is complete, run the tsicfg preprocessor program

to create the fmpsstcfg.bin file, which is referenced in the “main” section of the DLI text

configuration file (Figure 5–2 on page 145). Chapter 3 gives an overview of the config-

uration process. Refer to your particular programmer’s guide for the protocol

specifics.

t
146 DC 900-1385E

5: Tutorial Example Programs
000001:main // TSI “main” section: //
000002:{
000003: LogLev = 7;
000004: maxBuffers = 4096;
000005: maxBufsize = 1024;
000006: traceName = “syncTSI.trc”;
000007: traceSize = 64000;
000008: maxConns = 10;
000009:}
000010:
000011://---//
000012:// connection definition. //
000013://---//
000014:Client // First connection name: //
000015:{
000016: Transport = “tcp-socket”;
000017: logLev = 7;
000018: traceLev = 3;
000019: Server = “freeway2”;
000020: wellKnownPort = 0x2010;
000021:}
000022:

Figure 5–3: TSI Text Configuration File for Blocking I/O (fmpsstcfg)
DC 900-1385E 147

Freeway Data Link Interface Reference Guide
Table 5–1: TSI “main” Parameters

TSI
Parameter Default

Valid
Values Description

asyncIO “no” boolean Defines whether TSI uses blocking or non-blocking I/O.
The default is “no” (blocking I/O).

logLev 0 0–7 An integer value defining the level of logging the TSI per-
forms and stores in the file name defined by the logName
parameter. A higher level specifies more detailed logging; 0
specifies no logging.

logName “tsilog” string
(ð 80)

A string of characters defining the name (path) of the file
for storing the TSI logging information. If the path is not
included, the current directory is assumed.

maxBuffers 1024 256–4096 An integer value specifying the maximum number of buff-
ers to be allocated by the TSI during run time for the TSI
buffer pool. To prevent your application running out of
buffers, take care when you specify maxBuffers to consider
the number of TSI connections you need and the queue
sizes (MaxInQ and MaxOutQ described in the Freeway
Transport Subsystem Interface Reference Guide).

maxBufSize 1024 1–64000 An integer value specifying the maximum size of each
buffer in the TSI buffer pool. See Section 2.4 on page 40

maxConn 1024 1–1024 Defines the maximum number of connections that TSI has
to manage for your application. The example needs only
two connections but is configured for 10.

traceLev 0 0–31 An integer value defining the level of tracing (or the sum of
several levels) which the TSI performs. See also
Appendix D.

0 = no trace 1 = read only
2 = write only 4 = interrupt only
8 = application IOCH 16 = user’s data

traceName “tsitrace” string
(ð 80)

A string of characters defining the name (path) of the file
for storing the TSI tracing information. If the path is not
included, the current directory is assumed.

traceSize 0 512–
1048576

An integer value specifying the size of the internal trace
buffer. The default is zero (tracing is not performed). The
smallest allowable size is 512.
148 DC 900-1385E

5: Tutorial Example Programs
Table 5–2: TSI Connection-Related Parameters

TSI Parameter Default Valid Values Description

asyncIO “no” boolean Defines whether TSI uses blocking or non-blocking I/O.
The default asyncIO value is “no” (blocking I/O).

logLev 0 0–7 An integer value defining the level of logging the TSI per-
forms for this connection. A higher level specifies more
detailed logging, while 0 specifies no logging.

maxBufSize maxBufSize
defined in
TSI “main”

1 to
maxBufSize
defined in
“main”

An integer value specifying the maximum data size of the
TSI buffers for this connection only. The value must be
less than or equal to the “main” entry. The default value
is the size specified in the “main” section.

Server none string
(ð 20)

Defines the name of the TCP/IP server with which the
client application communicates. The example program
connects to the freeway2 server. The Server name can
also be defined in Internet address format. For example,
you can define Server = “192.52.107.100”. TSI under-
stands both methods.

timeout 60 0–63999 An integer value specifying the number of seconds the
TSI uses to time activities within this connection.

traceLev 0 0–31 An integer value defining the level of tracing (or the sum
of several levels) which the TSI performs for this connec-
tion. See also Appendix D.

0 = no trace 1 = read only
2 = write only 4 = interrupt only
8 = application IOCH 16 = user’s data

transport no default
(must be
specified)

string
(ð 20)

A string of characters specifying the transport interface to
be used by this connection. There are no defaults. Sup-
ported transport interfaces include “tcp-socket” for
TCP/IP sockets and “shared-memory” for VxWorks
shared memory (server-resident applications).

wellKnownPort 0x2010 5001,
32676

Defines the TCP/IP well-known port where the MsgMux
is listening for a connection. The example uses the
default value that is the hex value of 2010.
DC 900-1385E 149

Freeway Data Link Interface Reference Guide
5.1.3 Blocking I/O Example Code Listing

In this section you should refer to Figure 5–4 on page 154 through page 156 as the fol-

lowing steps are explained:

Step 1: Initialize the DLI Services (dlInit)

To begin using DLI, you must first call dlInit to initialize and set up the DLI operating

environment. Line 33 on page 154 illustrates dlInit for an application using blocking

I/O. The first parameter is the name of the binary configuration file (fmpssdcfg.bin) to

be used by DLI to start up its services. The second and third parameters are not used for

blocking I/O. The dlInit function returns when it completes because it does not involve

any I/O operations.

Step 2: Open a Session with the Remote Application (dlOpen)

To begin communications with the remote application, your application must first call

dlOpen. Line 39 and line 47 on page 155 open two sessions with Link00 and Link01 for

Normal operation. Link00 is configured to be link 0 of ICP 0 of the Freeway server

named freeway2. Link01 is configured to be link 1 of ICP 0 of freeway2. If both open

requests return successfully, the example begins immediately to send and receive data

on the WAN. The second parameter is not used for blocking I/O and therefore is NULL.

Note
Because the cfgLink and enable DLI configuration parameters

(page 64) both default to “yes” and were not changed in the DLI

configuration file (Figure 5–2 on page 145), the dlOpen requests

also configure and enable the ICP links. In this example, the

default protocol-specific link options are used since there were no

link parameters listed in the DLI configuration file on page 145.

Step 3: Allocate a Buffer for Writing (dlBufAlloc)

Line 56 on page 155 allocates one fixed-size buffer for the example program to use for
150 DC 900-1385E

5: Tutorial Example Programs
the dlWrite request. Your application must always provide a buffer for write requests, in

contrast to dlRead requests which have the option of letting the DLI provide the read

buffer.

Step 4: Send Data using Normal Operation (dlWrite)

After a session has been opened and the link enabled, the client application can

exchange data with the remote application. A dlWrite without the optional arguments

parameter (Normal operation) requests the ICP to send a single data packet to the

remote application. The type of data sent depends on the writeType DLI configuration

parameter (page 66) which defaults to “normal” for this example. The valid writeType

values are protocol specific.

Line 75 on page 155 uses dlWrite to write your keyboard input (from line 65) to the

WAN. The first parameter is the session ID returned by the dlOpen call. The second

parameter (which cannot be NULL) is a pointer to the buffer allocated in Step 3 which

contains the data to be sent to Link00. The third parameter is the number of bytes (data

only) to be written to the ICP link. The fourth parameter (either

DLI_WRITE_NORMAL or DLI_WRITE_EXPEDITE) indicates the write priority of the

transmission and applies only to non-blocking I/O (the value does not matter for

blocking I/O). The last parameter is a pointer to the optional arguments structure

which is NULL for Normal operation.

The handling of the localAck DLI configuration parameter (page 64) is protocol specific.

For every block of data transmitted to the WAN in this FMP example, the client appli-

cation receives an acknowledgment message from the ICP. This example uses the

default value of the localAck DLI configuration parameter (page 64), which is “yes,”

meaning that the DLI manages the local acknowledgment internally for every dlWrite of

WAN data. In this mode, the application’s write request is blocked until the local

acknowledgment is received.
DC 900-1385E 151

Freeway Data Link Interface Reference Guide
Note
If your application needs to see this local acknowledgment mes-

sage, you must first set the localAck parameter to “no” in the DLI

configuration file. Your application must then make sure that it

reads the local acknowledgment message using a Raw dlRead

request (with the optional arguments parameter).

The dlWrite function returns the number of bytes written (a positive number). If the

request fails to complete, the return code is ERROR (–1), and dlerrno provides addi-

tional information.

Step 5: Receive Data using Normal Operation (dlRead)

Line 86 on page 156 shows the use of the dlRead function. The first and third parameters

are similar to the dlWrite function. The fourth parameter is the optional arguments

which is NULL for Normal operation. The second parameter is the address of the pointer

to the buffer to be read from the WAN. On line 85 on page 156 notice that, unlike

dlWrite, the pointer to the buffer can be NULL if you want DLI to provide its own buffer

for a read from the WAN.

The dlRead function returns the number of bytes read (a positive number). If the

request fails to complete, the return code is ERROR (–1), and dlerrno provides addi-

tional information.

Note
Line 96 on page 156 illustrates the FMP-specific received data

block. Packed data messages begin with a two-byte count, a two-

byte FMP sequence number, and an error byte for every data block

received, followed by the data portion of the message buffer. The

two-byte count (iBytes) includes the sequence number, error byte,

and the size of the data in bytes; therefore the data portion begins

at pInBuf[5].
152 DC 900-1385E

5: Tutorial Example Programs
Step 6: Free Previously Allocated Buffers (dlBufFree)

Line 98 and line 99 on page 156 free the buffer allocated for the dlWrite request using

dlBufAlloc, as well as the buffer that the DLI allocated for the dlRead request. Keep in

mind that your application does have the responsibility to free any DLI-allocated read

buffers.

Step 7: Close a Session (dlClose)

Lines 100 and 101 on page 156 close the two sessions by calling dlClose with a valid ses-

sion ID.

Step 8: Terminate DLI Services (dlTerm)

Line 102 on page 156 calls dlTerm to terminate the DLI services. Before calling dlTerm,

your application should make sure that all sessions are properly closed; otherwise, DLI

closes any active sessions with force mode. Your application can call dlInit after dlTerm

to re-establish DLI services while it is running. However, you should try to avoid bring-

ing the DLI services up and down since this is time consuming. If your system resources

are scarce, however, you might need this option.
DC 900-1385E 153

Freeway Data Link Interface Reference Guide
000001:
000002:
000003:#include <stdio.h>
000004:#include <stdlib.h>
000005:#include <string.h>
000006:
000007:#include “freeway.h”
000008:#include “dlidefs.h”
000009:#include “dliusr.h”
000010:#include “dlierr.h”
000011:#include “dliicp.h”
000012:#include “dliprot.h”
000013:
000014:
000015:typedef struct _GLOBAL_STRUCT
000016:{
000017: short iTimeToRun;
000018: time_t tStartTime;
000019: BOOLEAN tfNotified;
000020: BOOLEAN tfTerminated;
000021:} GLOBAL_STRUCT;
000022:
000023:GLOBAL_STRUCT myGlobalStruct;
000024:
000025:int
000026:main ()
000027:
000028:{
000029: int iSessID0, iSessID1;
000030: int iOutBufLen, iBytes;
000031: PCHAR pInBuf, pOutBuf, s;
000032:
000033: if (dlInit (“fmpssdcfg.bin”, NULL, NULL) == ERROR)
000034: {
000035: fprintf (stdout, “ERROR: dlInit failed %d\n”, dlerrno);
000036: return ERROR;
000037: }
000038:

Figure 5–4: FMP Blocking I/O Example (fmpssp.c)
154 DC 900-1385E

5: Tutorial Example Programs
000039: if ((iSessID0 = dlOpen (“Link00”, NULL)) == ERROR)
000040: {
000041: fprintf (stdout, “ERROR: dlOpen failed (Link00) %d\n”,
000042: dlerrno);
000043: dlTerm ();
000044: return ERROR;
000045: }
000046:
000047: if ((iSessID1 = dlOpen (“Link01”, NULL)) == ERROR)
000048: {
000049: fprintf (stdout, “ERROR: dlOpen failed (Link01) %d\n”,
000050: dlerrno);
000051: dlClose (iSessID0, DLI_CLOSE_NORMAL);
000052: dlTerm ();
000053: return ERROR;
000054: }
000055:
000056: if ((pOutBuf = dlBufAlloc (1)) == NULL)
000057: {
000058: fprintf (stdout, “ERROR: No buffers %d\n”, dlerrno);
000059: dlClose (iSessID0, DLI_CLOSE_NORMAL);
000060: dlClose (iSessID1, DLI_CLOSE_NORMAL);
000061: dlTerm ();
000062: return ERROR;
000063: }
000064:
000065: fprintf (stdout, “Enter string to be sent: “);
000066: gets (pOutBuf);
000067: for (s = pOutBuf; *s; ++s)
000068: if (*s == '\n')
000069: {
000070: *s = '\0';
000071: break;
000072: }
000073:
000074: iOutBufLen = strlen (pOutBuf);
000075: if ((iBytes = dlWrite (iSessID0, pOutBuf, iOutBufLen, DLI_WRITE_NORMAL,
000076: (PDLI_OPT_ARGS)NULL)) == ERROR)
000077: {
000078: fprintf (stdout, “ERROR: dlWrite failed %d\n”, dlerrno);
000079: dlClose (iSessID0, DLI_CLOSE_NORMAL);
000080: dlClose (iSessID1, DLI_CLOSE_NORMAL);
000081: dlTerm ();
000082: return ERROR;
000083: }
000084:

Figure 5–4: FMP Blocking I/O Example (fmpssp.c) (Cont’d)
DC 900-1385E 155

Freeway Data Link Interface Reference Guide
000085: pInBuf = NULL;
000086: if ((iBytes = dlRead (iSessID1, &pInBuf, 256, (PDLI_OPT_ARGS)NULL))
000087: == ERROR)
000088: {
000089: fprintf (stdout, “ERROR: dlRead failed %d\n”, dlerrno);
000090: dlClose (iSessID0, DLI_CLOSE_NORMAL);
000091: dlClose (iSessID1, DLI_CLOSE_NORMAL);
000092: dlTerm ();
000093: return ERROR;
000094: }
000095:
000096: fprintf (stdout, “%d bytes received: \”%s\”\n”, iBytes-5, &pInBuf[5]);
000097:
000098: dlBufFree (pOutBuf);
000099: dlBufFree (pInBuf);
000100: dlClose (iSessID0, DLI_CLOSE_NORMAL);
000101: dlClose (iSessID1, DLI_CLOSE_NORMAL);
000102: dlTerm ();
000103: exit(0);
000104:}

Figure 5–4: FMP Blocking I/O Example (fmpssp.c) (Cont’d)
156 DC 900-1385E

5: Tutorial Example Programs
5.2 Example Program using Non-Blocking I/O

For the example program1 using non-blocking I/O, there are three code examples pro-

vided:

5.2.1 DLI Configuration for Non-Blocking I/O and Normal Operation

The DLI text configuration file defines the sessions your application will use. The

fmpasdcfg file shown in Figure 5–5 is used for the non-blocking I/O example program.

You need to specify only those parameters whose values differ from the defaults.

The “main” section starting at the top of Figure 5–5 specifies the DLI configuration for

non-session-specific operations. Refer to Table 3–1 on page 63 for an explanation of all

parameters.

The “main” section is followed by two session-definition sections for Link00 and Link01

Link00 defines the characteristics of link 0 on ICP 0, and Link01 defines the characteris-

tics of link 1 on ICP 0. Refer to Table 3–2 on page 64 for an explanation of each param-

eter. If you need to change the default values of any of the protocol-specific ICP link

configuration parameters, they should be added to the two session-definition sections

at line 18 and line 32 of Figure 5–5.

After your DLI text configuration file is complete, run the dlicfg preprocessor program

to create the fmpasdcfg.bin file used by dlInit. Chapter 3 gives an overview of the DLI

configuration process. Refer to your particular programmer’s guide for the protocol

specifics.

1. File name conventions are described under “Document Conventions” in the Preface.

fmpasdcfg DLI text configuration file input to the dlicfg preprocessor
program to create the fmpasdcfg.bin file

fmpastcfg TSI text configuration file input to the tsicfg preprocessor
program to create the fmpastcfg.bin file

fmpasp.c Example application program using non-blocking I/O
DC 900-1385E 157

Freeway Data Link Interface Reference Guide
Note
The protocol and mode DLI parameters are protocol specific. Refer

to your protocol programmer’s guide for valid values. This exam-

ple is written for the FMP data link protocol using the Shared

Manager ICP access mode. Setting protocol to “FMP” (rather than

“raw”) causes the session to be opened for Normal operation.

000001:main // DLI “main” section: //
000002:{
000003: TSICfgName = “fmpastcfg.bin”; // TSI configuration file name //
000004:}
000005:
000006://---//
000007:// Definition for a FMP Link //
000008://---//
000009:Link00 // First session name: //
000010:{
000011: Protocol = “FMP”; // FMP session type //
000012: Transport = “Client”; // Transport connection name //
000013: // defined in TSICfgName file //
000014: Mode = “shrmgr”; // Mode of operation for ICP //
000015: BoardNo = 0; // ICP board number -- based 0 //
000016: PortNo = 0; // link number. //
000017: AsyncIO = “Yes”; // non-blocking I/O. //
000018:}
000019:
000020://---//
000021:// Definition for a FMP Link //
000022://---//
000023:Link01 // Second session name: //
000024:{
000025: Protocol = “FMP”; // FMP session type //
000026: Transport = “Client”; // Transport connection name //
000027: // defined in TSICfgName file //
000028: Mode = “shrmgr”; // Mode of operation for ICP //
000029: BoardNo = 0; // ICP board number -- based 0 //
000030: PortNo = 1; // link number. //
000031: AsyncIO = “Yes”; // non-blocking I/O. //
000032:}
000033:

Figure 5–5: DLI Text Configuration File for Non-Blocking I/O (fmpasdcfg)
158 DC 900-1385E

5: Tutorial Example Programs
5.2.2 TSI Configuration for Non-Blocking I/O

The TSI text configuration file defines the transport connections your application will

use. The fmpastcfg file shown in Figure 5–6 is used for the non-blocking I/O example

program. You need to specify only those parameters whose values differ from the

defaults.

The “main” section starting at the top of Figure 5–6 specifies the TSI configuration for

non-connection-specific operations. The “main” section is followed by one connec-

tion-definition section named Client. Only one TSI connection definition is needed

since the same transport characteristics are used by both DLI sessions. Therefore, Client

is used as the value of the DLI transport parameter for both sessions previously defined

in Figure 5–5 on page 158.

Refer back to Table 5–1 on page 148 and Table 5–2 on page 149 which describe the TSI

configuration parameters that are mentioned elsewhere in this document or that are

used in the non-blocking I/O example. Refer to the Freeway Transport Subsystem Inter-

face Reference Guide for a complete list of TSI configuration parameters.

After your TSI text configuration file is complete, run the tsicfg preprocessor program

to create the fmpastcfg.bin file used in the “main” section of the DLI configuration file

(Figure 5–5 on page 158). Chapter 3 gives an overview of the configuration process.

Refer to your particular programmer’s guide for the protocol specifics.
DC 900-1385E 159

Freeway Data Link Interface Reference Guide
000001:main // TSI “main” section: //
000002:{
000003: LogLev = 7;
000004: maxBuffers = 4096;
000005: maxBufsize = 1024;
000006: traceName = “asyncTSI.trc”;
000007: traceSize = 64000;
000008: maxConns = 10;
000009: asyncIO = “yes”; // non-blocking I/O //
000010:}
000011:
000012://---//
000013:// connection definition. //
000014://---//
000015:Client // First connection name: //
000016:{
000017: Transport = “tcp-socket”;
000018: asyncIO = “yes”; // non-blocking I/O //
000019: logLev = 7;
000020: traceLev = 3;
000021: Server = “freeway2”;
000022: wellKnownPort = 0x2010;
000023:}
000024:

Figure 5–6: TSI Text Configuration File for Non-Blocking I/O (fmpastcfg)
160 DC 900-1385E

5: Tutorial Example Programs
5.2.3 Non-Blocking I/O Example Code Listing

In this section you should refer to Figure 5–7 on page 167 through page 173 as each of

the following steps is explained:

Note
This example uses two I/O completion handlers. The IOCH

defined by dlInit is called for any DLI-related I/O condition for any

session managed by the DLI. The IOCH defined by dlOpen handles

I/O completions for a specific session.

Step 1: Initialize the DLI Services (dlInit)

To begin using DLI, you must first call dlInit to initialize and set up the DLI operating

environment. Even though dlInit is optional, it is good practice to call it before issuing

any other DLI request. The dlInit function returns immediately because it does not

involve any I/O operations.

Line 111 on page 169 shows how dlInit is used for an application using non-blocking

I/O. The first parameter is the name of the DLI binary configuration file (fmpasdcfg.bin)

used to start up DLI services. The second parameter is the address of a pointer that your

application wishes DLI to return as the first parameter in your I/O completion handler

(it is optional and should be NULL if not used). DLI does not manipulate the data area

pointed to by this pointer. The third parameter is your general-purpose application I/O

completion handler. This IOCH is called by DLI when any DLI-related I/O condition

occurs for any session managed by DLI. When this routine is called, it does not necessar-

ily mean that there is data for your application. In short, the second parameter of dlInit

becomes the first parameter of the IOCH. Your application should do as little as possi-

ble inside the IOCH.

Step 2: Open a Session with the Remote Application (dlOpen)

To begin communications with the remote application, your application must first call
DC 900-1385E 161

Freeway Data Link Interface Reference Guide
dlOpen. Lines 117 and 125 on page 169 open two sessions with Link00 and Link01 for

Normal operation. Link00 is configured to be link 0 of ICP 0 of the Freeway server

named freeway2. Link01 is configured to be link 1 of ICP 0 of freeway2.

There are several differences in the dlOpen function for handling non-blocking I/O:

• The asyncIO DLI configuration parameter (lines 17 and 31 on page 158) and the

asyncIO TSI configuration parameter (lines 9 and 18 on page 160) must be set to

“yes.”

• The second dlOpen parameter is optional and is the session-specific I/O comple-

tion handler, which is called by the DLI when there is data for a particular session.

In this example, only one IOCH (fIOComplete) is provided for both sessions (line

60 on page 168). The IOCH has two parameters. The second parameter of dlInit

becomes the first parameter of the IOCH. The second parameter of the IOCH is

an integer where DLI stores the ID of the session that has either changed state or

has data for your application to process. Again, your application should not stay

too long inside the IOCH. If the IOCH is given as a parameter in the dlOpen call,

that IOCH is invoked when the session is either successfully established or has

failed.

• Even though dlOpen returns a valid session ID immediately, it might not complete

right away. In the example, after issuing two dlOpen calls for both the Link00 and

Link01 sessions, the application stays in a tight loop (line 133 on page 169) and

waits for the sessions to be established, as indicated by two flags which are set by

the IOCH when it is invoked by DLI (this occurs when the status of the session

changes from “not available” to either DLI_STATUS_READY or

DLI_STATUS_FAILED). However, your application could perform other tasks

while waiting.

• Inside the IOCH, line 71 on page 168 calls dlPoll with the

DLI_POLL_GET_SESS_STATUS option to determine the status of the session.
162 DC 900-1385E

5: Tutorial Example Programs
Note
Because the cfgLink and enable DLI configuration parameters

(page 64) both default to “yes” and were not changed in the DLI

configuration file (Figure 5–2 on page 145), the two dlOpen

requests also configure and enable the ICP links. In this example,

the default protocol-specific link options are used since there were

no link parameters listed in the DLI configuration file on page 158.

Step 3: Allocate a Buffer for Writing (dlBufAlloc)

Line 176 on page 170 allocates one fixed-size buffer for the example program to use for

the dlWrite request. Your application must always provide a buffer for write requests, in

contrast to dlRead requests which have the option of letting the DLI provide the read

buffer.

Step 4: Send Data using Normal Operation (dlWrite)

After a session has been opened and the link enabled, the client application can

exchange data with the remote application. A dlWrite without the optional arguments

parameter (Normal operation) requests the ICP to send a single data packet to the

remote application. The type of data sent depends on the writeType DLI configuration

parameter (page 66) which defaults to “normal” for this example. The valid writeType

values are protocol specific.

Line 195 on page 171 uses dlWrite to write your keyboard input (from line 186) to the

WAN. The first parameter is the session ID returned by the dlOpen call. The second

parameter (which cannot be NULL) is a pointer to the buffer allocated in Step 3 which

contains the data to be sent to Link00. The third parameter is the number of bytes (data

only) to be written to the ICP link. The fourth parameter (either

DLI_WRITE_NORMAL or DLI_WRITE_EXPEDITE) indicates the write priority of the

transmission and applies only to non-blocking I/O. The last parameter is a pointer to

the optional arguments structure which is NULL for Normal operation.
DC 900-1385E 163

Freeway Data Link Interface Reference Guide
The dlWrite function returns the number of bytes written (a positive number). If the

request fails to complete, the return code is ERROR (–1), and dlerrno provides addi-

tional information. The dlWrite function might return immediately when data is avail-

able, even though it is using non-blocking I/O. Your application must always check the

return code and dlerrno to determine if the request is complete or being queued.

If dlWrite returns ERROR, and dlerrno is set to DLI_EWOULDBLOCK (see line 198 on

page 171), it means that your request is being queued internally to DLI and will be com-

pleted at a later time. When the request completes, DLI calls your IOCH to notify of the

I/O completion, and your application can call dlPoll (with the

DLI_POLL_WRITE_COMPLETE option as shown on line 219 on page 171) to retrieve

the completion status. Your application must not reuse buffers that it gave to the dlWrite

function until the request completes.

You should consider the following DLI configuration parameters which affect the oper-

ation of dlWrite:

• This example uses the default value of the localAck DLI configuration parameter

(page 64), which is “yes,” meaning that the DLI internally manages the protocol-

specific local data acknowledgment for every dlWrite of WAN data.

• If you prefer that the DLI always queues an I/O request whether or not the request

can be satisfied immediately, set the alwaysQIO DLI configuration parameter

(page 64) to “yes.” This example uses the default of “no,” but setting alwaysQIO to

“yes” could ease your application implementation.

Step 5: Receive Data using Normal Operation (dlRead)

Lines 163 and 166 on page 170 show the use of the dlRead function. The first and third

parameters are similar to the dlWrite function. The fourth parameter is the pointer to

the optional arguments structure, which is NULL for Normal operation. The second

parameter is the address of the pointer to the buffer to be read from the WAN. On line

165 on page 170 notice that, unlike dlWrite, the pointer to the dlRead buffer can be

NULL if you want DLI to use its own buffer for a read from the WAN.
164 DC 900-1385E

5: Tutorial Example Programs
The dlRead function returns the number of bytes read (a positive number). If the

request fails to complete, the return code is ERROR (–1), and dlerrno provides addi-

tional information. The dlRead function might return immediately when data is avail-

able, even though it is using non-blocking I/O. Your application must always check the

return code and dlerrno to determine if the request is complete or being queued. If

dlRead returns ERROR, and dlerrno is set to DLI_EWOULDBLOCK, it means that your

request is being queued internally to DLI and will be completed at a later time.

Note
The example application does not check dlerrno after the dlRead

call (line 163 on page 170) because it assumes a loopback condi-

tion and queues a read before issuing a write request. Therefore,

there will be no data until dlWrite is called.

When the read request completes, DLI invokes your IOCH to notify of the I/O comple-

tion, and your IOCH can then call dlPoll (with the DLI_POLL_GET_SESS_STATUS

option as shown on line 71 on page 168) to determine the number of I/O completions.

Then your application can call dlPoll again (with the DLI_POLL_READ_COMPLETE

option as shown on line 224 on page 171) to retrieve the data.

Step 6: Free Previously Allocated Buffers (dlBufFree)

Lines 245 and 246 on page 172 free the buffer allocated for the dlWrite request using

dlBufAlloc, as well as the buffer that the DLI allocated for the dlRead request. Keep in

mind that your application does have the responsibility to free any DLI-allocated read

buffers.

Step 7: Close a Session (dlClose)

Lines 272 and 272 on page 173 close the two sessions by calling dlClose with a valid ses-

sion ID.
DC 900-1385E 165

Freeway Data Link Interface Reference Guide
Step 8: Terminate DLI Services (dlTerm)

Line 299 on page 173 calls dlTerm to terminate the DLI services. Before calling dlTerm,

your application should make sure that all sessions are properly closed; otherwise, DLI

closes any active sessions with force mode. Your application can call dlInit after dlTerm

to re-establish DLI services while it is running. However, you should try to avoid bring-

ing the DLI services up and down since this is time consuming. If your system resources

are scarce, however, you might need this option.
166 DC 900-1385E

5: Tutorial Example Programs
000001:
000002:#include <stdio.h>
000003:#include <stdlib.h>
000004:#include <string.h>
000005:#include <time.h>
000006:
000007:#include "freeway.h"
000008:#include "dlidefs.h"
000009:#include "dliusr.h"
000010:#include "dlierr.h"
000011:#include "dliicp.h"
000012:#include "dliprot.h"
000013:#include "gentest.h"
000014:
000015:
000016:typedef struct _GLOBAL_STRUCT
000017:{
000018: short iTimeToRun;
000019: BOOLEAN tfNotified;
000020: BOOLEAN tfTerminated;
000021: int iSess0Status;
000022: int iSess1Status;
000023: BOOLEAN tfSess0Data;
000024: BOOLEAN tfSess1Data;
000025: time_t tStartTime;
000026: int iSessID0;
000027: int iSessID1;
000028:} GLOBAL_STRUCT;
000029:typedef GLOBAL_STRUCT *PGLOBAL_STRUCT;
000030:GLOBAL_STRUCT myGlobalStruct;
000031:
000032:int iProcID;
000033:
000034:/*---*/
000035:/* This function is invoked by dli when there is any incoming */
000036:/* data for any session that dli maintains. When this function */
000037:/* is invoked, it does not necessarily mean that there is any */
000038:/* data for the application! */
000039:/*---*/
000040:int
000041:fNotify (pUserCB)
000042: char * pUserCB;
000043:{
000044: PGLOBAL_STRUCT pMyGlobal;
000045:
000046: pMyGlobal = (PGLOBAL_STRUCT) pUserCB;
000047: fprintf (stdout, "Being notified of I/O event\n");
000048: pMyGlobal-> tfNotified = TRUE;
000049: genNotifyMain (iProcID);
000050: return OK;
000051:}

Figure 5–7: FMP Non-Blocking I/O Example (fmpasp.c)
DC 900-1385E 167

Freeway Data Link Interface Reference Guide
000052:
000053:/*---*/
000054:/* This function is invoked by dli when there is any incoming */
000055:/* data for the given session id (iSessID). When this function */
000056:/* is invoked, it means that there is data for the application, */
000057:/* and for this particular session id. */
000058:/*---*/
000059:int
000060:fIOComplete (pUserCB, iSessID)
000061: char * pUserCB;
000062: int iSessID;
000063:{
000064:
000065: DLI_SESS_STAT sessStat;
000066: PGLOBAL_STRUCT pMyGlobal;
000067:
000068: fprintf (stderr, "Notified by sess %d \n", iSessID);
000069: pMyGlobal = (PGLOBAL_STRUCT) pUserCB;
000070:
000071: dlPoll (iSessID, DLI_POLL_GET_SESS_STATUS, (PCHAR*)NULL, (PINT)NULL,
000072: (PCHAR)&sessStat, (PDLI_OPT_ARGS*)NULL);
000073: if (iSessID == pMyGlobal-> iSessID0)
000074: {
000075: pMyGlobal-> tfSess0Data = TRUE;
000076: pMyGlobal-> iSess0Status = sessStat. iSessStatus;
000077: }
000078: else
000079: {
000080: pMyGlobal-> tfSess1Data = TRUE;
000081: pMyGlobal-> iSess1Status = sessStat. iSessStatus;
000082: }
000083:
000084: return OK;
000085:}
000086:
000087:

Figure 5–7: FMP Non-Blocking I/O Example (fmpasp.c) (Cont’d)
168 DC 900-1385E

5: Tutorial Example Programs
000088:/*---*/
000089:/* main program: */
000090:/*---*/
000091:int
000092:main ()
000093:
000094:{
000095: int iOutBufLen, iBytes;
000096: time_t tStart;
000097: PCHAR pInBuf, pOutBuf, s;
000098: DLI_SESS_STAT sessStat;
000099:
000100: iProcID = getpid();
000101:
000102: signal (SIGALRM, SIG_IGN);
000103: signal (SIGINT, SIG_IGN);
000104:
000105: myGlobalStruct. tfNotified = FALSE;
000106: myGlobalStruct. iSess0Status = DLI_STATUS_CLOSED;
000107: myGlobalStruct. iSess1Status = DLI_STATUS_CLOSED;
000108: myGlobalStruct. tfSess0Data = FALSE;
000109: myGlobalStruct. tfSess1Data = FALSE;
000110:
000111: if (dlInit ("fmpasdcfg.bin", (PCHAR) &myGlobalStruct, fNotify) == ERROR)
000112: {
000113: fprintf (stdout, "ERROR: dlInit failed %d\n", dlerrno);
000114: return ERROR;
000115: }
000116:
000117: if ((myGlobalStruct. iSessID0 = dlOpen ("Link00", fIOComplete)) == ERROR)
000118: {
000119: fprintf (stdout, "ERROR: dlOpen failed (Link00) %d\n",
000120: dlerrno);
000121: dlTerm ();
000122: return ERROR;
000123: }
000124:
000125: if ((myGlobalStruct. iSessID1 = dlOpen ("Link01", fIOComplete)) == ERROR)
000126: {
000127: fprintf (stdout, "ERROR: dlOpen failed (Link01) %d\n",
000128: dlerrno);
000129: dlClose (myGlobalStruct. iSessID1, DLI_CLOSE_NORMAL);
000130: dlTerm ();
000131: return ERROR;
000132: }
000133: for (tStart = time(NULL); sDiffTime (time(NULL),tStart) < 5 &&
000134: (myGlobalStruct. iSess0Status != DLI_STATUS_READY ||
000135: myGlobalStruct. iSess1Status != DLI_STATUS_READY) ;)
000136: {
000137: SLEEP (1); /* could do something else here */

Figure 5–7: FMP Non-Blocking I/O Example (fmpasp.c) (Cont’d)
DC 900-1385E 169

Freeway Data Link Interface Reference Guide
000138: /*--*/
000139: /* check the status of each session here, since */
000140: /* the fIOComplete routine may have been called */
000141: /* before the myGlobalStruct.iSessID was set, */
000142: /* and was therefore unable to set the session */
000143: /* status. */
000144: /*--*/
000145: dlPoll (myGlobalStruct. iSessID0, DLI_POLL_GET_SESS_STATUS,
000146: (PCHAR*)NULL, (PINT)NULL,
000147: (PCHAR)&sessStat, (PDLI_OPT_ARGS*)NULL);
000148: myGlobalStruct. iSess0Status = sessStat. iSessStatus;
000149: dlPoll (myGlobalStruct. iSessID1, DLI_POLL_GET_SESS_STATUS,
000150: (PCHAR*)NULL, (PINT)NULL,
000151: (PCHAR)&sessStat, (PDLI_OPT_ARGS*)NULL);
000152: myGlobalStruct. iSess1Status = sessStat. iSessStatus;
000153:
000154: }
000155:
000156: myGlobalStruct. tfSess0Data = FALSE;
000157: myGlobalStruct. tfSess1Data = FALSE;
000158:
000159: /*---*/
000160: /* must always keep at least one read posted on each link! */
000161: /*---*/
000162: pInBuf = NULL;
000163: iBytes = dlRead (myGlobalStruct. iSessID0, &pInBuf, 256,
000164: (PDLI_OPT_ARGS)NULL);
000165: pInBuf = NULL;
000166: iBytes = dlRead (myGlobalStruct. iSessID0, &pInBuf, 256,
000167: (PDLI_OPT_ARGS)NULL);
000168:
000169: pInBuf = NULL;
000170: iBytes = dlRead (myGlobalStruct. iSessID1, &pInBuf, 256,
000171: (PDLI_OPT_ARGS)NULL);
000172: pInBuf = NULL;
000173: iBytes = dlRead (myGlobalStruct. iSessID1, &pInBuf, 256,
000174: (PDLI_OPT_ARGS)NULL);
000175:
000176: if ((pOutBuf = dlBufAlloc (1)) == NULL)
000177: {
000178: fprintf (stdout, "ERROR: No buffers %d\n", dlerrno);
000179: dlClose (myGlobalStruct. iSessID0, DLI_CLOSE_NORMAL);
000180: dlClose (myGlobalStruct. iSessID1, DLI_CLOSE_NORMAL);
000181: dlTerm ();
000182: return ERROR;
000183: }
000184:

Figure 5–7: FMP Non-Blocking I/O Example (fmpasp.c) (Cont’d)
170 DC 900-1385E

5: Tutorial Example Programs
000185: fprintf (stdout, "Enter string to be sent: ");
000186: gets (pOutBuf);
000187: for (s = pOutBuf; *s; ++s)
000188: if (*s == '\n')
000189: {
000190: *s = '\0';
000191: break;
000192: }
000193:
000194: iOutBufLen = strlen (pOutBuf);
000195: if ((iBytes = dlWrite (myGlobalStruct. iSessID0, pOutBuf, iOutBufLen,
000196: DLI_WRITE_NORMAL, (PDLI_OPT_ARGS)NULL)) == ERROR)
000197: {
000198: if (dlerrno != DLI_EWOULDBLOCK)
000199: {
000200: fprintf (stdout, "ERROR: dlWrite failed %d\n", dlerrno);
000201: dlClose (myGlobalStruct. iSessID0, DLI_CLOSE_NORMAL);
000202: dlClose (myGlobalStruct. iSessID1, DLI_CLOSE_NORMAL);
000203: dlTerm ();
000204: return ERROR;
000205: }
000206:
000207: /*---*/
000208: /* wait for the write to complete. */
000209: /*---*/
000210: for (tStart = time (NULL);
000211: sDiffTime (time(NULL), tStart) < 5 &&
000212: !myGlobalStruct. tfSess0Data;
000213:)
000214: {
000215: SLEEP (1);
000216: }
000217: /* remove write request from the output queue */
000218: pOutBuf = NULL;
000219: dlPoll (myGlobalStruct. iSessID0, DLI_POLL_WRITE_COMPLETE,
000220: &pOutBuf, &iBytes, (PCHAR)NULL, (PDLI_OPT_ARGS*)NULL);
000221:
000222: /* remove the write acknowledge packet from link 0's input queue*/
000223: pInBuf = NULL;
000224: dlPoll (myGlobalStruct. iSessID0, DLI_POLL_READ_COMPLETE,
000225: &pInBuf, &iBytes, (PCHAR)NULL, (PDLI_OPT_ARGS*)NULL);
000226: }
000227:

Figure 5–7: FMP Non-Blocking I/O Example (fmpasp.c) (Cont’d)
DC 900-1385E 171

Freeway Data Link Interface Reference Guide
000228: /*---*/
000229: /* wait for the read to complete on link 1. */
000230: /*---*/
000231: for (tStart = time(NULL);
000232: sDiffTime (time(NULL),tStart) < 5 && !myGlobalStruct. tfSess1Data;
000233:)
000234: {
000235: SLEEP (1);
000236: }
000237:
000238: pInBuf = NULL;
000239: if (dlPoll (myGlobalStruct. iSessID1, DLI_POLL_READ_COMPLETE,
000240: &pInBuf, &iBytes, (PCHAR)NULL, (PDLI_OPT_ARGS*)NULL) == ERROR)
000241: fprintf (stdout, "dlPoll failed - dlerrno = %d\n", dlerrno);
000242: else
000243: fprintf (stdout, "%d bytes received: \"%s\"\n", iBytes-5, &pInBuf[5]);
000244:
000245: dlBufFree (pOutBuf);
000246: dlBufFree (pInBuf);
000247:
000248: /*---*/
000249: /* cancel all reads that may be queued to DLI before we close*/
000250: /* sessions. */
000251: /*---*/
000252: for (pInBuf = NULL;
000253: dlPoll (myGlobalStruct. iSessID0, DLI_POLL_READ_CANCEL, &pInBuf,
000254: &iBytes, (PCHAR)NULL, (PDLI_OPT_ARGS*)NULL) == OK;
000255: pInBuf = NULL
000256:)
000257: {
000258: if (pInBuf)
000259: dlBufFree (pInBuf);
000260: }
000261: for (pInBuf = NULL;
000262: dlPoll (myGlobalStruct. iSessID1, DLI_POLL_READ_CANCEL, &pInBuf,
000263: &iBytes, (PCHAR)NULL, (PDLI_OPT_ARGS*)NULL) == OK;
000264: pInBuf = NULL
000265:)
000266: {
000267: if (pInBuf)
000268: dlBufFree (pInBuf);
000269: }
000270:

Figure 5–7: FMP Non-Blocking I/O Example (fmpasp.c) (Cont’d)
172 DC 900-1385E

5: Tutorial Example Programs
000271: fprintf (stderr, "Closing circuits \n");
000272: dlClose (myGlobalStruct. iSessID0, DLI_CLOSE_FORCE);
000273: dlClose (myGlobalStruct. iSessID1, DLI_CLOSE_FORCE);
000274: fprintf (stderr, "Done dlClose\n");
000275:
000276: /*---*/
000277: /* wait for both sessions to become closed. */
000278: /*---*/
000279: tStart = time(NULL);
000280: do
000281: {
000282: SLEEP(1);
000283: dlPoll (myGlobalStruct. iSessID0, DLI_POLL_GET_SESS_STATUS,
000284: (PCHAR*)NULL, (PINT)NULL,
000285: (PCHAR)&sessStat, (PDLI_OPT_ARGS*)NULL);
000286: } while (sDiffTime (time(NULL),tStart) < 5 &&
000287: sessStat.iSessStatus != DLI_STATUS_CLOSED);
000288:
000289: tStart = time(NULL);
000290: do
000291: {
000292: SLEEP(1);
000293: dlPoll (myGlobalStruct. iSessID1, DLI_POLL_GET_SESS_STATUS,
000294: (PCHAR*)NULL, (PINT)NULL,
000295: (PCHAR)&sessStat, (PDLI_OPT_ARGS*)NULL);
000296: } while (sDiffTime (time(NULL),tStart) < 5 &&
000297: sessStat.iSessStatus != DLI_STATUS_CLOSED);
000298:
000299: dlTerm ();
000300: exit(OK);
000301:}
000302:
000303:

Figure 5–7: FMP Non-Blocking I/O Example (fmpasp.c) (Cont’d)
DC 900-1385E 173

Freeway Data Link Interface Reference Guide
5.3 Using Raw Operation

If your application requires protocol-specific information such as ICP link statistics or

link configuration, or performs data transfer requests other than for single packets, it

can use Raw operation by including the optional arguments parameter in both the

dlRead and dlWrite calls. Use of Raw operation is recommended whenever you need to

interface with the protocol software for any reason outside of simple data transfer.

If your protocol supports Normal operation, it is possible to configure and start the pro-

tocol in Normal operation by specifying the protocol name in the “protocol” field of the

DLI configuration file, then use Raw operation for all subsequent reads and writes as

described above. This method has the advantage of letting DLI handle all the set-up of

the protocol while still giving your application the greater control offered by Raw oper-

ation. If you specify Raw in the “protocol” field, your application must handle all the

protocol set-up commands such as ATTACH, BIND, and Link Configuration.

Note
Any time a dlRead or a dlWrite request includes the optional argu-

ments parameter, it is considered to be a Raw operation.

5.3.1 Optional Arguments Structure

The optional arguments are described in Section 4.1.3.3 on page 83. The fields of the

DLI_OPT_ARGS structure shown in Table 5–3 are required for all Raw dlWrite requests.

The remaining fields should be filled in according to the command’s instructions given

in your particular protocol programmer’s guide.

The Figure 5–8 example code segment uses Raw operation to get a link statistics report

from the ICP. In this example dlWrite (line 56 on page 177) requests an FMP link statis-

tics report from the FMP protocol service on the ICP by defining an appropriate struc-

ture for the report (line 21 on page 176) and specifying the appropriate protocol-

specific command in the optional arguments structure (line 49 on page 177). Note that
174 DC 900-1385E

5: Tutorial Example Programs
unlike the two earlier examples, this code segment is not complete and requires addi-

tional code to run. The use of the optional arguments varies from one request to

another and between different protocols (refer to your particular protocol program-

mer’s guide).

Table 5–3: Optional Arguments Required for Raw dlWrite Requests

Optional
Arguments Field Description

usFWPacketType The type of packet (control or data) being sent to the Freeway server. This is
almost always set to FW_DATA.

usFWCommand The command issued to the msgmux task in the Freeway server. This is almost
always FW_ICP_WRITE.

usICPCommand The command issued to the ICP. When issuing a protocol-specific command,
this is usually set to DLI_ICP_CMD_WRITE.

usProtCommand The protocol-specific command issued to the protocol software. Refer to your
particular protocol programmer’s guide for a description of the commands
available.
DC 900-1385E 175

Freeway Data Link Interface Reference Guide
000001:#include <stdio.h>
000002:#include <stdlib.h>
000003:#include <string.h>
000004:
000005:#include “freeway.h”
000006:#include “queue.h”
000007:#include “utils.h”
000008:#include “dlidefs.h”
000009:#include “dliusr.h”
000010:#include “dlierr.h”
000011:#include “dliicp.h”
000012:#include “dlifmp.h”
000013:#include “dliprot.h”
000014:
000015:
000016:static char cMsg[1024];
000017:static int iMsgLen;
000018:
000019:#define FMP_OVERHEAD 5
000020:
000021:typedef struct _PROT_STATISTICS_REPORT
000022:{
000023: unsigned short usBCCErrors; /* block check error */
000024: unsigned short usParityErrors;
000025: unsigned short usRcvOverrun;
000026: unsigned short usQLimitErrors;
000027: unsigned short usSent;
000028: unsigned short usReceived;
000029: unsigned short usBufferNA;
000030: unsigned short usBufferOverrun;
000031:} FMP_STATISTICS_REPORT;
000032:typedef FMP_STATISTICS_REPORT *PFMP_STATISTICS_REPORT;
000033:#define FMP_STATISTICS_REPORT_SIZE sizeof(FMP_STATISTICS_REPORT)
000034:
000035:int
000036:fGetStatistics (pSess)
000037: PSESSION pSess;
000038:{
000039: DLI_OPT_ARGS optArgs;
000040: PDLI_OPT_ARGS pOptArgs;
000041: PCHAR pBuf;
000042: int iBufLen, i;
000043: PFMP_STATISTICS_REPORT pStat;
000044:

Figure 5–8: Link Statistics Report using Raw Operation
176 DC 900-1385E

5: Tutorial Example Programs
000045: memset ((PCHAR) &optArgs, 0, DLI_OPT_ARGS_SIZE);
000046: optArgs. usFWPacketType = FW_DATA;
000047: optArgs. usFWCommand = FW_ICP_WRITE;
000048: optArgs. usICPCommand = DLI_ICP_CMD_WRITE;
000049: optArgs. usProtCommand = DLI_PROT_GET_STATISTICS_REP;
000050: if ((pBuf = dlBufAlloc (1)) == NULL)
000051: {
000052: fprintf (stdout, "GetS: no bufs \n");
000053: return ERROR;
000054: }
000055:
000056: if (dlWrite (pSess-> iSessID, pBuf, 0, DLI_WRITE_NORMAL,
000057: &optArgs) == ERROR)
000058: {
000059: for (i = 0, pBuf = NULL; i < 2; i++, pBuf = NULL)
000060: if (dlPoll (pSess-> iSessID, DLI_POLL_WRITE_COMPLETE, &pBuf,
000061: &iBufLen, (PCHAR)NULL, (PDLI_OPT_ARGS*)NULL)
000062: == ERROR)
000063: sleep (1);
000064: else
000065: break;
000066: }
000067: if (pBuf)
000068: dlBufFree (pBuf);
000069:
000070: pBuf = NULL;
000071: memset ((PCHAR)&optArgs, 0, DLI_OPT_ARGS_SIZE);
000072:
000073: if (dlRead (pSess-> iSessID, &pBuf, pCB-> iMaxBufSize,
000074: &optArgs) == ERROR)
000075: {
000076: for (i = 0, pBuf = NULL; i < 2; i++, pBuf = NULL)
000077: if (dlPoll (pSess-> iSessID, DLI_POLL_READ_COMPLETE, &pBuf,
000078: &iBufLen, (PCHAR)NULL, &pOptArgs) == ERROR)
000079: sleep (1);
000080: else
000081: break;
000082: }
000083:

Figure 5–8: Link Statistics Report using Raw Operation (Cont’d)
DC 900-1385E 177

Freeway Data Link Interface Reference Guide
000084: if (pBuf && pOptArgs)
000085: {
000086: pStat = (PFMP_STATISTICS_REPORT) pBuf;
000087: fprintf (stdout, "\n%s:\n", pSess-> cSessName);
000088: fprintf (stdout, "BCC:%5d ParErr %5d RcvOverrun:%5d QLimit:%5d\n",
000089: pStat-> usBCCErrors, pStat-> usParityErrors,
000090: pStat-> usRcvOverrun, pStat-> usQLimitErrors);
000091: fprintf (stdout, "Xmitted:%5d Rcvd:%5d BufNA:%5d BufOverrun:%5d\n",
000092: pStat-> usSent, pStat-> usReceived,
000093: pStat-> usBufferNA, pStat-> usBufferOverrun);
000094: return OK;
000095: }
000096: return ERROR;
000097:}
000098:

Figure 5–8: Link Statistics Report using Raw Operation (Cont’d)
178 DC 900-1385E

5: Tutorial Example Programs
5.4 Example Program using dlControl

The program shown in Figure 5–9 initializes the DLI/TSI and sends an ICP reset and

download request to Freeway. It terminates when the download completes. See

Section 4.5 on page 95 for more information about the dlControl function.

/***/
/* Test program to initiate a download of an ICP */
/*---*/
/* This program assumes there is a DLI config file called ‘resetdcfg.bin’ */
/* with a session entry called ‘RawSess0’ */
/***/

#include <stdio.h>

/*----------------------*/
/* DL API include files */
/*----------------------*/
#include “freeway.h”
#include “control.h”
#include “dlidefs.h”
#include “dliusr.h”
#include “dlierr.h”

int cid;
DLBOOLEAN done = FALSE;

int queue_intr();
int notify_intr();
int sighdlr();

/***/
/* download main function */
/***/
main()
{
 int retval;

 /*------------------------*/
 /* initialize the DLI/TSI */
 /*------------------------*/
 retval = dlInit(“resetdcfg.bin”, (char *)NULL, notify_intr);
 printf(“Back from dlInit with retval(%d), dlerrno(%d)\n”,retval,dlerrno);

Figure 5–9: Example dlControl Program
DC 900-1385E 179

Freeway Data Link Interface Reference Guide
/*---------------------------*/
 /* send the download command */
 /*---------------------------*/
 retval = dlControl(“RawSess0”,DLI_CTRL_RESET_ICP,queue_intr);
 printf(“Back from dlControl with retval(%d), dlerrno(%d)\n”,
 retval,dlerrno);

/*---*/
 /* wait for download completion. The download request is */
 /* sent from the signal handler */
 /*---*/
 while (!done);

 dlTerm();

 printf(“Download completed\n”);
}

/***/
/* handler for completed I/O */
/***/
int sighdlr()
{
 DLI_SESS_STAT stat;
 int retval;

 /*------------------------------------*/
 /* get and display the session status */
 /*------------------------------------*/

 printf(“Enter sig handler\n”);
 retval = dlPoll(cid,DLI_POLL_GET_SESS_STATUS,NULL,0,(char *)&stat,NULL);
 printf(“Back from dlPoll with retval(%d), dlerrno(%d)\n”,retval,dlerrno);
 printf(“ iSessStatus(%d)\n”,stat.iSessStatus);
 printf(“ iICPMode (%d)\n”,stat.iICPMode);
 printf(“ iBoardNo (%d)\n”,stat.iBoardNo);
 printf(“ iPortNo (%d)\n”,stat.iPortNo);
 printf(“ ver (%s)\n”,stat.cServerVer);

 /*-----------------------------------*/
 /* see if the download has completed */
 /*-----------------------------------*/

if (stat.iSessStatus == DLI_STATUS_READY)
 done = TRUE;
}

Figure 5–9: Example dlControl Program (Cont’d)
180 DC 900-1385E

5: Tutorial Example Programs
/***/
/* call back routine for individual I/O completions */
/***/
int queue_intr(intr_data, dli_cid)
char *intr_data;
int dli_cid;
{
 /*-----------------------------*/

 /* save the I/O completion cid */
 /*-----------------------------*/
 cid = dli_cid;
 printf(“Enter queue_intr for cid(%d)\n”,cid);

}

/***/
/* call back routine indicating that all I/O completed */
/***/
int notify_intr(intr_data)
char *intr_data;
{
 static int busy = 0;

 printf(“enter notify_intr\n”);

 /*-------------------------------------*/
 /* protect our selves from re-entrency */
 /*-------------------------------------*/
 if (!busy)
 {
 busy++;
 sighdlr();
 busy--;
 }
}

Figure 5–9: Example dlControl Program (Cont’d)
DC 900-1385E 181

Freeway Data Link Interface Reference Guide
5.5 Example dlPoll Using usMaxSessBufSize Field

Figure 5–10 is an example of how to use the DLI usMaxSessBufSize field obtained by

calling dlPoll with the DLI_POLL_GET_SESS_STATUS option. A similar approach

would apply to use the TSI usMaxConnBufSize field obtained by calling tPoll with the

TSI_POLL_GET_CONN_STATUS option.

===
#include <stdio.h>
#include <stdlib.h>

/*----------------------*/
/* DL API include files */
/*----------------------*/
#include <freeway.h>
#include <control.h>
#include <dlidefs.h>
#include <dliusr.h>
#include <dlierr.h>
#include <dliprot.h>
#include <dliicp.h>
#include <dlicperr.h>

#define BIN_FILE "appdcfg.bin"

/***/
/* main function */
/***/
main()
{
DLI_SESS_STAT Stat;
int sessid,

retval = 0;
char *pBuf;

 /*---------------------------*/
 /* initialize the DLI/TSI */
 /*---------------------------*/
 if (dlInit(BIN_FILE, (char *)NULL, NULL) != OK)
 exit (-1);

Figure 5–10: Example dlPoll Program Using usMaxSessBufSize Field
182 DC 900-1385E

5: Tutorial Example Programs
 /*--------------------------*/
 /* Open Session "icp0" */
 /*--------------------------*/
 sessid = dlOpen("icp0", NULL);
 if (sessid == ERROR)
 exit (-1);

 /*---*/
 /* Get session status - now contains session buffer size */
 /*---*/
 dlPoll(sessid, DLI_POLL_GET_SESS_STATUS, (PCHAR*)NULL,
 (int*)NULL,(PCHAR)&Stat, (PDLI_OPT_ARGS*)NULL);

 /*---*/
 /* Allocate memory for buffer with size usMaxSessBufSize */
 /*---*/
 pBuf = dlBufAlloc(Stat.usMaxSessBufSize);

dlWrite (icp0, pBuf, Stat.usMaxSessBufSize , DLI_WRITE_NORMAL,
 (PDLI_OPT_ARGS)NULL);

 /* --*/
 /* We are done, so close the session */
 /* --*/
 dlClose(sessid, DLI_CLOSE_FORCE);

 dlTerm();
}

Figure 5–10: Example dlPoll Program Using usMaxSessBufSize Field (Cont’d)
DC 900-1385E 183

Freeway Data Link Interface Reference Guide
184 DC 900-1385E

Appendix
A DLI Header Files
Table A–1 describes the header files you need to develop your DLI application. These

files are located in your user installation directory in the freeway/include subdirectory.

Table A–1: DLI Header Files

Header File
Name Description

dlicp.h ICP command definitions (for Raw dlWrite requests)

dlicperr.h ICP error code definitions (returned in the iICPStatus field of the
DLI optional arguments)

dlidefs.h DLI definitions

dlierr.h Error code definitions

dlippp.h Protocol-specific command definitions (for Raw dlWrite requests),
where ppp is the protocol designation (for example, dlifmp.h)

dliprot.h Generic protocol command definitions (for Raw dlWrite requests)

dliusr.h DLI structures and prototypes

freeway.h Freeway command definitions
DC 900-1385E 185

Freeway Data Link Interface Reference Guide
186 DC 900-1385E

Appendix
B DLI Error Codes
The DLI error codes are defined in the dlierr.h include file. This chapter describes the

following:

• Internal error codes (Section B.1)

• Command-specific error codes (Table B–1 on page 195)

• Error handling for dead socket detection (Section B.3 on page 202)

Note
While developing your DLI application, if a particular error occurs

consistently, contact Protogate for further assistance.

B.1 Internal Error Codes

The DLI uses the global variable dlerrno to store all its error codes; it offers similar ser-

vices to errno provided in the C language. Your application should check this value on

all returns from DLI function calls. To assist you in debugging your application, the fol-

lowing codes (listed alphabetically) describe internal error conditions of DLI services

that are returned in the global variable dlerrno.

DLI_EVTG_ERR_ICP_STAT_ERR DLI received an invalid status value from the ICP.

Action: Review your trace file and try again.
DC 900-1385E 187

Freeway Data Link Interface Reference Guide
DLI_CALLBACK_Q_OVRFLOW The DLI queue where callback requests are placed

has overflowed. When this occurs, DLI might have failed to deliver a callback.

Action: Revise your application so fewer DLI reads or writes (dlRead/dlWrite) are

made from the context of your IOCH; or increase the DLI “main” parameter

callbackQsize (page 63) and rebuild the DLI/TSI library.

DLI_EVTG_ERR_IOMUX_FAILED DLI failed to multiplex its I/O requests.

Action: Review the DLI error log for additional error messages.

DLI_IO_ERR_INVALID_STATE DLI encountered an invalid state in its internal state

processing machine.

Action: Review the DLI trace and error logs.

DLI_IO_ERR_TOO_MANY_ERRORS DLI encountered too many I/O error condi-

tions.

Action: Review your operating environment and DLI configuration services.

DLI_IOM_ERR_QIN_POLL_ERROR DLI received an error condition when it invoked

tPoll on the TSI internal input queue.

Action: Check TSI services and its configuration.

DLI_IOM_ERR_QIN_UPDATE_ERROR DLI failed to update the DLI input buffer for

the related session.

Action: Severe error. Check DLI configuration services, terminate your applica-

tion and try again.

DLI_IOM_ERR_QOUT_POLL_ERROR DLI received an error condition when it

invoked tPoll on the TSI internal output queue.

Action: Check TSI services and its configuration.
188 DC 900-1385E

B: DLI Error Codes
DLI_IOM_ERR_QOUT_UPDATE_ERROR DLI failed to update the DLI output buffer

for the related session.

Action: Severe error. Check DLI configuration services, terminate your applica-

tion and try again.

DLI_IOM_ERR_READ_CMPLT_QFULL The user’s read queue is full of completed

reads, which indicates the client application is not processing data received from

the server fast enough. Because recognizing this condition is relatively expensive

in terms of processing, it requires a DLI log level of 7 (logLev parameter on page

63). The user should examine the log file during application development.

Action: Modify the client application to service the read queues more promptly.

DLI_IOM_ERR_WRIT_CMPLT_QFULL The user’s write queue is full of completed

writes, which indicates the client application is not processing the completion of

writes previously sent to the server fast enough. Because recognizing this condi-

tion is relatively expensive in terms of processing, it requires a DLI log level of 7

(logLev parameter on page 63). The user should examine the log file during appli-

cation development.

Action: Modify the client application to service the write queues more promptly.

DLI_IOM_TSI_READ_FAILED DLI failed to issue a read request to TSI.

Action: Review the TSI error log and TSI trace file to determine possible TSI

errors. Terminate your application and try again.

DLI_IOM_TSI_WRITE_FAILED DLI failed to issue a write request to TSI.

Action: Review the TSI error log and TSI trace file to determine possible TSI

errors. Terminate your application and try again.

DLI_IOQU_ERR_INVALID_SESSID DLI encountered a packet from Freeway that con-

tains an invalid session ID.

Action: Severe error; terminate your application and try again.
DC 900-1385E 189

Freeway Data Link Interface Reference Guide
DLI_IOQU_ERR_IN_QFULL DLI is not able to add incoming data to the session queue

because there is no room. This error only occurs when DLI is configured to han-

dle multiple sessions per TSI connection (reuseTrans DLI configuration parameter

on page 65).

Action: Revise your application logic to make sure that it does not allow one ses-

sion to block incoming data to all other sessions that share the same TSI connec-

tion.

DLI_IOQU_ERR_NO_WRITES DLI encountered a completed write request from TSI

that has been cancelled by your application.

Action: Revise your application logic and try again.

DLI_IOQU_ERR_QADD_FAILED DLI cannot access its internal input queue. Action:

Severe error; terminate your application and try again.

DLI_IOQU_ERR_QEMPTY DLI internal logic error.

Action: Severe error. Terminate your application and try again.

DLI_LOGI_ERR_LOG_OPEN_FAILED DLI failed to open the log file requested

through the DLI configuration file.

Action: Verify the name of the log file. Terminate your application and try again.

DLI_MEMI_ERR_CALLOC_FAILED DLI failed to allocate memory through the “cal-

loc” function call.

Action: Severe error. Check your system configuration, terminate your applica-

tion and try again. This error occurs only with the VxWorks operation system.

DLI_MEMI_ERR_SM_CREATE_FAILED DLI failed to create a shared-memory parti-

tion.

Action: Severe error. Check your system configuration, terminate your applica-

tion and try again. This error occurs only with the VxWorks operation system.
190 DC 900-1385E

B: DLI Error Codes
DLI_MEMT_ERR_NEVER_INIT DLI memory services were never initialized.

Action: Severe error. Terminate your application and try again.

DLI_MEMT_ERR_PART_FREE_FAILED DLI failed to release the shared-memory par-

tition.

Action: Severe error. This error occurs only with the VxWorks operation system.

DLI_RESF_MULTISQ_INVALID_NODE DLI encountered an invalid session in the

multiple-session queue. This error occurs only when the multiple sessions per TSI

connection option is used (reuseTrans DLI configuration parameter on page 65).

Action: Severe error; terminate your application and try again.

DLI_RESF_MULTIS_QREM_FAILED DLI failed to free an entry in the multiple-ses-

sion queue. This error occurs only when the multiple sessions per TSI connection

option is used.

Action: Severe error; terminate your application and try again.

DLI_RESA_ERR_BUFIO_FAILED DLI failed to allocate the internal I/O buffer for the

newly created session.

Action: Severe error. Consider increasing the number of I/O buffers in the TSI

configuration file. Ensure that your application releases unused buffers to DLI.

DLI_RESA_ERR_MULTIS_QADD_FAILED DLI failed to add the current session entry

to the multiple-session-per-connection entry queue.

Action: Severe error. Terminate your application and try again.

DLI_RESA_ERR_MULTISQ_FAILED DLI failed to initialize its internal multiple-ses-

sion-per-connection queue.

Action: Severe error. Terminate your application and try again.
DC 900-1385E 191

Freeway Data Link Interface Reference Guide
DLI_RESA_ERR_NO_RESOURCE DLI failed to allocate the necessary memory

resource for the internal I/O queue headers.

Action: Severe error. Terminate your application and try again.

DLI_RESA_ERR_QIN_ADD_REM_FAILED DLI failed to initialize its internal input

queue. Action: Severe error. Terminate your application and try again.

DLI_RESA_ERR_QIO_FAILED DLI failed to initialize its internal I/O queues.

Action: Severe error. Terminate your application and try again.

DLI_RESA_ERR_QOUT_ADD_REM_FAILED DLI failed to initialize its internal out-

put queue. Action: Severe error. Terminate your application and try again.

DLI_RESA_ERR_TSI_OPEN_FAILED DLI invoked tConnect to start a TSI connection

and received an error.

Action: Check TSI services and its configuration. Terminate your application and

try again.

DLI_SEVTP_ERR_INVALID_TRANSID DLI encountered an invalid transport ID.

Action: Severe error. Terminate your application and try again.

DLI_SINIT_ERR_CFG_LOAD_FAILED DLI failed to load the configuration entry for

the specified session name. The session name is provided by your application

when it invokes either a dlOpen or dlListen request. Possible errors are: invalid ses-

sion name or corrupted configuration file.

Action: Review your application and re-run the dlicfg preprocessor program.

DLI_SINIT_ERR_DEQ_FAILED DLI failed to remove an inactive session from the

active session queue. This error occurs only when your application issues a dlOpen

or dlListen request.

Action: Severe error. Terminate your application and try again.
192 DC 900-1385E

B: DLI Error Codes
DLI_SINIT_ERR_GET_ENTRY_FAILED DLI failed to get a free session entry for your

request.

Action: Severe error. Terminate your application and try again.

DLI_SINIT_ERR_MULTIS_QADD_FAILED DLI failed to add the current session entry

to the internal multiple-session-per-connection queue.

Action: Severe error. Terminate your application and run again.

DLI_SINIT_ERR_QFULL DLI failed to accept additional dlOpen or dlListen requests

because its active session queue is full.

Action: Consider increasing the maximum number of sessions allowed with DLI,

terminate your application and try again.

DLI_SINIT_ERR_RESA_FAILED DLI failed to allocate the necessary system and net-

work resources to honor your dlOpen or dlListen request.

Action: Check your system or network resources.

DLI_TRAV_ERR_INVALID_RSP DLI encountered an invalid response from Freeway

or the ICP.

Action: Review the DLI error log and trace file. Terminate your application and

try again.

DLI_TRAV_ERR_INVALID_STATE DLI encountered an internal logic failure.

Action: Report the error to Protogate.

DLI_TRAV_ERR_QADD_FAILED DLI could not access to its internal I/O queue.

Action: Severe error; terminate your application and try again.

DLI_TRAV_ERR_TOO_MANY_ERRORS This session has a large number of I/O errors

that exceed the maximum number of errors allowed.

Action: Consider increasing the maxErrors DLI configuration parameter (page 64).
DC 900-1385E 193

Freeway Data Link Interface Reference Guide
DLI_VC_ERR_ILLEGAL_SESS_TYPE The command that your application issued to

Freeway or the ICP is restricted for a different protocol.

Action: Correct your application logic and try again.
194 DC 900-1385E

B: DLI Error Codes
B.2 Command-Specific Error Codes

Table B–1 lists alphabetically all the error codes related to specific DLI commands

described in Chapter 4. These codes are returned in the global variable dlerrno.

Table B–1: DLI Command-specific Error Codes

Command(s)
Causing Error Error Code

Reference
Page

dlBufAlloc

DLI_BUFA_ERR_NEVER_INIT page 87

DLI_BUFA_ERR_NO_BUFS page 87

DLI_BUFA_ERR_SIZE_EXCEEDED page 88

dlBufFree

DLI_BUFF_ERR_INVALID_BUF page 89

DLI_BUFF_ERR_NEVER_INIT page 89

DLI_BUFF_ERR_TSI_FREE_ERR page 89

dlClose

DLI_CLOS_ERR_FW_INVALID_RSP page 91

DLI_CLOS_ERR_FW_INVALID_SESS page 91

DLI_CLOS_ERR_FW_QADD_FAILED page 91

DLI_CLOS_ERR_FW_TOO_MANY_ERRORS page 92

DLI_CLOS_ERR_FW_UNK_STATUS page 92

DLI_CLOS_ERR_ICP_INVALID_RSP page 92

DLI_CLOS_ERR_ICP_INVALID_STATUS page 92

DLI_CLOS_ERR_ICP_QADD_FAILED page 92

DLI_CLOS_ERR_ICP_TOO_MANY_ERRORS page 92

DLI_CLOS_ERR_INVALID_MODE page 92

DLI_CLOS_ERR_INVALID_SESSID page 93

DLI_CLOS_ERR_INVALID_STATE page 93

DLI_CLOS_ERR_LINK_INVALID_RSP page 93

DLI_CLOS_ERR_LINK_INVALID_STATUS page 93

DLI_CLOS_ERR_LINK_QADD_FAILED page 93

DLI_CLOS_ERR_LINK_TOO_MANY_ERRORS page 93

DLI_CLOS_ERR_NEVER_INIT page 93

DLI_CLOS_ERR_Q_NOT_EMPTY page 94

DLI_CLOS_ERR_TOO_MANY_ERRORS page 94
DC 900-1385E 195

Freeway Data Link Interface Reference Guide
dlControl

See also dlOpen page 108

DLI_CTRL_ERR_FAILED page 96

DLI_CTRL_ERR_FW_FTP_FAIL page 96

DLI_CTRL_ERR_FW_ICP_FAIL page 96

DLI_CTRL_ERR_FW_INVALID_ICP page 97

DLI_CTRL_ERR_FW_INVALID_RSP page 97

DLI_CTRL_ERR_FW_INVALID_TYPE page 97

DLI_CTRL_ERR_FW_SCRIPT_ERR page 97

DLI_CTRL_ERR_FW_UNK_STATUS page 97

DLI_CTRL_ERR_INIT_FAILED page 97

DLI_CTRL_ERR_INVALID_STATE page 97

DLI_CTRL_ERR_SESS_INIT_FAILED page 98

DLI_CTRL_ERR_TOO_MANY_ERRORS page 98

dlClose

DLI_EWOULDBLOCK

page 91

dlControl page 95

dlListen page 104

dlOpen page 108

dlRead page 122

dlWrite page 134

Table B–1: DLI Command-specific Error Codes (Cont’d)

Command(s)
Causing Error Error Code

Reference
Page
196 DC 900-1385E

B: DLI Error Codes
dlInit

DLI_INIT_ERR_ACT_ADD_REM_FAILED page 100

DLI_INIT_ERR_ACT_QINIT_FAILED page 100

DLI_INIT_ERR_ALREADY_INIT page 100

DLI_INIT_ERR_CFG_LOAD_FAILED page 100

DLI_INIT_ERR_DLICB_ALLOC_FAILED page 101

DLI_INIT_ERR_GET_TSI_CFG_FAILED page 101

DLI_INIT_ERR_LOG_INIT_FAILED page 101

DLI_INIT_ERR_NAME_TOO_LONG page 101

DLI_INIT_ERR_NO_RESOURCE page 101

DLI_INIT_ERR_NO_TRACE_BUF page 101

DLI_INIT_ERR_TASK_VAR_FAILED page 102

DLI_INIT_ERR_TEXT_OPEN_FAILED page 102

DLI_INIT_ERR_TSI_INIT_FAILED page 102

dlListen

DLI_LSTN_ERR_INIT_FAILED page 105

DLI_LSTN_ERR_INVALID_STATE page 105

DLI_LSTN_ERR_SESS_INIT_FAILED page 105

Table B–1: DLI Command-specific Error Codes (Cont’d)

Command(s)
Causing Error Error Code

Reference
Page
DC 900-1385E 197

Freeway Data Link Interface Reference Guide
dlOpen

DLI_OPEN_ERR_CFG_INVALID_RSP page 108

DLI_OPEN_ERR_CFG_INVALID_STATUS page 108

DLI_OPEN_ERR_CFG_QADD_FAILED page 109

DLI_OPEN_ERR_CFG_TOO_MANY_ERRORS page 109

DLI_OPEN_ERR_FAILED page 109

DLI_OPEN_ERR_FW_ICP_NOT_OP page 109

DLI_OPEN_ERR_FW_INVALID_COMMAND page 109

DLI_OPEN_ERR_FW_INVALID_ICP page 109

DLI_OPEN_ERR_FW_INVALID_RSP page 109

DLI_OPEN_ERR_FW_INVALID_TYPE page 110

DLI_OPEN_ERR_FW_NO_SESS page 110

DLI_OPEN_ERR_FW_QADD_FAILED page 110

DLI_OPEN_ERR_FW_TOO_MANY_ERRORS page 110

DLI_OPEN_ERR_FW_UNK_STATUS page 110

DLI_OPEN_ERR_ICP_INVALID_RSP page 110

DLI_OPEN_ERR_ICP_INVALID_STATUS page 110

DLI_OPEN_ERR_ICP_QADD_FAILED page 111

DLI_OPEN_ERR_ICP_TOO_MANY_ERRORS page 111

DLI_OPEN_ERR_INIT_FAILED page 111

DLI_OPEN_ERR_INVALID_STATE page 111

DLI_OPEN_ERR_LINK_INVALID_RSP page 111

DLI_OPEN_ERR_LINK_INVALID_STATUS page 111

DLI_OPEN_ERR_LINK_QADD_FAILED page 112

DLI_OPEN_ERR_LINK_TOO_MANY_ERRORS page 112

DLI_OPEN_ERR_SESS_INIT_FAILED page 112

DLI_OPEN_ERR_TOO_MANY_ERRORS page 112

dlpErrString DLI_PRTSTRG_ERR_UNKNOWN_ERROR_NBR page 113

Table B–1: DLI Command-specific Error Codes (Cont’d)

Command(s)
Causing Error Error Code

Reference
Page
198 DC 900-1385E

B: DLI Error Codes
dlPoll

DLI_POLL_ERR_BAD_PTR page 117

DLI_POLL_ERR_BUF_LEN_PTR_NULL page 117

DLI_POLL_ERR_BUF_NOT_FOUND page 117

DLI_POLL_ERR_GETLIST_FAILED page 118

DLI_POLL_ERR_GET_TSI_CFG_FAILED page 118

DLI_POLL_ERR_INVALID_IOQ page 118

DLI_POLL_ERR_INVALID_REQ_TYPE page 118

DLI_POLL_ERR_INVALID_SESSID page 118

DLI_POLL_ERR_IO_FATAL page 118

DLI_POLL_ERR_NEVER_INIT page 118

DLI_POLL_ERR_OVERFLOW page 119

DLI_POLL_ERR_QEMPTY page 119

DLI_POLL_ERR_QREM_FAILED page 119

DLI_POLL_ERR_READ_ERROR page 119

DLI_POLL_ERR_READ_NOT_COMPLETE page 119

DLI_POLL_ERR_READ_QREM_FAILED page 119

DLI_POLL_ERR_READ_TIMEOUT page 120

DLI_POLL_ERR_UNBIND page 120

DLI_POLL_ERR_WRITE_ERROR page 120

DLI_POLL_ERR_WRITE_NOT_COMPLETE page 120

DLI_POLL_ERR_WRITE_TIMEOUT page 120

dlPost
DLI_POST_ERR_NEVER_INIT page 121

DLI_POST_ERR_TSI_POST_ERR page 121

Table B–1: DLI Command-specific Error Codes (Cont’d)

Command(s)
Causing Error Error Code

Reference
Page
DC 900-1385E 199

Freeway Data Link Interface Reference Guide
dlRead

DLI_READ_ERR_BUF_MUST_BE_NULL page 124

DLI_READ_ERR_INTERNAL_DLI_ERROR page 124

DLI_READ_ERR_INVALID_BUF page 124

DLI_READ_ERR_INVALID_LENGTH page 124

DLI_READ_ERR_INVALID_SESSID page 125

DLI_READ_ERR_INVALID_STATE page 125

DLI_READ_ERR_IO_FATAL page 125

DLI_READ_ERR_NEVER_INIT page 125

DLI_READ_ERR_OVERFLOW page 125

DLI_READ_ERR_QADD_FAILED page 126

DLI_READ_ERR_QFULL page 126

DLI_READ_ERR_READ_ERROR page 126

DLI_READ_ERR_TIMEOUT page 126

DLI_READ_ERR_TOO_MANY_ERRORS page 126

DLI_READ_ERR_TSI_BUFF_MISSING page 126

DLI_READ_ERR_UNBIND page 126

dlSyncSelect

DLI_SYNCSELECT_ERR_INVALID_ARRAY page 129

DLI_SYNCSELECT_ERR_INVALID_SESSID page 130

DLI_SYNCSELECT_ERR_INVALID_STATE page 130

DLI_SYNCSELECT_ERR_NEVER_INIT page 130

DLI_SYNCSELECT_ERR_NOT_SYNC page 130

DLI_SYNCSELECT_ERR_TSI_ERROR page 130

dlTerm

DLI_TERM_ERR_ACT_REM_FAILED page 133

DLI_TERM_ERR_ACT_TERM_FAILED page 133

DLI_TERM_ERR_CLOSE_FAILED page 133

DLI_TERM_ERR_LOG_END_FAILED page 133

DLI_TERM_ERR_NEVER_INIT page 133

DLI_TERM_ERR_RES_FREE_FAILED page 133

DLI_TERM_ERR_TSI_TERM_FAILED page 133

Table B–1: DLI Command-specific Error Codes (Cont’d)

Command(s)
Causing Error Error Code

Reference
Page
200 DC 900-1385E

B: DLI Error Codes
dlWrite

DLI_WRIT_ERR_BUFA_FAILED page 137

DLI_WRIT_ERR_ILLEGAL_ICP_PROT_CMD page 137

DLI_WRIT_ERR_ILLEGAL_SERVER_CMD page 137

DLI_WRIT_ERR_INTERNAL_DLI_ERROR page 137

DLI_WRIT_ERR_INVALID_BUF page 137

DLI_WRIT_ERR_INVALID_LENGTH page 137

DLI_WRIT_ERR_INVALID_SESSID page 138

DLI_WRIT_ERR_INVALID_STATE page 138

DLI_WRIT_ERR_INVALID_WRITE_TYPE page 138

DLI_WRIT_ERR_IO_FATAL page 138

DLI_WRIT_ERR_LOCAL_ACK_ERROR page 138

DLI_WRIT_ERR_NEVER_INIT page 138

DLI_WRIT_ERR_QADD_FAILED page 138

DLI_WRIT_ERR_QFULL page 139

DLI_WRIT_ERR_TIMEOUT page 139

DLI_WRIT_ERR_TOO_MANY_ERRORS page 139

DLI_WRIT_ERR_UNBIND page 139

DLI_WRIT_ERR_WRITE_ERROR page 139

Table B–1: DLI Command-specific Error Codes (Cont’d)

Command(s)
Causing Error Error Code

Reference
Page
DC 900-1385E 201

Freeway Data Link Interface Reference Guide
B.3 Error Handling for Dead Socket Detection

A catastrophic I/O failure between the client and server generates a “dead-socket” con-

dition. This condition can be recognized by the DLI application through DLI’s session

status and from the error returned with the I/O buffer whose operation detected the

failure. In most cases of catastrophic failure, TSI closes the client-server connection.

However, when the DLI application is notified of a dead socket, no assumptions should

be made regarding the current state of the connection; in all cases the DLI session

should be closed.

Dead sockets change the DLI session status to DLI_STATUS_DEAD_SOCKET (returned

from a dlPoll request with the DLI_POLL_GET_SESS_STATUS option). If the applica-

tion uses blocking I/O, the I/O request is returned the DLI_…_ERR_IO_FATAL error.

For non-blocking I/O, the I/O request which detected the failure returns the

DLI_…_ERR_IO_FATAL error, and all pending I/O operations which have not been

completed are returned with the DLI_…_ERR_UNBIND error.

In a dead-socket condition, the DLI session remains open until closed the by applica-

tion. However, DLI does not allow the application to perform any read or write requests

(all requests are returned with an …_INVALID_STATE error). The application can

retrieve any outstanding I/O requests by using dlPoll to request read or write comple-

tions. Requests which were completed before the dead-socket condition occurred are

returned with their appropriate status. However, write buffers awaiting Local Acks and

read requests not yet performed are returned with the …UNBIND error code.

The application must close the DLI session. While the session is in the dead-socket con-

dition, dlPoll requests are allowed, and the session can be closed, but all other requests

are returned with an error indication. Session resources are retained until the session is

closed by the application. The application should not assume callbacks from dlClose

(TSI may have closed the client-server connection). Additionally, errors from the

dlClose request might be considered normal since DLI will attempt to close the TSI con-
202 DC 900-1385E

B: DLI Error Codes
nection regardless of the connection’s current state. DLI forces the close processing

regardless of TSI’s response to a DLI close request.

The TSI recognizes a dead socket by a failure in a read or write attempt. While writes

rarely return errors, they are required to recognize the dead socket condition after the

socket is down. Specifically, the application must issue a write to recognize a dead-

socket condition. In applications using non-blocking I/O, a read request must be pend-

ing.
DC 900-1385E 203

Freeway Data Link Interface Reference Guide
204 DC 900-1385E

Appendix
C UNIX, VxWorks,
and VMS I/O
C.1 UNIX Environment

The DLI provides the non-blocking I/O operation through the services provided by the

TSI layer. The TSI interacts directly with the UNIX system services to gain access to

non-blocking I/O services through the use of a signal delivery mechanism. When a sig-

nal is delivered to TSI through the use of an interrupt service routine, TSI immediately

suspends the delivery of that signal again until it completes its I/O services through the

IOCH function. TSI will exit the IOCH either when it runs out of system resources to

accept additional I/O, or when it has no additional I/O to accept. In either case, system

resources will be tied up by TSI while it is in the IOCH function unless it is interrupted

by another system service request (i.e. another signal delivery) with a higher priority

than its own. When TSI completes its own I/O services, it will invoke the DLI IOCH. If

your application decides to use non-blocking I/O and provides DLI with an IOCH, the

DLI IOCH will subsequently invoke your application IOCH after it completes its I/O

services. As you see, there are three levels of IOCH that are invoked to complete an I/O

condition.

In short, non-blocking I/O operation is not only complex but also expensive. Therefore,

it requires careful planning and design so that your application uses the system

resources wisely.

Note
Also see Section 2.5.2 on page 53 for more information on signal

processing.
DC 900-1385E 205

Freeway Data Link Interface Reference Guide
C.1.1 Blocking I/O Operations

Blocking I/O operation requires no IOCHs. Blocking I/O does not use any signal deliv-

ery mechanism to handle the delivery of data. Blocking I/O allows the orderly execution

of your application and requires far fewer system resources than non-blocking I/O. If

you design a DLI application to interact with a remote data link application, you should

consider the blocking I/O feature. Blocking I/O is also easier to debug and troubleshoot

than non-blocking I/O. Careful design through the isolation of system and protocol

dependency will allow your application to work not only in blocking mode but also in

non-blocking mode. The DLI and TSI services allow your application to switch from

blocking mode to non-blocking mode, and vice versa, without the recompilation of

your application code.

It is difficult to handle multiple sessions under blocking I/O operation, because your

application will be blocked until the data arrives or DLI times out while waiting. While

your application is waiting for I/O in one session, data from other sessions is blocked.

C.1.2 Non-blocking I/O Operations

The DLI uses the SIGIO signal for its non-blocking BSD socket interface. Therefore,

your application should not block the delivery of SIGIO signals (for example,

sigprocmask) at any time, especially when expecting data from the network.

If you use non-blocking I/O, design your application with robust IOCH function(s).

Also, the application IOCH should perform as little work as possible and before it exits,

use some notification techniques to awaken the main routines to perform the remain-

ing tasks. Some possible notification techniques are system semaphores, sleep and

wakeup calls using the SIGALRM signal, etc.

C.1.3 SOLARIS use of SIGALRM

The use of a default signal handler through SIGALRM signal can cause a system core

dump inside the SOLARIS internal SIGALRM signal handler. You can work around it
206 DC 900-1385E

C: UNIX, VxWorks, and VMS I/O
by providing your own signal handler for SIGALRM. The following code segment

assists you in setting up a SIGALRM handler for the SIGALRM signal:

void genSigHandlr (int signal)
{

return;
}

void main ()
{

struct sigaction SigAction;

SigAction. sa_handler = genSigHdlr;
sigfillset (&SigAction. sa_mask);
SigAction. sa_flags = 0;

if (sigaction (SIGALRM, &SigAction, (struct sigaction *)NULL) ==
ERROR)

{
fprintf (stderr, "sigaction failed %d\n", errno);
return ERROR;

}
.....
return OK;

}

Notice that genSigHdlr does nothing but return to the system.

C.1.4 Polling I/O Operations

Your application can implement polling I/O operations if it uses DLI with non-block-

ing I/O but provides no IOCH functions. Since your application provides no mecha-

nism for DLI to notify it when an I/O condition occurs, your application must poll DLI

for the completion of I/O requests that it posts to DLI. Polling I/O operations involve

the dlPoll function (Section 4.10 on page 114). Polling I/O is helpful if your application

manages multiple sessions, data arrives at a predictable rate, and the timing of data is

not critical.
DC 900-1385E 207

Freeway Data Link Interface Reference Guide
C.2 VxWorks Environment

DLI and TSI will operate only in a VxWorks environment that is similar to that of the

Freeway server. VxWorks has several features similar to UNIX; however, it has a unique

operating environment and a real-time operating system. The use of DLI and TSI

together by an application that runs on the Freeway server is often called a server-resi-

dent application (SRA). The SRA can be configured to interact with Protogate’s mes-

sage multiplexor subsystem through the shared-memory transport mechanism

supported by TSI, or it can be configured to interact with other systems using the BSD

socket interface which is also supported by TSI. Whichever transport your SRA pro-

gram uses, you should understand not only the VxWorks operating system but also the

way the Freeway server is configured and how Protogate implements TSI and DLI

under VxWorks. For more information on SRAs, see the Freeway Server-Resident Appli-

cation and Server Toolkit Programmer Guide.

C.2.1 Blocking I/O Operations

Blocking I/O in VxWorks is similar to that of the UNIX environment.

C.2.2 Non-blocking I/O Operations

Non-blocking I/O in VxWorks with Protogate's Freeway server requires your applica-

tion to cooperate with other tasks. VxWorks on Freeway is configured to operate in a

cooperative manner. This means that VxWorks operates as a non-preemptive multi-

tasking environment. When your application does not have data to be processed, it

must relinquish the CPU so that other tasks can run. You can use your own interrupt

service routine to notify or resume your application when its data arrives.

The DLI uses a binary semaphore to support non-blocking I/O delivery from both net-

work and shared-memory environments. Since VxWorks running on Freeway is con-

figured for a cooperative environment, your application must also act cooperatively.

Your application must call dlPost immediately before relinquishing its control to

VxWorks. Your application must relinquish the control through taskDelay, binary
208 DC 900-1385E

C: UNIX, VxWorks, and VMS I/O
semaphores, or other means; otherwise, only your task has control of the CPU which

prevents other important tasks from running.

Your application should use global variables sparingly if multiple instances of the same

application are running concurrently. VxWorks global variables are shared among all

tasks unless you define them as a particular task's variables (using taskVarAdd). Task

variables are expensive to maintain by VxWorks and therefore should be used spar-

ingly.

C.3 VMS Environment

The DLI uses the process-level Asynchronous System Trap (AST) for non-blocking

data delivery from the network. Therefore, your application should not block the deliv-

ery of ASTs (using sys$setast) at any time, especially when expecting data from the net-

work.
DC 900-1385E 209

Freeway Data Link Interface Reference Guide
210 DC 900-1385E

Appendix
D DLI Logging and Tracing
In conjunction with the transport subsystem interface (TSI), DLI provides tracing and

logging services to troubleshoot both application and network problems. Both logging

and tracing services are included in DLI and TSI. Refer to the Freeway Transport Sub-

system Interface Reference Guide for more information on TSI logging and tracing.

D.1 DLI Logging

There are two kinds of DLI logging services: general logging and session-related log-

ging. As the name implies, general logging includes errors or information not related to

any particular session. Session-related logging indicates error or information related to

a specific session. To monitor data, you must use the DLI tracing services described in

Section D.2.

General logging is defined in the “main” section of the DLI text configuration file. The

logLev parameter (page 63) specifies the level of logging your application needs and can

be from 0 to 7, with level 0 being no logging, level 1 being the most severe error, and 7

being the least severe. In the “main” section, the logName parameter (page 63) defines

the log file name where your logging information is to reside. The default file name is

“dlilog.” If you wish logging information to be output to the screen, define logName as

“stdout.” The number of entries to “stdout” is unlimited. A disk file is limited to 1000

entries, and this number is not configurable.

Session-related logging can be defined in each individual DLI session definition. You

can log for some sessions but not for the others; and different sessions can log errors at
DC 900-1385E 211

Freeway Data Link Interface Reference Guide
different levels. All error codes are defined in Appendix B and in each individual func-

tion description (for example, dlOpen in Section 4.8 on page 106).

The following is the format of the each log entry:

SessX: DLI_YYY_ZZZ_Information(dlerrno/errno)

where:

X is session ID. For general logging, X will be 999. Otherwise, it indicates a session-

related entry.

YYY is brief function name of DLI. For example, if ZZZ is OPEN it indicates the log

entry is from dlOpen function.

ZZZ can be ERR or INFO. ERR indicates an error condition; INFO indicates information

only.

dlerrno is a DLI error code for this entry; errno is the last encountered ‘C’ errno value.

D.2 DLI Tracing

D.2.1 Trace Definitions

The DLI tracing facility captures and stores real-time data in its internal wrap-around

buffer. The size of this buffer is configurable up to 1 megabyte of memory. There are

two kinds of DLI tracing: general tracing and session-specific tracing. In general tracing,

trace data has no session-specific information, whereas session-specific trace data per-

tains to only one specific session ID.

To activate tracing, first specify the DLI “main” configuration parameters. Specify the

traceSize parameter (page 63) up to 1 megabyte of memory. The traceName parameter

(page 63) defines the file name where your trace information is to reside.
212 DC 900-1385E

D: DLI Logging and Tracing
Specify the level of tracing using the traceLev parameter (page 63). This parameter

defaults to zero if not defined (no tracing). The traceLev parameter can be defined in the

“main” section for general tracing or in each individual session definition (page 65).

Each session definition can have different traceLev value.

The traceLev parameters can be the sum of one or more of the following values:

1 = trace the read (input) data

2 = trace the write (output) data

4 = trace the DLI interrupt services

8 = trace the application IOCH services

16 = trace the user’s data

For example, if you want to trace both read and write data, specify 3 for the traceLev

parameter. If you want to trace read, write, and user’s data, specify 19 for the traceLev

parameter.

The most commonly used trace level is for I/O passing through the DLI service layer

(traceLev = 3). DLI also provides the interrupt and application I/O completion handler

(IOCH) trace levels within DLI to assist the application in troubleshooting the IOCH

mechanism. The user data trace level allows the application to store its own data in the

trace buffer.

Note
DLI does not decode user data with its dlidecode program

(Section D.2.2).

You can turn tracing on or off at any time after DLI is initialized using dlPoll with the

DLI_POLL_TRACE_ON or DLI_POLL_TRACE_OFF options. Tracing is done internally
DC 900-1385E 213

Freeway Data Link Interface Reference Guide
with the DLI trace buffer. Trace data is not written to the trace file until dlTerm is called

or dlPoll is called with the DLI_POLL_TRACE_WRITE option. Therefore, your applica-

tion should always call dlTerm before it exits to the operating system. If tracing is

required and is defined in the DLI configuration file, it is automatically on when dlInit

is called. You can use dlPoll with the DLI_POLL_TRACE_STORE option to store your

own trace buffer inside the DLI trace buffer. Refer to dlPoll (Section 4.10 on page 114)

for more information. Since DLI tracing does not involve disk I/O, there is little or no

performance impact.

D.2.2 Decoded Trace Layout

You can run the dlidecode program against the trace file produced by DLI. The output

of dlidecode is output to the screen for UNIX-like systems. In VMS, dlidecode’s output is

output to the file named dli.sum. You can also run dlidecode against the trace file pro-

duced by TSI. Refer to the Freeway Transport Subsystem Interface Reference Guide for

details on TSI tracing.

The format of the decoded trace can be described as follows. See Section D.2.3 for an

actual decoded trace example.

line 1: Protogate 2000(C) DLI Trace Decoder
line 2: Max buffer size: xyz
line 3: TRACE SOURCE: yyy --
line 4: @@@@@ Actual Data offset aa Size = bb
line 5: cc: hex data and printable ascii equivalent.
line 6: @@@@@ Decode begins
line 7: dd(desc) Conn ee: time and date
line 8: Freeway header info: length = ff
line 9: Packet Type (gg) = textgg Command(hh) = texthh
line 10: Status(ii) = textii Client ID = jj Freeway ID = kk
line 11: ICP header info:
line 12: OldClientID = ll OldServerID = mm
line 13: Data length = nn Cmd (oo) = textoo
line 14: Status(pp) = textpp
line 15: Parms: [0] = qq [1] = rr [2] == ss
line 16: Protocol header info:
line 17: Cmd(tt) = texttt
line 18: Modifier = uu Link = vv
214 DC 900-1385E

D: DLI Logging and Tracing
line 19: Cir = xx Sess = yy Seq = zz
line 20: Parms: [0] = a1 [1] = b1
line 21: DATA : hex data and printable ascii equivalent.

Each line of the above format is explained as follows:

line 1: indicates the copyright and the name of the dlidecode program. Note that TSI

has its own decoder (tsidecode) which can run only against the TSI trace file,

unlike dlidecode which can run on both DLI and TSI trace files.

line 2: prints the currently used maximum buffer size that is defined in the TSI con-

figuration file (maxBufSize on page 148). Note that the size excludes the over-

head used by DLI and TSI; it describes the maximum number of actual data

bytes allowed by DLI. See Section 2.4 on page 40.

line 3: prints the source of the trace.

line 4: describes the actual offset (aa) from the beginning of the trace file where this

packet is stored and the number of bytes contained in this packet has (bb).

Section D.2.4 describes how to read the DLI trace file in case you want to write

your own decoder to decode your own trace data that you store in DLI trace

buffer using dlPoll with the DLI_POLL_TRACE_STORE option.

line 5: prints the actual hex values and their equivalent printable ASCII text. The off-

set (cc) is the actual offset from the beginning of the packet, based on 0. Each

line contains up to 16 bytes from the trace packet. Note that line 5 can be

repeated if the actual size of the trace packet is more than 16 bytes long.

line 6: indicates that the actual decoding begins. This is where the headers are broken

into individual fields.

line 7: dd indicates the direction of the packet; dd can be ====> to indicate an out-

going packet or <==== to indicate an incoming packet. For non-I/O related

packets (for example, user’s data packet), dd is either ***** or #####. If the

trace packet is for I/O, desc can be READ(1)/WRITE(2) n bytes. If the packet is a
DC 900-1385E 215

Freeway Data Link Interface Reference Guide
non-I/O packet, desc can be one of the following:

SESSION INTERRUPT BEGINS(4): indicates that DLI begins its interrupt han-

dler to process I/O requests.

SESSION INTERRUPT ENDS(5): indicates that DLI ends its interrupt handler

routine and is ready to return to TSI.

SESSION ISR(3): indicates that DLI is about to call the IOCH of a specific ses-

sion ID. The address of this IOCH was provided by TSI to DLI through the

dlOpen function.

APPLICATION ISR BEGINS(6): indicates that DLI is about to call the generic

IOCH that was provided by the application to DLI through the dlInit function.

APPLICATION ISR ENDS(7): indicates that the generic IOCH routine returns

control to DLI.

AT(8): indicates that this trace buffer belongs to the application. The dlidecode

program will not attempt to decode this packet. You have to write your own

decode function to interpret your own data packet.

line 8: begins the Freeway header information. The length of the Freeway header is

also printed (ff).

line 9: describes the packet type of this Freeway packet. There are two types of packets

supported by Freeway: the FW_CONTROL control packet and the FW_DATA

data packet. Any other packet type is rejected by Freeway.

textgg is the English version of the packet type.

hh indicates the command that was issued to or from Freeway.

texthh describes the command in English.
216 DC 900-1385E

D: DLI Logging and Tracing
line 10: ii is the status value returned by Freeway. If the packet is outgoing, this field

contains an internal value used by DLI and has no meaning to the application.

jj is the client ID provided by DLI. This client ID is the same as the client ID

returned from the dlOpen function. kk is the Freeway ID that is assigned and

returned by Freeway.

Note
Note that line 11 through line 20 might not be included if the

packet destination is the Freeway server only. If the packet is tar-

geted to the ICPs, line 11 through line 20 will be included. The

fields of the ICP and Protocol headers are described briefly below.

If you need further information about these headers, refer to your

particular protocol programmer’s guide.

line 11: indicates the beginning of the ICP header.

line 12: ll and mm are the values of the old client ID. It is used only by the X.25 proto-

col.

line 13: nn indicates the length of the data area plus the length of the Protocol header;

oo is the value of the command to the ICP; and textoo is the command’s name

in English.

line 14: pp indicates the error status from the ICP or contains a value used internally by

DLI to indicate to the ICP the host’s machine architecture (Big-Endian versus

Little-Endian).

line 15: prints the 3 values of the extra parameters in the ICP header.

lines 16 through 20: describe the protocol-specific information. Refer to your particular

protocol programmer’s guide for further information.
DC 900-1385E 217

Freeway Data Link Interface Reference Guide
line 21: prints the details of the data in both hex values and the printable ASCII equiv-

alent.

D.2.3 Example dlidecode Program Output

Following are example segments of the actual output from the dlidecode program:

Protogate 2000(C) DLI Trace Decoder

Max buffer size: 436
TRACE SOURCE: DLI

@@@@@ Actual Data offset 8 Size = 0
@@@@@ Decoding begins

DATA : 00 00 00 00 00 00 00 00 2e a8 3d 6a =j

@@@@@ Actual Data offset 20 Size = 76
000000: 00 00 00 00 00 00 00 00 00 0a 00 16 00 01 00 01
000016: 00 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000032: 00 00 00 00 00 00 00 00 00 00 00 00 69 63 70 30 icp0
000048: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000064: 00 00 00 00 00 00 00 00 00 00 00 00

@@@@@ Decoding begins

====>(WRITE 76 bytes)Conn 0: Fri Oct 21 15:15:07 1994
Freeway header info: length = 44
Packet Type(1) = FW_CONTROL Command(1) = FW_OPEN_SESS
Status(1) = INV_ICP Client ID = 0 Freeway ID = 0

DATA : 69 63 70 30 00 00 00 00 00 00 00 00 00 00 00 00 icp0............
DATA : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

@@@@@ Actual Data offset 108 Size = 76
000000: 00 00 00 00 00 00 00 00 00 0a 00 16 00 01 00 01
000016: 00 01 00 01 00 00 00 00 00 00 00 00 00 00 00 00
000032: 00 00 00 00 00 00 00 00 00 00 00 00 69 63 70 30 icp0
000048: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000064: 00 00 00 00 00 00 00 00 00 00 00 00

@@@@@ Decoding begins

====>(WRITE 76 bytes)Conn 1: Fri Oct 21 15:15:07 1994
218 DC 900-1385E

D: DLI Logging and Tracing
Freeway header info: length = 44
Packet Type(1) = FW_CONTROL Command(1) = FW_OPEN_SESS
Status(1) = INV_ICP Client ID = 1 Freeway ID = 0

DATA : 69 63 70 30 00 00 00 00 00 00 00 00 00 00 00 00 icp0............
DATA : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

@@@@@ Actual Data offset 196 Size = 64
000000: 00 00 00 00 00 00 00 00 00 0a 00 16 00 01 00 01
000016: 00 00 00 00 00 03 00 00 00 00 00 00 00 00 00 00
000032: 00 00 00 14 00 00 00 00 00 03 00 00 46 72 65 65 Free
000048: 77 61 79 20 52 65 6c 65 61 73 65 20 32 2e 30 00 way Release 2.0.

@@@@@ Decoding begins

<====(READ 64 bytes)Conn 0: Fri Oct 21 15:15:07 1994
Freeway header info: length = 44
Packet Type(1) = FW_CONTROL Command(1) = FW_OPEN_SESS
Status(0) = OK Client ID = 0 Freeway ID = 3

DATA : 46 72 65 65 77 61 79 20 52 65 6c 65 61 73 65 20 Freeway Release
DATA : 32 2e 30 00 2.0.

@@@@@ Actual Data offset 272 Size = 76
000000: 00 00 00 00 00 00 00 00 00 0a 00 16 00 02 00 01
000016: 00 02 00 00 00 03 00 00 00 00 00 00 00 00 00 00
000032: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000048: 00 10 08 01 00 00 00 00 00 00 00 00 08 01 00 01
000064: 00 00 00 00 00 00 00 00 00 1c 00 00

@@@@@ Decoding begins

====>(WRITE 76 bytes)Conn 0: Fri Oct 21 15:15:07 1994
Freeway header info: length = 44
Packet Type(2) = FW_DATA Command(1) = FW_ICP_WRITE
Status(2) = ICP_NOT_OP Client ID = 0 Freeway ID = 3

ICP header info:
OldClientID = 0 OldServerID = 0
Data length = 16 Cmd(2049) = DLI_ICP_CMD_ATTACH
Status(0) = DLI_ICP_ERR_NO_ERR
Parms: [0] = 0 [1] = 0 [2] = 0

Protocol header info:
Cmd(2049) = DLI_ICP_CMD_ATTACH
Modifier = 1 Link = 0
Cir = 0 Sess = 0 Seq = 0
Parms: [0] = 28 [1] = 0
DC 900-1385E 219

Freeway Data Link Interface Reference Guide

@@@@@ Actual Data offset 360 Size = 64
000000: 00 00 00 00 00 00 00 00 00 0a 00 16 00 01 00 01
000016: 00 00 00 01 00 04 00 00 00 00 00 00 00 00 00 00
000032: 00 00 00 14 00 00 00 00 00 04 00 00 46 72 65 65 Free
000048: 77 61 79 20 52 65 6c 65 61 73 65 20 32 2e 30 00 way Release 2.0.

@@@@@ Decoding begins

<====(READ 64 bytes)Conn 1: Fri Oct 21 15:15:07 1994
Freeway header info: length = 44
Packet Type(1) = FW_CONTROL Command(1) = FW_OPEN_SESS
Status(0) = OK Client ID = 1 Freeway ID = 4

DATA : 46 72 65 65 77 61 79 20 52 65 6c 65 61 73 65 20 Freeway Release
DATA : 32 2e 30 00 2.0.

@@@@@ Actual Data offset 436 Size = 76
000000: 00 00 00 00 00 00 00 00 00 0a 00 16 00 02 00 01
000016: 00 02 00 01 00 04 00 00 00 00 00 00 00 00 00 00
000032: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000048: 00 10 08 01 00 00 00 00 00 01 00 00 08 01 00 01
000064: 00 01 00 00 00 00 00 00 00 1c 00 00

@@@@@ Decoding begins

====>(WRITE 76 bytes)Conn 1: Fri Oct 21 15:15:07 1994
Freeway header info: length = 44
Packet Type(2) = FW_DATA Command(1) = FW_ICP_WRITE
Status(2) = ICP_NOT_OP Client ID = 1 Freeway ID = 4

ICP header info:
OldClientID = 0 OldServerID = 0
Data length = 16 Cmd(2049) = DLI_ICP_CMD_ATTACH
Status(0) = DLI_ICP_ERR_NO_ERR
Parms: [0] = 0 [1] = 1 [2] = 0

Protocol header info:
Cmd(2049) = DLI_ICP_CMD_ATTACH
Modifier = 1 Link = 1
Cir = 0 Sess = 0 Seq = 0
Parms: [0] = 28 [1] = 0

220 DC 900-1385E

D: DLI Logging and Tracing
D.2.4 Trace Binary Format

You can use the following information to write your own decoder if you need to pro-

vide your own trace information. The trace file format is shown in Figure D–1.

Figure D–2 shows the TRACE_FCB ‘C’ structure.

Figure D–1: DLI Trace File Format

typedef struct _TRACE_FCB
{

int iMaxBufSize;
short iTraceSource;
short iPadding;

} TRACE_FCB, *PTRACE_FCB;

Figure D–2: TRACE_FCB ‘C’ Structure

TRACE_FCB

DLI_TRACE_HDR

TRACE_PACKET

DLI_TRACE_HDR

TRACE_PACKET

DLI_TRACE_HDR

TRACE_PACKET

…

DC 900-1385E 221

Freeway Data Link Interface Reference Guide
Figure D–3 shows the format of each trace packet in the DLI_TRACE_HDR ‘C’ struc-

ture.

D.3 Freeway Server Tracing

Tracing service is also provided from the Freeway server. Refer to the Freeway User

Guide for more information. You can use the trace information from both the client

application and the Freeway server to diagnose and troubleshoot your client applica-

tion. The Freeway trace service is identical to that of the client application; however, the

direction of the trace is the reverse of that of the client. For example, for the same data

packet, the client would indicate a read packet while the server would indicate a write

packet. Care therefore must be taken when translating the two traces.

typedef struct _DLI_TRACE_HDR
{

unsigned short usTrcType; /* type of tracing */
unsigned short usTrcSessID; /* current session ID */
int iTrcDataSize; /* sizeof the trace packet */
time_t tTrcTime /* time stamp */

} DLI_TRACE_HDR, *PDLI_TRACE_HDR;

Figure D–3: DLI_TRACE_HDR “C” Structure
222 DC 900-1385E

Index
A

Acknowledgment
see Data acknowledgment

Addressing
Internet 27

alwaysQIO DLI parameter 33, 64, 164
Asynchronous I/O

see Non-blocking I/O
asyncIO DLI parameter 33, 63, 64, 162
asyncIO TSI parameter 148, 149
Audience 13

B

Binary configuration files 27, 32, 56, 58, 59, 60,
62, 96, 99, 103, 107, 150, 161

management 60
Bit numbering 17
Blocking I/O 32, 104, 108

caution 115
code example 154
DLI configuration 144, 157
DLI session status 81, 115
example program 144
signal processing 53
TSI configuration 146
UNIX 206
VxWorks 208

boardNo DLI parameter 64, 82
BSC msgBlkSize parameter 41, 42
Buffer management 40

allocation and release 50
buffer size negotiation 49
cautions 51
client buffers 41
client configuration 45
DC 900-1385E
connection-specific buffers 48
example calculation 42
headers 51
ICP buffers 41
malloc vs dlBufAlloc 52
muxCfg file 51
server buffers 41
TSI buffer pool definition 46
using your own buffers 51

Byte ordering 17

C

callbackQsize DLI parameter 63
Categories of DLI functions 74
Caution

blocking I/O 115
data loss 75
dlOpen completion status 106
dlPoll session status 80
signal processing 53

cfgLink DLI parameter 64, 106, 150, 163
Client buffer configuration 45
Client buffers 41

allocation and release 50
connection-specific 48

Client operations 27
Client-server environment 26

establishing Internet address 27
Configuration 31

binary files 32, 56, 58, 59, 60, 62, 96, 99, 103,
107, 150, 161

management 60
client buffers 45
data link 36
definition parameters
223

Freeway Data Link Interface Reference Guide
protocol specific 66
DLI 55

alwaysQIO parameter 33, 64, 164
asyncIO parameter 33, 63, 64, 162
blocking I/O 144, 157
boardNo parameter 64, 82
callbackQsize parameter 63
cfgLink parameter 64, 106, 150, 163
client parameters 64
enable parameter 64, 106, 150, 163
family parameter 64, 70
localAck parameter 64, 134, 151, 164
logLev parameter 63, 64, 211
logName parameter 63, 211
main parameters 63
main section 62
maxErrors parameter 64, 81, 112, 126, 139,

193
maxInQ parameter 53, 64, 81
maxOutQ parameter 53, 65, 81
maxSess parameter 53, 63, 79, 104, 107
mode parameter 65, 70, 82, 145, 158
msgBlkSize parameter 66
portNo parameter 65, 82
protocol parameter 34, 38, 65, 70, 106, 145,

158
protocol-specific parameters 66
reuseTrans parameter 65, 190, 191
sessions 62
sessPerConn parameter 63
summary 55
text file 62
timeout parameter 103
traceLev parameter 63, 65, 213
traceName parameter 63, 116, 212
traceSize parameter 63, 101, 116, 212
transport parameter 35, 39, 62, 65, 146
tsiCfgName parameter 62, 63
writeType parameter 34, 66, 134, 151, 163

DLI and TSI 27
dlicfg program 32, 56, 99
error messages 69
file

DLI example 145, 158
example 67
224
rules 59
TSI example 147, 160

grammar (PDL) 71
language 59
on-line processing 61
session definition parameters 61
system 47, 78
TSI

asyncIO parameter 148, 149
blocking I/O 146
connection parameters 149
logLev parameter 148, 149
logName parameter 148
main parameters 148
maxBuffers parameter 46, 51, 53, 79, 86,

148
maxBufSize parameter 42, 46, 47, 48, 49,

50, 51, 53, 119, 125, 148, 149, 215
maxConn parameter 148
non-blocking I/O 159
server parameter 149
summary 56
timeout parameter 53, 120, 126, 139, 149
traceLev parameter 148, 149
traceName parameter 148
traceSize parameter 148
transport parameter 149
wellKnownPort parameter 149

tsicfg program 32, 56
Configuration processor

see dlicfg preprocessor program
Connection

TSI 38
TSI configuration 35, 39, 56, 62

example 147, 160
TSI termination 37

Connection status 49, 182
Connection-specific buffers 48
Context free grammar 71
Customer support 19

D

Data
caution, data loss 75
exchanging with remote application 28
DC 900-1385E

Index
format 83
headers 83

Data acknowledgment 64, 151
see also localAck DLI parameter

Data link interface
see DLI

Data link interface (DLI) 26, 27
Data structures 78

protocol optional arguments 83
session status 80, 114, 115
system configuration 78, 115

Data transfer 37
dlRead 122
dlWrite 134

Dead socket status 202
Dead sockets 202

error handling 202
TSI recognition 203

Direct memory access 26
dlBufAlloc (see also Functions) 86
dlBufFree (see also Functions) 89
dlClose (see also Functions) 90
dlControl (see also Functions) 95
dlerrno global variable 73, 76, 113, 187, 195
DLI

configuration 55
blocking I/O 157

error codes 187
features 28
function categories 74
functions 73, 75

see also Functions
header 48, 51
header files 185
overview 28
see also Configuration, DLI

DLI configuration parameters
BSC msgBlkSize 41, 42

DLI functions
overview 74
syntax synopsis 76

dlicfg preprocessor program 32, 56, 99
error messages 69
grammar 71
introduction 58
DC 900-1385E
language 59
rules 59

dlierr.h include file 187
dlInit (see also Functions) 99
DLITE embedded interface 22
dlListen (see also Functions) 103
dlOpen (see also Functions) 106
dlpErrString (see also Functions) 113
dlPoll (see also Functions) 114
dlPost (see also Functions) 121
dlRead (see also Functions) 122
dlSyncSelect (see also Functions) 128
dlTerm (see also Functions) 132
dlWrite (see also Functions) 134
Documents

reference 14
Download software 27, 74, 75

using dlControl 95

E

Electrical interface 25
Embedded ICP

environment 27
overview 22

Embedded ICP2432 30
enable DLI parameter 64, 106, 150, 163
Error codes 187

…_INVALID_STATE 202
…INVALID_STATE 81, 90
…UNBIND 202
command-specific 195
dlerrno global variable 73, 76, 113, 152, 164,

165, 187, 195
DLI_…_ERR_IO_FATAL 202
DLI_…_ERR_UNBIND 202
DLI_EWOULDBLOCK 196
DLI_POLL_ERR_BUF_LEN_PTR_NULL 11

7
DLI_READ_ERR_OVERFLOW 123
internal 187
see also Functions (return codes listed under

each function)
TSI_READ_ERR_OVERFLOW 51
TSI_WRIT_ERR_INVALID_LENGTH 49, 51

Error handling
225

Freeway Data Link Interface Reference Guide
dead sockets 202
DLI logging 211

Error messages
dlicfg 69

Errors
dead socket detection 202

Ethernet 25
Example program

blocking I/O 144
dlControl 179
dlPoll 182
non-blocking I/O 157
raw operation 176

Examples
calculation of buffer sizes 42
DLI configuration file 67

blocking I/O 145
non-blocking I/O 158

trace output 218
TSI configuration file

blocking I/O 147
non-blocking I/O 160

tutorial programs 141

F

family DLI parameter 64, 70
Features

DLI 28
ICP2432 embedded environment 30
product 25

Files
binary configuration 56

management 60
dlierr.h include file 187
example DLI configuration 67

blocking I/O 145
non-blocking I/O 158

example TSI configuration
blocking I/O 147
non-blocking I/O 160

fmpasdcfg DLI configuration 158
fmpastcfg TSI configuration 160
fmpssdcfg DLI configuration 145
fmpsstcfg TSI configuration 147
header include files 185
226
muxCfg 51
on-line configuration 61

fmpasdcfg DLI configuration file 158
fmpastcfg TSI configuration file 160
fmpssdcfg DLI configuration file 145
fmpsstcfg TSI configuration file 147
Freeway

client-server environment 26
header 83
overview 22

Functions
buffer management

dlBufAlloc 86
return codes 87, 195
see also 76, 142

dlBufFree 89
return codes 89, 195

see also 77, 142
control functions

dlControl 95
example 179
return codes 96
see also 77

data transfer
dlpErrString 73, 113

return codes 198
see also 76

dlPoll 114
DLI_POLL_GET_SESS_STATUS

option 80, 104, 108, 123, 202
DLI_POLL_GET_SYS_CFG

option 78, 86, 87, 125, 135, 137
example 182
return codes 117, 199

see also 76, 143, 162, 165
dlPost 121

return codes 113, 121, 199
dlRead 122

return codes 123, 200
see also 76, 142, 152, 164, 165, 174

dlSyncSelect 128
return codes 129, 200
see also 77

dlWrite 134
DC 900-1385E

Index
return codes 136, 201
see also 76, 142, 151, 163, 164, 174

DLI preparation
dlInit 99

return codes 100, 197
see also 76, 142, 150, 161

dlTerm 132
return codes 132, 200

see also 76, 77, 142, 153, 166
dlPoll

DLI_POLL_GET_SESS_STATUS
option 47, 49, 106

example program 141, 182
session handling

dlClose 90
return codes 91, 195
see also 77, 142, 153, 165

dlListen 103
return codes 104, 197

see also 76
dlOpen 106

caution, completion status 106
return codes 107, 198
see also 76, 142, 150, 162

tBufAlloc 50
tBufFree 50
tPoll

TSI_POLL_GET_CONN_STATUS
option 49, 182

TSI_POLL_GET_SYS_CFG option 47

G

Grammar
context free 71
PDL 71

H

Headers
data format 83
DLI 48, 51
example 48
files 185
Freeway 83
ICP 83, 95
DC 900-1385E
protocol 83, 95
trace file example 218
TSI 46, 51

History of revisions 18

I

ICP
connect to 36
disconnect from 37
header 83, 95
reset/download 95

ICP buffers 41
ICP2432 embedded environment 30
Internet addresses 27
I/O

blocking vs non-blocking 32
completion handler (IOCH) 33, 143, 161,

162, 164, 165, 205
polling 207
signal processing 53
UNIX environment 205
VMS environment 209
VxWorks environment 208

L

LAN interface processor 22
Link

configure 36
connect to remote 36
data transfer 39
disconnect from remote 37

localAck DLI parameter 64, 134, 151, 164
Logging services 211
logLev DLI parameter 63, 64, 211
logLev TSI parameter 148, 149
logName DLI parameter 63, 211
logName TSI parameter 148

M

MaxBuffers TSI parameter 46, 51
maxBuffers TSI parameter 53, 79, 86, 148
MaxBufSize TSI parameter 42, 46, 47, 48, 49,

50, 51, 149
maxBufSize TSI parameter 53, 119, 125, 148,

215
227

Freeway Data Link Interface Reference Guide
maxConn TSI parameter 148
maxErrors DLI parameter 64, 81, 112, 126, 139,

193
maxInQ DLI parameter 53, 64, 81
maxOutQ DLI parameter 53, 65, 81
maxSess DLI parameter 53, 63, 79, 104, 107
Memory requirements 53
Message multiplexor 35

connect to 36, 39
disconnect from 37, 40

mode DLI parameter 65, 70, 82, 145, 158
Modes of operation

normal and raw 84, 134
raw 103, 123

msgBlkSize BSC parameter 41, 42
msgBlkSize DLI parameter 66
MuxCfg file 51
MuxCfg server configuration file

Files
server MuxCfg configuration 41, 50, 51

N

Negotiation of buffer size 49
Non-blocking I/O 32, 104, 108

code example 167
example program 157
I/O completion handler 33
signal processing 53
TSI configuration 159
UNIX 206
VxWorks 208

Normal operation 34, 35
see also Operation

O

On-line configuration file processing 61
Operating system

Protogate’s real-time 22
Operation

normal 35
configure link 36
connect to ICP 36
connect to MsgMux 36
connect to remote 36
connect to TSI 35
228
disconnect from ICP 37
disconnect from MsgMux 37
disconnect from remote 37
disconnect from TSI 38
transfer data 37

normal vs raw 34
raw 38, 174

connect to MsgMux 39
connect to TSI 39
data transfer 39
disconnect from MsgMux 40
disconnect from TSI 40
example program 176

Optional arguments 38, 83, 174
C data structure 83

Overview
DLI 28
DLI functions 74
DLI hierarchy 35
embedded ICP 22
Freeway server 22
product 21

P

PCIbus ICP2432 30
Polling I/O 207
portNo DLI parameter 65, 82
Product

features 25
overview 21
support 19

Programs
dlicfg preprocessor 32, 56, 99
tsicfg preprocessor 32, 56
tutorial examples 141

Protocol
header 83, 95
optional arguments 38, 83, 174

protocol DLI parameter 34, 38, 65, 70, 106, 145,
158

R

Raw operation 34, 38, 174
example program 176
see also Operation
DC 900-1385E

Index
Reference documents 14
Reset/download ICP 95
Resource requirements 53
reuseTrans DLI parameter 65, 190, 191
Revision history 18
rlogin 25

S

Server buffers 41
Server processor 22
server TSI parameter 149
Server-resident application 208
Session

closing 28
configuration 56, 61, 62

DLI example 145, 158
example 67

main configuration 62
memory requirements 53
normal vs raw operation 34
opening 28
session ID 107
sessionID 104
status 80

Session status 106, 141, 182, 202
DLI_STATUS_DEAD_SOCKET 202

sessPerConn DLI parameter 63
SIGALRM 206, 207
SIGIO 206
Signal processing 53
SNMP 25
Sockets

dead socket detection 202
dead status 202

Software
download 27, 74, 75
download using dlControl 95

Solaris 206
Status

connection 49, 182
session 106, 141, 182, 202

Support, product 19
Synchronous I/O

see Blocking I/O
System
DC 900-1385E
configuration 47, 78
resource requirements 53

T

TCP/IP 25
Technical support 19
telnet 25
timeout DLI parameter 103
timeout TSI parameter 53, 120, 126, 139, 149
traceLev DLI parameter 63, 65, 213
traceLev TSI parameter 148, 149
traceName DLI parameter 63, 116, 212
traceName TSI parameter 148
traceSize DLI parameter 63, 101, 116, 212
traceSize TSI parameter 148
Tracing services 211, 212

binary format 221
example output 218
file layout 214
Freeway server 222

transport DLI parameter 35, 39, 62, 65, 146
Transport subsystem interface

see TSI
Transport subsystem interface (TSI) 27
transport TSI parameter 149
Troubleshooting 211
TSI 29, 35

connect to 35, 39
connection 38

configuration 35, 39, 56, 62
termination 37

disconnect from 38, 40
header 51
see also Configuration, TSI

TSI buffer pool definition 46
tsicfg preprocessor program 32, 56
tsiCfgName DLI parameter 62, 63
Tutorial example programs 141

U

UNIX environment 205

V

VMS environment 209
VxWorks 22
229

Freeway Data Link Interface Reference Guide
VxWorks environment 208

W

WAN interface processor 22
wellKnownPort TSI parameter 149
writeType DLI parameter 34, 66, 134, 151, 163
230
 DC 900-1385E

Freeway Data Link Interface Reference Guide

DC 900-1385E
Customer Report Form

We are constantly improving our products. If you have suggestions or problems you would

like to report regarding the hardware, software or documentation, please complete this form

and mail it to Protogate at 12225 World Trade Drive, Suite R, San Diego, CA 92128, or fax it

to (877) 473-0190.

If you are reporting errors in the documentation, please enter the section and page number.

Your Name:

Company:

Address:

Phone Number:

Product:

Problem or

Suggestion:

Protogate, Inc.
Customer Service

12225 World Trade Drive, Suite R
San Diego, CA 92128

	Freeway��® Data Link Interface Reference Guide
	DC�900�1385E

	Contents
	List of Figures
	List of Tables
	Preface
	1 Overview
	1.1� Product Overview
	1.1.1� Freeway Server
	Figure 1–1:� �Freeway Configuration
	1.1.2� Embedded ICP
	Figure 1–2:� Embedded ICP Configuration
	1.2� Freeway Client-Server Environment
	Figure 1–3:� A Typical Freeway Server Environment
	1.2.1� Establishing�Freeway Server Internet Addresses
	1.3� Embedded ICP Environment
	1.4� Client Operations
	1.4.1� Defining the DLI and TSI Configuration
	1.4.2� Opening a Session
	1.4.3� Exchanging Data with the Remote Application
	1.4.4� Closing a Session
	1.5� DLI Overview and Features
	1.6� Protogate’s Embedded ICP2432 for the PCIbus
	2 DLI Concepts
	2.1� Configuration in the Freeway Environment
	2.2� Blocking versus Non-blocking I/O
	2.2.1� I/O Completion Handler for Non-Blocking I/O
	2.3� Normal versus Raw Operation
	2.3.1� Normal Operation
	2.3.1.1� Connecting to the TSI Service Layer�
	2.3.1.2� Connecting to the Message Multiplexor�
	2.3.1.3� Connecting to the ICP�
	2.3.1.4� Configuring the Data Link�
	2.3.1.5� Connecting to the Remote Data Link Application�
	2.3.1.6� Exchanging Data with the Remote Data Link Application�
	2.3.1.7� Disconnecting from the Remote Data Link Application�
	2.3.1.8� Disconnecting from the ICP�
	2.3.1.9� Disconnecting from the Message Multiplexor�
	2.3.1.10� Disconnecting from the TSI Service Layer�
	2.3.2� Raw Operation
	2.3.2.1� Connecting to the TSI Service Layer�
	2.3.2.2� Connecting to the Message Multiplexor�
	2.3.2.3� Exchanging Data with the Remote Data Link Application�
	2.3.2.4� Disconnecting from the Message Multiplexor�
	2.3.2.5� Disconnecting from the TSI Service Layer�
	2.4� Buffer Management
	2.4.1� Overview of the Freeway System Buffer Relationships
	2.4.1.1� Example Calculation to Change ICP, Client, and Server Buffer Sizes
	Table 2–1:� Required Values for Calculating New �maxBufSize Parameter
	Figure 2–1:� Client DLI Configuration File Changes (BSC Example)
	Figure 2–2:� Client TSI Configuration File Changes
	Figure 2–3:� Server MuxCfg TSI Configuration File Changes
	2.4.2� Client TSI Buffer Configuration
	2.4.2.1� TSI Buffer Pool Definition
	Figure 2–4:� TSI Buffer Size Example
	Figure 2–5:� DLI Buffer Size Example
	2.4.2.2� Connection-Specific Buffer Definition
	2.4.2.3� TSI Buffer Size Negotiation
	2.4.3� Server TSI Buffer Configuration
	2.4.4� Buffer Allocation and Release
	2.4.5� Cautions for Changing Buffer Sizes
	2.4.6� Using Your Own Buffers
	Figure 2–6:� Comparison of malloc and dlBufAlloc Buffers
	Figure 2–7:� Using the malloc Function for Buffer Allocation
	2.5� System Resource Requirements
	2.5.1� Memory Requirements
	2.5.2� Signal Processing
	3 DLI Configuration
	3.1� Configuration Process Overview
	3.2� DLI Configuration versus TSI Configuration
	Figure 3–1:� DLI Overall Architecture
	3.3� Introduction to DLI Configuration
	3.3.1� DLI Configuration Language�
	3.3.2� Rules of the DLI Configuration File
	3.3.3� Binary Configuration File Management
	3.3.4� On-line Configuration File Processing
	3.4� DLI Session Definition
	3.4.1� DLI “main” Configuration Section
	Figure 3–2:� DLI Example “main” Configuration Section
	Table 3–1:� DLI “main” Parameters and Defaults
	3.4.2� DLI Session Configuration Sections
	Table 3–2:� DLI Client-Related Parameters and Defaults�
	3.4.3� Protocol-Specific Parameters for a Session
	Table 3–3:� DLI Protocol-Specific ICP Link Configuration Parameters
	Figure 3–3:� DLI Configuration Text File for Two Links�
	3.5� Miscellaneous DLI Configuration Details
	3.5.1� DLI Configuration Error Messages�
	3.5.2� Protogate Definition Language (PDL) Grammar�
	4 DLI Functions
	4.1� Overview of DLI Functions
	4.1.1� DLI Error Handling
	4.1.2� Overview of DLI Functions
	4.1.2.1� Categories of DLI Functions
	Table 4–1:� DLI Function Categories
	4.1.2.2� Summary of DLI Functions
	Table 4–2:� DLI Functions: Syntax and Parameters (Listed in Typical Call Order)�
	4.1.3� DLI Data Structures
	4.1.3.1� DLI System Configuration
	Figure 4–1:� DLI System Configuration Data Structure
	Table 4–3:� DLI System Configuration Data Structure Fields
	4.1.3.2� DLI Session Status�
	Figure 4–2:� DLI Session Status Data Structure
	Table 4–4:� DLI Session Status Data Structure Fields
	4.1.3.3� DLI Protocol-Specific Optional Arguments�
	Figure 4–3:� “C” Definition of DLI Optional Arguments Structure
	Figure 4–4:� Freeway DLI Data Format
	Table 4–5:� DLI Protocol-Specific Optional Arguments Data Structure�
	4.2� �dlBufAlloc�
	4.3� �dlBufFree�
	4.4� �dlClose�
	4.5� �dlControl�
	4.6� dlInit�
	4.7� �dlListen�
	4.8� dlOpen�
	4.9� �dlpErrString�
	4.10� �dlPoll�
	4.11� �dlPost�
	4.12� �dlRead�
	4.13� dlSyncSelect�
	4.14� dlTerm�
	4.15� �dlWrite�
	5 Tutorial Example Programs
	Figure 5–1:� Environment for Example Programs
	5.1� Example Program using Blocking I/O
	5.1.1� DLI Configuration for Blocking I/O and Normal Operation
	Figure 5–2:� DLI Text Configuration File for Blocking I/O (�fmpssdcfg)
	5.1.2� TSI Configuration for Blocking I/O
	Figure 5–3:� TSI Text Configuration File for Blocking I/O (�fmpsstcfg)
	Table 5–1:� TSI “main” Parameters
	Table 5–2:� TSI Connection-Related Parameters
	5.1.3� Blocking I/O Example Code Listing
	Figure 5–4:� FMP Blocking I/O Example (��fmpssp.c)�
	5.2� Example Program using Non-Blocking I/O
	5.2.1� DLI Configuration for Non-Blocking I/O and Normal Operation
	Figure 5–5:� DLI Text Configuration File for Non-Blocking I/O (�fmpasdcfg)
	5.2.2� TSI Configuration for Non-Blocking I/O
	Figure 5–6:� TSI Text Configuration File for Non-Blocking I/O (�fmpastcfg)
	5.2.3� Non-Blocking I/O Example Code Listing
	Figure 5–7:� FMP Non-Blocking I/O Example (��fmpasp.c)�
	5.3� Using Raw Operation
	5.3.1� Optional Arguments Structure
	Table 5–3:� Optional Arguments Required for Raw dlWrite Requests
	Figure 5–8:� Link Statistics Report using Raw Operation�
	5.4� Example Program using dlControl
	Figure 5–9:� Example dlControl Program�
	5.5� Example dlPoll Using �usMaxSessBufSize Field
	Figure 5–10:� Example dlPoll Program Using usMaxSessBufSize Field�
	A DLI Header Files
	Table A–1:� DLI Header Files
	B DLI Error Codes
	B.1� Internal Error Codes
	B.2� Command-Specific Error Codes
	Table B–1:� DLI Command-specific Error Codes�
	B.3� Error Handling for Dead Socket Detection
	C UNIX, VxWorks, and VMS I/O
	C.1� UNIX Environment
	C.1.1� Blocking I/O Operations
	C.1.2� Non-blocking I/O Operations
	C.1.3� SOLARIS use of SIGALRM
	C.1.4� Polling I/O Operations
	C.2� VxWorks Environment
	C.2.1� Blocking I/O Operations
	C.2.2� Non-blocking I/O Operations
	C.3� VMS Environment
	D DLI Logging and Tracing
	D.1� DLI Logging
	D.2� DLI Tracing
	D.2.1� Trace Definitions
	D.2.2� Decoded Trace Layout
	D.2.3� Example dlidecode Program Output
	D.2.4� Trace Binary Format
	Figure D–1:� DLI Trace File Format
	Figure D–2:� TRACE_FCB ‘C’ Structure
	Figure D–3:� DLI_TRACE_HDR “C” Structure
	D.3� �Freeway Server Tracing
	Index

