
Protogate, Inc
12225 World T
San Diego, CA
March 2002
.
rade Drive, Suite R
 92128

Freeway®

Transport Subsystem Interface
Reference Guide

DC 900-1386D

Protogate, Inc.
12225 World Trade Drive, Suite R
San Diego, CA 92128
(858) 451-0865

Freeway Transport Subsystem Interface Reference Guide
© 2002 Protogate, Inc. All rights reserved
Printed in the United States of America

This document can change without notice. Protogate, Inc. accepts no liability for any errors this
document might contain.

Freeway is a registered trademark of Simpact, Inc.
All other trademarks and trade names are the properties of their respective holders.

Contents
List of Figures 7

List of Tables 9

Preface 11

1 Overview 17

1.1 Product Overview . 17

1.1.1 Freeway Server . 18

1.1.2 Embedded ICP . 18

1.2 Freeway Client-Server Environment Using TSI 22

1.2.1 Establishing Freeway Internet Addresses 23

1.2.2 Defining the TSI Configuration . 23

1.2.3 Establishing a Freeway TSI Connection . 24

1.2.4 Exchanging Data through the Freeway Message Multiplexor 24

1.2.5 Closing a Freeway Session . 24

1.3 TSI Overview and Features . 25

2 TSI Concepts 29

2.1 Configuration in the Freeway Environment . 29

2.2 Blocking versus Non-blocking I/O . 30

2.2.1 I/O Completion Handler for Non-Blocking I/O 31

2.3 Buffer Management . 31

2.3.1 Overview of the Freeway System Buffer Relationships 32

2.3.1.1 Example Calculation to Change ICP, Client, and Server Buffer Sizes . 33

2.3.2 Client TSI Buffer Configuration. 35

2.3.2.1 TSI Buffer Pool Definition . 36
DC 900-1386D 3

Freeway Transport Subsystem Interface Reference Guide
2.3.2.2 Connection-Specific Buffer Definition 38

2.3.2.3 TSI Buffer Size Negotiation. 39

2.3.3 Server TSI Buffer Configuration . 40

2.3.4 Buffer Allocation and Release . 40

2.3.5 Cautions for Changing Buffer Sizes . 41

2.3.6 Using Your Own Buffers . 41

2.3.7 Buffer Management (Client versus Server-Resident Applications) 43

2.4 System Resource Requirements . 44

2.4.1 Signal Processing . 45

3 TSI Configuration 47

3.1 Configuration Process Overview . 47

3.2 Introduction to TSI Configuration . 50

3.2.1 TSI Configuration Language . 50

3.2.2 Rules of the TSI Configuration File . 51

3.2.3 Binary Configuration File Management 52

3.2.4 On-line Configuration File Processing 52

3.3 TSI Connection Definition. 53

3.3.1 Parameters for the “main” Definition . 54

3.3.2 Parameters for the Connection Definition (Non-transport Specific) . . . 56

3.3.3 Parameters for Connection Definition (TCP/IP Socket Transport) 58

3.3.4 Parameters for Connection Definition (Shared-Memory Transport) . . . 59

3.4 Example TSI Configurations. 60

3.4.1 TCP/IP Socket Transport Interface . 60

3.4.2 Shared-Memory Transport Interface (VxWorks Only) 62

3.5 Protogate’s Freeway Server TSI Configuration 65

3.6 Miscellaneous TSI Configuration Details . 67

3.6.1 TSI Configuration Error Messages . 67

3.6.2 Protogate Definition Language (PDL) Grammar 69

4 TSI Functions 71

4.1 Overview of TSI Functions. 71

4.1.1 TSI Error Handling . 71

4.1.2 Categories of TSI Functions . 72

4.1.2.1 Summary of TSI Functions . 73

4.1.3 TSI Data Structures . 76
4 DC 900-1386D

Contents
4.1.3.1 TSI System Configuration . 76

4.1.3.2 TSI Connection Status . 78

4.1.3.3 TSI Connection Definition List . 78

4.2 tBufAlloc . 80

4.3 tBufFree . 82

4.4 tConnect . 84

4.5 tDisconnect . 88

4.6 tInit . 91

4.7 tListen . 95

4.8 tPoll . 100

4.9 tPost . 107

4.10 tRead . 109

4.11 tSyncSelect . 114

4.12 tTerm . 117

4.13 tWrite . 120

A TSI Common Error Codes 125

A.1 Internal Error Codes . 125

A.2 Command-Specific Error Codes . 137

B UNIX, VxWorks, and VMS I/O 143

B.1 UNIX Environment . 143

B.1.1 Blocking I/O operations . 143

B.1.2 Non-Blocking I/O Operations. 144

B.1.3 SOLARIS use of SIGALRM . 144

B.1.4 Polling I/O Operations. 145

B.2 VxWorks Environment . 145

B.2.1 Blocking I/O Operations. 146

B.2.2 Non-Blocking I/O Operations. 146

B.3 VMS Environment . 147

C TSI Logging and Tracing 149

C.1 TSI Logging . 149

C.2 TSI Tracing . 150

C.2.1 Trace Definitions . 150

C.2.2 Decoded Trace Layout . 152
DC 900-1386D 5

Freeway Transport Subsystem Interface Reference Guide
C.2.3 Example tsidecode Program Output. 154

C.2.4 Trace Binary Format . 158

C.3 Freeway Server Tracing . 159

Index 161
6 DC 900-1386D

List of Figures
Figure 1–1: Freeway Configuration. 19

Figure 1–2: Embedded ICP Configuration. 20

Figure 1–3: A Typical Freeway Environment. 23

Figure 1–4: TSI Environment . 26

Figure 1–5: TSI in the Freeway Operating Environment 27

Figure 2–2: Client TSI Configuration File Changes . 34

Figure 2–1: Client DLI Configuration File Changes (BSC Example) 34

Figure 2–3: Server MuxCfg TSI Configuration File Changes 35

Figure 2–4: TSI Buffer Size Example . 37

Figure 2–5: DLI Buffer Size Example . 38

Figure 2–6: Comparison of malloc and tBufAlloc Buffers 42

Figure 2–7: Using the malloc Function for Buffer Allocation 42

Figure 3–1: TSI Architecture . 49

Figure 3–2: Example Configuration for TCP/IP Socket Transport Interface 61

Figure 3–3: Example Configuration for Shared-Memory Transport Interface 63

Figure 3–4: TSI Configuration File (MuxCfg) for Protogate Server-Resident TSI 66

Figure 4–1: TSI System Configuration Data Structure 76

Figure 4–2: TSI Connection Status Data Structure . 78

Figure C–1: TSI Trace File Format . 158

Figure C–2: TRACE_FCB ‘C’ Structure . 158

Figure C–3: TSI_TRACE_HDR ‘C’ Structure . 159
DC 900-1386D 7

Freeway Transport Subsystem Interface Reference Guide
8 DC 900-1386D

List of Tables
Table 2–1: Required Values for Calculating New MaxBufSize Parameter. 34

Table 3–1: TSI Parameters for “main” Definition . 54

Table 3–2: TSI Parameters for Non-Transport Specific Connection 56

Table 3–3: TSI Parameters for TCP/IP Socket Transport Connection 58

Table 3–4: TSI Parameters for Shared-Memory Transport Connection 59

Table 4–1: TSI Function Groups . 72

Table 4–2: TSI Functions: Syntax and Parameters (Listed in Typical Call Order) 74

Table 4–3: TSI System Configuration Data Structure Fields 77

Table 4–4: TSI Connection Status Data Structure Fields 79

Table A–1: TSI Command-specific Error Codes . 137
DC 900-1386D 9

Freeway Transport Subsystem Interface Reference Guide
10 DC 900-1386D

Preface
Purpose of Document

This document describes Protogate’s transport subsystem interface (TSI). The TSI helps

you develop applications interfacing with a Freeway communications server or

embedded intelligent communications processor (ICP).

Note
In this document, the term “Freeway” can mean either a Freeway

server or an embedded ICP. For the embedded ICP, also refer to the

user guide for your ICP and operating system (for example, the

ICP2432 User Guide for Windows NT).

Intended Audience

This document should be read by application programmers. You should be familiar

with the C programming language and have some knowledge of networks.

If your application will use Protogate’s data link interface (DLI), which uses the TSI, you

will need to use TSI only for configuration (see Chapter 3 of this document). Addition-

ally, you should be familiar with the Freeway Data Link Interface Reference Guide.

If your application will interface directly to the TSI, you should be familiar with the pro-

gramming details described in this document. If your TSI application will interface to

one of Protogate’s protocol services running on a Freeway ICP, you will also need to be
DC 900-1386D 11

Freeway Transport Subsystem Interface Reference Guide

I had a
terrible time
getting the
References
split correctly
“References”
must be
“anywhere/
keep with
previous.”
Tabular must
be
“float/orphan
=1.” At one
point I had to
make
“Document
Conventions”
= top of page,
but then later
undid it and i
was OK. The
worst part is
that these
settings
appear to be
identical to
the ones from
USER1 refs
that I started
with!!!
11/16/99
Leslie: Add
1567 to the
“Specials”
table.
familiar with the Freeway Client-Server Interface Control Document and your particular

protocol programmer’s guide.

Organization of Document

Chapter 1 is an overview of Freeway and the TSI.

Chapter 2 describes various TSI concepts that you should understand before writing an

application program.

Chapter 3 describes the TSI configuration services.

Chapter 4 gives details of each TSI function.

Appendix A lists additional error codes not included in the reference sections. It also

provides summary tables of all TSI error codes as they relate to specific TSI function

calls.

Appendix B compares I/O handling in the UNIX, VMS, and VxWorks environments.

Appendix C describes the TSI logging and tracing capabilities.

Protogate References

The following general product documentation list is to familiarize you with the avail-

able Protogate Freeway and embedded ICP products. The applicable product-specific

reference documents are mentioned throughout each document (also refer to the

“readme” file shipped with each product). Most documents are available on-line at Pro-

togate’s web site, www.protogate.com.

General Product Overviews

• Freeway 1100 Technical Overview 25-000-0419

• Freeway 2000/4000/8800 Technical Overview 25-000-0374

• ICP2432 Technical Overview 25-000-0420

• ICP6000X Technical Overview 25-000-0522

.

t

12 DC 900-1386D

Preface
Hardware Support

• Freeway 1100/1150 Hardware Installation Guide DC-900-1370

• Freeway 1200/1300 Hardware Installation Guide DC-900-1537

• Freeway 2000/4000 Hardware Installation Guide DC-900-1331

• Freeway 3100 Hardware Installation Guide DC-900-2002

• Freeway 3200 Hardware Installation Guide DC-900-2003

• Freeway 3400 Hardware Installation Guide DC-900-2004

• Freeway 3600 Hardware Installation Guide DC-900-2005

• Freeway 8800 Hardware Installation Guide DC-900-1553

• Freeway ICP6000R/ICP6000X Hardware Description DC-900-1020

• ICP6000(X)/ICP9000(X) Hardware Description and Theory of
Operation

DC-900-0408

• ICP2424 Hardware Description and Theory of Operation DC-900-1328

• ICP2432 Hardware Description and Theory of Operation DC-900-1501

• ICP2432 Electrical Interfaces (Addendum to DC-900-1501) DC-900-1566

• ICP2432 Hardware Installation Guide DC-900-1502

Freeway Software Installation and Configuration Support

• Freeway Message Switch User Guide DC-900-1588

• Freeway Release Addendum: Client Platforms DC-900-1555

• Freeway User Guide DC-900-1333

• Freeway Loopback Test Procedures DC-900-1533

Embedded ICP Software Installation and Programming Support

• ICP2432 User Guide for Digital UNIX DC-900-1513

• ICP2432 User Guide for OpenVMS Alpha DC-900-1511

• ICP2432 User Guide for OpenVMS Alpha (DLITE Interface) DC-900-1516

• ICP2432 User Guide for Solaris STREAMS DC-900-1512

• ICP2432 User Guide for Windows NT DC-900-1510

• ICP2432 User Guide for Windows NT (DLITE Interface) DC-900-1514

Application Program Interface (API) Programming Support

• Freeway Data Link Interface Reference Guide DC-900-1385
DC 900-1386D 13

Freeway Transport Subsystem Interface Reference Guide
Document Conventions

This document follows the most significant byte first (MSB) and most significant word

first (MSW) conventions for bit-numbering and byte-ordering. In all packet transfers

• Freeway Transport Subsystem Interface Reference Guide DC-900-1386

• QIO/SQIO API Reference Guide DC-900-1355

Socket Interface Programming Support

• Freeway Client-Server Interface Control Document DC-900-1303

Toolkit Programming Support

• Freeway Server-Resident Application and Server Toolkit
Programmer Guide

DC-900-1325

• OS/Impact Programmer Guide DC-900-1030

• Protocol Software Toolkit Programmer Guide DC-900-1338

Protocol Support

• ADCCP NRM Programmer Guide DC-900-1317

• Asynchronous Wire Service (AWS) Programmer Guide DC-900-1324

• AUTODIN Programmer Guide DC-908-1558

• Bit-Stream Protocol Programmer Guide DC-900-1574

• BSC Programmer Guide DC-900-1340

• BSCDEMO User Guide DC-900-1349

• BSCTRAN Programmer Guide DC-900-1406

• DDCMP Programmer Guide DC-900-1343

• FMP Programmer Guide DC-900-1339

• Military/Government Protocols Programmer Guide DC-900-1602

• N/SP-STD-1200B Programmer Guide DC-908-1359

• SIO STD-1300 Programmer Guide DC-908-1559

• X.25 Call Service API Guide DC-900-1392

• X.25/HDLC Configuration Guide DC-900-1345

• X.25 Low-Level Interface DC-900-1307
14 DC 900-1386D

Preface
between the client applications and the ICPs, the ordering of the byte stream is pre-

served.

The term “Freeway” refers to any of the Freeway server models (for example, Freeway

500/3100/3200/3400 PCI-bus servers, Freeway 1000 ISA-bus servers, or Freeway

2000/4000/8800 VME-bus servers). References to “Freeway” also may apply to an

embedded ICP product using DLITE (for example, the embedded ICP2432 using

DLITE on a Windows NT system).

Physical “ports” on the ICPs are logically referred to as “links.” However, since port and

link numbers are usually identical (that is, port 0 is the same as link 0), this document

uses the term “link.”

Program code samples are written in the “C” programming language.

Revision History

The revision history of the Freeway Transport Subsystem Interface Reference Guide, Pro-

togate document DC 900-1386D, is recorded below:

Document Revision Release Date Description

DC 900-1386A
Special Freeway

Server 2.5 Release

February 1997 Initial release using new document number: Include Release
Notes for changes that potentially affect existing user
applications.

DC 900-1386B June 1998 Incorporate previous release notes:
• Modify Buffer Management Section 2.3 on page 31
• Enhance error detection and reporting (Chapter 4

and Appendix A)
• Regarding “Error Handling for Dead Socket Detection,”

refer to the Freeway Data Link Interface Reference
Guide

Dual Ethernet support is now handled by the “Added Inter-
faces” configuration described in the Freeway User Guide

Simpact’s browser interface is no longer supported
Modify Section 1.1 on page 17 for embedded ICPs
Add tSyncSelect function (Section 4.11 on page 114)
Add new error codes to Appendix A

DC 900-1386C December 1999 Add LocalPort TSI configuration parameter (Table 3–3 on
page 58)
DC 900-1386D 15

Freeway Transport Subsystem Interface Reference Guide
Customer Support

If you are having trouble with any Protogate product, call us at (858) 451-0865 Monday

through Friday between 8 a.m. and 5 p.m. Pacific time.

You can also fax your questions to us at (877) 473-0190 any time. Please include a cover

sheet addressed to “Customer Service.”

We are always interested in suggestions for improving our products. You can use the

report form in the back of this manual to send us your recommendations.

DC 900-1386D March 2002 Update contact information for Protogate, Inc. Also, refer-
ence new Freeway model numbers.

Document Revision Release Date Description
16 DC 900-1386D

Chapter

Most recent
modification
date:
6/1/99 Ginni
Added
1200/1300 to
FW list
1 Overview
This document describes Protogate’s transport subsystem interface (TSI) to the Freeway

communications server. The TSI presents a consistent, high-level, common interface

across multiple clients, operating systems, and transport services. The TSI provides

connection-oriented data services to your client application with a subroutine library.

This library provides functions that permit your application to access, configure, estab-

lish and terminate connections, and exchange data with a TSI peer application. Within

the Freeway server, the TSI is used by Freeway’s message multiplexor (MsgMux) to

communicate with client applications.

Note
In this document, the term “Freeway” can mean either a Freeway

server or an embedded ICP. For the embedded ICP, also refer to the

user guide for your ICP and operating system (for example, the

Freeway User Guide).

1.1 Product Overview

Protogate provides a variety of wide-area network (WAN) connectivity solutions for

real-time financial, defense, telecommunications, and process-control applications.

Protogate’s Freeway server offers flexibility and ease of programming using a variety of

LAN-based server hardware platforms. Now a consistent and compatible embedded

intelligent communications processor (ICP) product offers the same functionality as

the Freeway server, allowing individual client computers to connect directly to the

WAN.

:

DC 900-1386D 17

Freeway Transport Subsystem Interface Reference Guide
Both Freeway and the embedded ICP use the same data link interface (DLI). Therefore,

migration between the two environments simply requires linking your client applica-

tion with the proper library. Various client operating systems are supported (for exam-

ple, UNIX, VMS, and Windows NT).

Protogate protocols that run on the ICPs are independent of the client operating system

and the hardware platform (Freeway or embedded ICP).

1.1.1 Freeway Server

Protogate’s Freeway communications servers enable client applications on a local-area

network (LAN) to access specialized WANs through the DLI. The Freeway server can be

any of several models (for example, Freeway 1100/1150, Freeway 1200/1300, Freeway

2000/4000, or Freeway 8000/8800). The Freeway server is user programmable and com-

municates in real time. It provides multiple data links and a variety of network services

to LAN-based clients. Figure 1–1 shows the Freeway configuration.

To maintain high data throughput, Freeway uses a multi-processor architecture to sup-

port the LAN and WAN services. The LAN interface is managed by a single-board com-

puter, called the server processor. It uses the commercially available VxWorks

operating system to provide a full-featured base for the LAN interface and layered ser-

vices needed by Freeway.

Freeway can be configured with multiple WAN interface processor boards, each of

which is a Protogate ICP. Each ICP runs the communication protocol software using

Protogate’s real-time operating system.

1.1.2 Embedded ICP

The embedded ICP connects your client computer directly to the WAN (for example,

using Protogate’s ICP2432 PCIbus board). The embedded ICP provides client applica-

tions with the same WAN connectivity as the Freeway server, using the same data link

interface (via the DLITE embedded interface). The ICP runs the communication pro-

tocol software using Protogate’s real-time operating system. Figure 1–2 shows the

embedded ICP configuration.
18 DC 900-1386D

1: Overview
Figure 1–1: Freeway Configuration

WAN
Interface

Processors

Freeway

Ethernet LAN

ICP

ICP

34
13

Client n

Application

WAN Protocol
Options

In
du

st
ry

 S
ta

nd
ar

d
Bu

s

Client 2

Application

API API

Server Software

Client 1

Application

DLI
API

DLI DLI

Commercial

Financial

Government

Military

S C A D A
DC 900-1386D 19

Freeway Transport Subsystem Interface Reference Guide
Figure 1–2: Embedded ICP Configuration

Client Computer

3
4
1
4

lWAN Protoco
Options

In
d

u
st

ry
 S

ta
n

d
ar

d
 B

u
s

Client
Appl 1

 DLITE
API

IC
P

 D
ev

ic
e

D
ri

ve
r

Embedded ICP

Protogate
WAN Protocol

Software

Client
Appl 2

 DLITE
API

Client
Appl 3

 DLITE
API

Commercial

Financial

Government

Military

S C A D A
20 DC 900-1386D

1: Overview
Summary of product features:

• Provision of WAN connectivity either through a LAN-based Freeway server or

directly using an embedded ICP

• Elimination of difficult LAN and WAN programming and systems integration by

providing a powerful and consistent data link interface

• Variety of off-the-shelf communication protocols available from Protogate which

are independent of the client operating system and hardware platform

• Support for multiple WAN communication protocols simultaneously

• Support for multiple ICPs (two, four, eight, or sixteen communication lines per

ICP)

• Wide selection of electrical interfaces including EIA-232, EIA-449, EIA-530, and

V.35

• Creation of customized server-resident and ICP-resident software, using Proto-

gate’s software development toolkits

• Freeway server standard support for Ethernet and Fast Ethernet LANs running

the transmission control protocol/internet protocol (TCP/IP)

• Freeway server standard support for FDDI LANs running the transmission con-

trol protocol/ internet protocol (TCP/IP)

• Freeway server management and performance monitoring with the simple net-

work management protocol (SNMP), as well as interactive menus available

through a local console, telnet, or rlogin
DC 900-1386D 21

Freeway Transport Subsystem Interface Reference Guide

Techpubs —
This Section
1.2 is geared
strictly to TSI
(not DLI). Do
not use the
“standard”
Section 1.2 in
the Techpubs
“References.”
1.2 Freeway Client-Server Environment Using TSI

Freeway acts as a gateway that connects a client on a local-area network to a wide-area

network. Through Freeway, a client application can exchange data with a remote data

link application. Your client application must interact with the Freeway server and its

resident ICPs before exchanging data with the remote data link application.

One of the major Freeway components is the message multiplexor (MsgMux) that

manages the data traffic between the LAN and the WAN environments. The client

application typically interacts with the Freeway MsgMux through a TCP/IP BSD-style

socket interface (or a shared-memory interface if it is a server-resident application

(SRA)). The ICPs interact with the MsgMux through the DMA and/or shared-memory

interface of the industry-standard bus to exchange WAN data.

From the client application’s point of view, the complexities are handled through a sim-

ple and consistent transport subsystem interface (TSI) which provides connection-ori-

ented functions (tConnect, tWrite, tRead, and tDisconnect). If your application interfaces

directly with the TSI, many of the overhead details (such as I/O, header, and protocol

specifics) must be handled by your application. In this case, you must be familiar not

only with this document, but also with the Freeway Client-Server Interface Control Doc-

ument. If your TSI application will communicate with a remote data link application,

you must also be familiar with the appropriate protocol programmer’s guide.

Figure 1–3 shows a typical Freeway connected to a locally attached client by a TCP/IP

network across an Ethernet LAN interface. Running a client TSI application in the

Freeway client-server environment requires the basic steps described in Section 1.2.1

through Section 1.2.5.

22 DC 900-1386D

1: Overview
1.2.1 Establishing Freeway Internet Addresses

Freeway must be addressable in order for a client application to communicate with it.

In the Figure 1–3 example, the TCP/IP Freeway server name is freeway2, and its unique

Internet address is 192.52.107.100. The client machine where the client application

resides is client1, and its unique Internet address is 192.52.107.99. Refer to the Freeway

User Guide to initially set up your Freeway and download the operating system, server,

and protocol software to Freeway.

1.2.2 Defining the TSI Configuration

After establishing the addressing for your client machine and Freeway server, you must

define the TSI connections between your client application and Freeway. To accom-

plish this, you first define the configuration parameters in a TSI ASCII configuration

file, and then you run the tsicfg preprocessor program to create a binary configuration

file (see Chapter 3). The tInit function uses the binary configuration file to initialize the

TSI environment. If your application uses the DLI, refer to the Freeway Data Link Inter-

face Reference Guide for DLI configuration.

Figure 1–3: A Typical Freeway Environment

Freeway

ICP0

ICP1

ICP2

ICP3

TCP/IP

client1
192.52.107.99

freeway2
192.52.107.100

Client
Application TSI

TSI Msg
Mux

Ethernet

WAN
Protocols

TCP/IP
Socket Interface

Client

31
26

St
an

da
rd

 B
u

s
In

du
st

ry

SR
A

Shared Memory
Interface

TSI
DC 900-1386D 23

Freeway Transport Subsystem Interface Reference Guide
1.2.3 Establishing a Freeway TSI Connection

After the TSI configuration is properly defined, your client TSI application uses the

tConnect function to establish a TSI connection with the Freeway MsgMux through the

TCP/IP BSD-style socket interface.

1.2.4 Exchanging Data through the Freeway Message Multiplexor

After the TSI connection is established, the client application can then exchange data

through the Freeway MsgMux using the tRead and tWrite functions. If your application

needs to exchange data with a remote data link application through a Freeway ICP, you

must handle the protocol-specific link configuration and other details pertaining to the

ICP. In this case, refer to your particular protocol programmer’s guide.

1.2.5 Closing a Freeway Session

When your application finishes exchanging data, it calls the tDisconnect function to dis-

connect from the Freeway MsgMux.
24 DC 900-1386D

1: Overview
1.3 TSI Overview and Features

The TSI provides a transport-independent data transfer mechanism with a common

interface across varying operating systems. The TSI shields data transfer applications

from any dependencies on the underlying transport service (TCP/IP sockets, shared

memory, and so on). In addition, TSI applications are easily ported, due to the consis-

tent TSI interface across all supported operating systems.

The TSI consists of the TSI configuration preprocessor program, tsicfg, and a statically

linked reference library containing a set of flexible and easy-to-use functions to estab-

lish, maintain, and terminate a connection with a TSI peer application.

The tsicfg preprocessor provides flexibility to the TSI application by allowing the run-

time characteristics of the TSI to be modified without recompiling the application soft-

ware. The TSI can be configured to use blocking or non-blocking I/O. Non-blocking

I/O allows an application to service multiple TSI connections without blocking on any

one connection. The tsicfg preprocessor program is described in Chapter 3.

The TSI operates within a client-server scheme, in which a TSI “server” application lis-

tens for incoming connection requests from TSI “client” applications. However, any

TSI application can function as both a client and a server; that is, a TSI application can

both listen for incoming connection requests and send connection requests to other TSI

server applications. Figure 1–4 shows some possible applications within a TSI environ-

ment.

As shown in Figure 1–5, a TSI “server” application is used by Freeway’s MsgMux. Thus

TSI “client” applications can communicate in a peer relationship with the Freeway TSI

“server” application. Remote client applications can use the TSI’s TCP/IP socket inter-

face, while server-resident applications (SRAs) can use the TSI’s shared-memory inter-

face. Each TSI client application shown in Figure 1–5 is in a peer relationship with the

Freeway TSI server application (that is, there is a TSI connection between each client

TSI and the Freeway MsgMux).
DC 900-1386D 25

Freeway Transport Subsystem Interface Reference Guide
Figure 1–4: TSI Environment

Freeway

TSI

Server Resident Application 1

Shared
Memory

TCP Socket ...

TSI

Server Resident Application 2

Shared
Memory

TCP Socket ...

TCP/IP Socket

30
88

TSI

Application 3

TCP Socket ...

TCP/IP Socket

Client

LAN
26 DC 900-1386D

1: Overview
Figure 1–5: TSI in the Freeway Operating Environment

Application

DLI

TSI

Application

TSI

TSI DLI
Server Resident

Application

Simpact TSI

MsgMux

ICPs

Freeway

Client1 Client2

X.25 BSC FMP

…

Shared

Memory

28
35

TCP/IP Socket InterfaceTCP/IP Socket Interface

TCP/IP Socket Interface

ICP Device Driver

Client3Server
DC 900-1386D 27

Freeway Transport Subsystem Interface Reference Guide
The major features of the TSI are summarized as follows:

• Communicates with the Freeway server’s message multiplexor (MsgMux)

• Communicates with other TSI applications

• Provides transport-service-dependent operations

• Permits transport-service-independent applications

• Supports multiple TSI connections to multiple servers

• Supports blocking I/O

• Supports non-blocking I/O with notification by I/O completion handler (IOCH)

or polling

• Provides advanced queuing techniques to minimize internal task switches under

the VxWorks operating system

• Provides efficient buffer management to avoid excess memory movement

• Provides flexible text-based configuration services

• Provides an off-line configuration preprocessor program (tsicfg) to increase syn-

tax and semantic checking capability and to reduce real-time (on-line) processing

of the configuration parameters

• Provides configuration for all significant TSI service parameters
28 DC 900-1386D

Chapter
2 TSI Concepts
Note
In this document, the term “Freeway” can mean either a Freeway

server or an embedded ICP. For the embedded ICP, also refer to the

user guide for your ICP and operating system (for example, the

ICP2432 User Guide for Windows NT).

The following TSI concepts are described in this chapter:

• configuration at various levels of the Freeway environment

• blocking versus non-blocking I/O

• buffer management

• system resource requirements

2.1 Configuration in the Freeway Environment

There are several types of configuration required for a client TSI application to run in

the Freeway environment:

• Freeway server configuration

• transport subsystem interface (TSI) connection configuration

• protocol-specific ICP link configuration (if applicable)
DC 900-1386D 29

Freeway Transport Subsystem Interface Reference Guide
The Freeway server is normally configured only once, during the installation proce-

dures described in the Freeway User Guide. TSI connection configuration is defined by

specifying parameters in a TSI ASCII configuration file and then running the tsicfg pre-

processor program to create a binary configuration file. Chapter 3 describes TSI config-

uration.

If your application communicates with one of Protogate’s data link protocols running

on the ICP, you must be familiar with link configuration as described in your particular

protocol programmer’s guide.

2.2 Blocking versus Non-blocking I/O

Note
Earlier Freeway releases used the term “synchronous” for blocking

I/O and “asynchronous” for non-blocking I/O. Some parameter

names reflect the previous terminology.

Non-blocking I/O applications are useful when doing I/O to multiple channels with a

single process where it is not possible to “block” (sleep) on any one channel. Blocking

I/O applications are useful when it is reasonable to have the calling process wait for I/O

completion. For example, if you wish to design an application requiring the input of a

keyboard as well as background processing, non-blocking I/O would be more efficient,

because your process can perform other tasks while waiting for keyboard input.

In the Freeway environment, the term blocking I/O indicates that the open, close, con-

nect, disconnect, read and write functions do not return until the I/O is complete. For

non-blocking I/O, these functions might return after the I/O has been queued at the cli-

ent, but before the transfer to Freeway is complete. The client must handle I/O comple-

tions at the software interrupt level in the completion handler established by the tInit or

tConnect function, or by periodic use of tPoll to query the I/O completion status.
30 DC 900-1386D

2: TSI Concepts

Techpubs —
This section i
identical in
the DLI and
TSI manuals
except for
Section 2.3.6
“Using Your
Own Buffers.

Techpubs —
This section
will always
have a few
unresolved x-
refs to the DL
manual. You
will have to
update them
each time
(assuming th
DLI manual
changes). Jus
use the globa
“Edit/Update
References”
menu choice.
The effects on different TSI functions, resulting from the choice of blocking or non-

blocking I/O, are explained in each function description in Chapter 4.

2.2.1 I/O Completion Handler for Non-Blocking I/O

When your application uses non-blocking I/O and an I/O condition occurs, the current

task is preempted by a high-priority task called an I/O completion handler (IOCH)

which is designated to handle the I/O. This high-priority IOCH is written by the appli-

cation programmer and should adhere to the following real-time criteria to prevent the

IOCH from impacting overall system performance:

• minimize the amount of processing performed within the IOCH so other vital

system operations are not prevented from executing

• allow the non-preemptive priority routines to complete the processing

• avoid activities such as disk I/O which might block the operations

2.3 Buffer Management

This section describes how the Freeway buffer management system operates. For users

who do not need a detailed understanding of the system design, Section 2.3.1 gives a

system buffer overview and an example for reconfiguring your system buffers.

Section 2.3.2 through Section 2.3.6 give the detailed information for those interested.

Note
Freeway buffer management is implemented in the TSI; however

DLI uses the TSI system for its own buffer management. There-

fore, the DLI perspective is also presented throughout this section.

If your application interfaces to the TSI only (not the DLI), you

can disregard the DLI-specific information.

s

,

”

I

e

t
l

DC 900-1386D 31

Freeway Transport Subsystem Interface Reference Guide
2.3.1 Overview of the Freeway System Buffer Relationships

In the Freeway environment, user-configurable buffers exist in the ICP, the client, and

the server. These buffers must be coordinated for proper operation between the client

application, the Freeway server, and the ICP. The default sizes for each of these buffers

are designed for operation in a typical Freeway system. However, if your system requires

reconfiguration of buffer sizes, the basic procedure is as follows (Section 2.3.1.1 gives an

example calculation):

Step 1: As a general rule, define the ICP buffer size first. ICP buffers must be large

enough to contain the largest application data buffer transmitted or received. Most Pro-

togate protocols on a Freeway ICP provide a data link interface (DLI) configuration

parameter (such as msgBlkSize for BSC) through which the user can configure the ICP

message buffer size. The typical default ICP buffer size for most Protogate protocols is

1024. Refer to your protocol-specific Programmer’s Guide to determine the parameter

name and default.

Note
If your application does not interface to the DLI, the protocol-spe-

cific ICP buffer size is also software configurable. Refer to your

protocol-specific Programmer’s Guide.

Step 2: Define the client buffers in the client’s TSI configuration file. The TSI buffer

pool is defined in the configuration file’s “main” section. An optional connection-spe-

cific maximum buffer size is allowed in each connection definition. These two configu-

rations are detailed in Section 2.3.2.1 and Section 2.3.2.2, respectively. The buffer size

specified in the associated connection definition must be large enough to contain the

ICP buffer size.
32 DC 900-1386D

2: TSI Concepts
Note
If your application uses the DLI, the client buffer size must also be

large enough to contain the DLI header.

Step 3: Define the server buffers in the MuxCfg server TSI configuration file, which is

located in your boot directory. This file is similar to the client TSI configuration file. As

with the client, define the TSI buffer pool size in the MuxCfg file’s “main” section. Then

define the optional connection-specific maximum buffer size for each connection. Sim-

ply define the connection buffer size for the largest associated client requirement. The

buffer pool size must be at least as large as the largest connection buffer size. Section 3.5

on page 65 discusses the MuxCfg file in detail, and Figure 3–4 on page 66 shows a

MuxCfg file.

2.3.1.1 Example Calculation to Change ICP, Client, and Server Buffer Sizes

Step 1: Determine the maximum bytes of data your application must be able to trans-

fer. For this example calculation, we are assuming a maximum of 1500 bytes to be trans-

ferred using the BSC protocol and interfacing to Protogate’s DLI. This is the value that

must be assigned to the ICP buffer size (the DLI msgBlkSize parameter for BSC).

Step 2: Based on the above 1500-byte msgBlkSize parameter, calculate a new

MaxBufSize for the ICP, client and server. Table 2–1 summarizes the values used in this

example.

MaxBufSize = msgBlkSize + DLI header size

MaxBufSize = 1500 bytes + 96 bytes = 1596 bytes

Step 3: Make the required changes to the protocol-specific portion of the client DLI

configuration file as shown in Figure 2–1.
DC 900-1386D 33

Freeway Transport Subsystem Interface Reference Guide
Step 4: Make the required changes to the client TSI configuration file as shown in

Figure 2–2.

Table 2–1: Required Values for Calculating New MaxBufSize Parameter

Item Requirement Description

BSC msgBlkSize parameter1 1500 bytes ICP buffer size (the maximum actual data size)

DLI header size 96 bytes2 If your application uses the DLI, the buffer size
must include this DLI header size

1 For BSC, the protocol-specific DLI parameter is msgBlkSize (default is 1024 bytes).
2 On most client platforms the DLI header is 76 bytes; however, this size is platform dependent. For initial
installations Protogate recommends assuming a DLI header size of 96 bytes to calculate buffer sizes in the con-
figuration files.

main // DLI “main” section: //
{

…
}
Session1 // Session-specific parameters //
{

…

// BSC protocol-specific parameters for Session1: //

msgBlkSize = 1500;
…

} // End of Session1 parameters //

Figure 2–1: Client DLI Configuration File Changes (BSC Example)

main // TSI “main” section: //
{

MaxBufSize = 1596 ; // Must be 1596 (or greater) //
…

}
Conn1 // Connection-specific parameters //
{

MaxBufSize = 1596;
…

}

Figure 2–2: Client TSI Configuration File Changes
34 DC 900-1386D

2: TSI Concepts
Step 5: Make the required changes to the server MuxCfg TSI configuration file

(located in your boot directory) as shown in Figure 2–3.

2.3.2 Client TSI Buffer Configuration

For users who need to understand the details of the buffer management system, review

Section 2.3.2 through Section 2.3.6 carefully. After you define the ICP buffer size as

described in Step 1 on page 32, the next step is to define the client TSI buffers.

The TSI provides its own buffer management scheme. Definitions in the client TSI con-

figuration file allow you to create fixed-sized buffers in a TSI-controlled buffer pool (see

Section 2.3.2.1). Each connection can then optionally be assigned a unique maximum

buffer size (see Section 2.3.2.2). TSI applications can then access these buffers using the

tBufAlloc and tBufFree TSI functions.

Note
For applications using Protogate’s data link interface, the DLI uses

the TSI buffer management system for its own buffer manage-

ment. The dlBufAlloc and dlBufFree DLI functions provide access

to buffers in the TSI buffer pool.

main // MuxCfg “main” section: //
{

MaxBufSize = 1596 ; // Must be 1596 (or greater) //
…

}
MuxConn1 // Connection-specific parameters //
{

MaxBufSize = 1596;
…

}

Figure 2–3: Server MuxCfg TSI Configuration File Changes
DC 900-1386D 35

Freeway Transport Subsystem Interface Reference Guide
Your application is not required to use the TSI buffer management facilities, but Proto-

gate highly recommends it for the following reasons:

• TSI allocates all buffers up front, resulting in better real-time performance than

allocation through C malloc and free functions

• The number of TSI buffers is configurable for operating environments with lim-

ited system resources

• TSI allocates the buffer pool on boundaries which minimize memory access over-

head

• TSI overhead is invisible to the user

2.3.2.1 TSI Buffer Pool Definition

The TSI buffer pool is configured through two parameter definitions in the “main” sec-

tion of the client TSI configuration file (Section 3.3.1 on page 54). The MaxBufSize

parameter specifies the maximum size of each buffer in the TSI buffer pool. The

MaxBuffers parameter specifies the maximum number of buffers available in the TSI

buffer pool and must support the maximum number of I/O requests that could be out-

standing at any one time. After adjusting MaxBufSize as described below, the product of

the MaxBufSize and MaxBuffers parameters defines the TSI buffer pool size.

MaxBufSize defines the maximum size of each buffer. This is the actual data size the TSI

user application has available for its own use. When the buffer pool is defined, TSI cal-

culates an “effective” buffer size which is MaxBufSize plus the additional bytes required

for a TSI header plus any alignment bytes. Alignment bytes are required only if the value

of MaxBufSize plus the TSI header bytes is not divisible by 4.

This “effective” buffer size is invisible to the user application (regardless of whether it

interfaces to the DLI or the TSI); all interactions with the TSI buffer management facil-

ities are based on MaxBufSize and the connection-specific parameter described in

Section 2.3.2.2. If you define MaxBufSize as 1000 bytes, TSI assures that the buffer pool

can provide 1000 bytes for TSI application data.
36 DC 900-1386D

2: TSI Concepts
Figure 2–4 illustrates an example buffer calculation assuming the following sizes:

• MaxBufSize is 1000 bytes

• The TSI header is 18 bytes

• The necessary alignment to make the total divisible by 4 is 2 bytes

TSI adds 18 bytes to the MaxBufSize value to include the TSI header, making the actual

size of the buffer allocated by TSI 1018 bytes. Because this actual size is not divisible by

4, TSI increments the value to the next modulo-4 value, in this case, 1020. Regardless of

the final size, your TSI application has control of only MaxBufSize bytes.

The TSI application program can obtain the value of MaxBufSize using a tPoll request

for the system configuration. Refer to the TSI_POLL_GET_SYS_CFG option (described

on page 101 and in Section 4.1.3.1 on page 76), which returns the iMaxBufSize field

(described on page 77).

Figure 2–4: TSI Buffer Size Example

iMaxBufSize = 1000 bytes

TSI Header

TSI Data AreaMaxBufSize = 1000 bytes

usOverhead = 20 bytes

tBufAlloc
(18 bytes)

(1000 bytes)

Alignment (2 bytes)
DC 900-1386D 37

Freeway Transport Subsystem Interface Reference Guide
Note
The Figure 2–4 example, as viewed from the DLI application’s per-

spective is shown in Figure 2–5. Of the 1000 bytes specified by the

TSI MaxBufSize parameter, 76 bytes are required for the DLI

header. After calling dlOpen, the DLI application program can call

dlPoll with the DLI_POLL_GET_SESS_STATUS option, which

returns the usMaxSessBufSize field. This value is the actual data

size available to the DLI application (924 bytes in the Figure 2–5

example).

2.3.2.2 Connection-Specific Buffer Definition

After the TSI buffer pool is defined, you have the option of defining a unique maximum

buffer size for each connection in the client TSI configuration file. If undefined, the

connection buffer size defaults to the MaxBufSize “main” definition for the TSI buffer

pool described in the previous Section 2.3.2.1.

Figure 2–5: DLI Buffer Size Example

TSI Header (20 bytes)

DLI Header (76 bytes)

User’s Data Requirement

TSI Header

User Data Area

Freeway Header

ICP Header

Protocol HeaderTotal DLI Buffer Size
dlBufAlloc

= 1000 bytes
(TSI MaxBufSize

= 924 bytes
Connection Definition)
38 DC 900-1386D

2: TSI Concepts
Note
The maximum connection buffer size should be at least as large as

the defined ICP buffer size, plus any additional client require-

ments. For example, if you are using the DLI, you must include

DLI overhead bytes in the total size of the application data area

(see Figure 2–5).

To define a unique buffer size for a connection, use the connection-specific MaxBufSize

parameter described in Section 3.3.2 on page 56. This connection buffer size is the

buffer size the system allows the user for tWrite requests. No connection buffer size can

be larger than MaxBufSize defined for the TSI buffer pool.

The connection buffer size does not change the actual size of the buffer (actual buffers

are all MaxBufSize as defined for the TSI buffer pool); it only limits the acceptable size

of application write buffers given to TSI through a tWrite request. It enforces a maxi-

mum data size that can be sent to the server in any one tWrite request. The tWrite func-

tion returns a TSI_WRIT_ERR_INVALID_LENGTH error if the write is attempted with a

buffer exceeding the connection’s maximum buffer size.

The tRead requests are not limited by the connection buffer size. The size of read

requests, when using tRead, is defined by MaxBufSize for the TSI buffer pool (in the

“main” definition of the TSI configuration file).

2.3.2.3 TSI Buffer Size Negotiation

A connection’s maximum buffer size can be changed “silently.” When the client’s con-

nection to the Freeway server is accomplished, the client TSI and the server TSI negoti-

ate a maximum buffer size for the established connection. If the sizes are different, the

side with the larger connection buffer size changes its size to that of the smaller. After

the connection is established, the negotiated maximum buffer size is available using a

tPoll request for connection status. Refer to the TSI_POLL_GET_CONN_STATUS

option (described on page 101 and in Section 4.1.3.2 on page 78), which returns the
DC 900-1386D 39

Freeway Transport Subsystem Interface Reference Guide
usMaxConnBufSize field (described on page 79). Note that this “final” size is not avail-

able until the connection has been successfully established.

Note
The DLI application program can obtain the actual data size (after

the TSI negotiation process during dlOpen) using a dlPoll request

with the DLI_POLL_GET_SESS_STATUS option, which returns

the usMaxSessBufSize field. Refer to the example provided in the

Freeway Data Link Interface Reference Guide. A similar approach

would apply to using the TSI usMaxConnBufSize field obtained by

calling tPoll with the TSI_POLL_GET_CONN_STATUS option.

2.3.3 Server TSI Buffer Configuration

After defining the ICP buffers and the client TSI buffers, the final step is to define the

server TSI buffers. The same TSI buffer management design details apply to the server

TSI buffers that were described in Section 2.3.2 on page 35 for the client TSI buffers.

The only difference is that the server buffer definitions are specified in the MuxCfg

server TSI configuration file, which is located in your boot directory. As with the client,

define the TSI buffer pool size in the MuxCfg file’s “main” section. Then define the

optional connection-specific maximum buffer size for each connection. Simply define

the connection buffer size for the largest associated client requirement. The buffer pool

size must be at least as large as the largest connection buffer size. Section 3.5 on page 65

discusses the MuxCfg file in detail, and Figure 3–4 on page 66 shows a MuxCfg file. Refer

back to Section 2.3.1.1 on page 33 for a sample calculation of ICP, client, and server

buffer sizes.

2.3.4 Buffer Allocation and Release

The TSI application obtains a buffer from the TSI buffer pool using the tBufAlloc func-

tion. The returned buffer address points to the available data area as shown in

Figure 2–4 on page 37. The size returned is always the MaxBufSize defined for the buffer
40 DC 900-1386D

2: TSI Concepts
pool (Table 3–1 on page 54). While the entire data area is available for user data, note

the restrictions discussed previously in Section 2.3.2.2 regarding limits placed on tWrite

requests by the connection’s maximum buffer size definition. The user application

releases a buffer back to the TSI buffer pool using the tBufFree function.

Note
DLI applications use the dlBufAlloc and dlBufFree functions to

access buffers in the TSI buffer pool.

2.3.5 Cautions for Changing Buffer Sizes

If you need to change the buffer size of your application, keep the following cautions in

mind:

• If you increase the ICP buffer size, there may be corresponding changes required

in the client and server buffer sizes.

• If you have limited resources and increase the client or server MaxBufSize param-

eter, consider decreasing the number of buffers allocated in the buffer pool (the

MaxBuffers parameter in the client TSI configuration file and the server MuxCfg

file).

• Client read buffers too small for an inbound data buffer are returned to the client

application with a TSI_READ_ERR_OVERFLOW error indication. Write requests

with buffers too large are returned with a TSI_WRIT_ERR_INVALID_LENGTH

error indication.

2.3.6 Using Your Own Buffers

If your TSI application needs to use its own buffers, it must know the exact number of

overhead bytes used to store the TSI header information. Your application should call

tPoll to get the TSI system configuration information (Section 4.8 on page 100) so that

it can allocate buffers correctly. Each buffer must be at least iMaxBufSize + usOverhead
DC 900-1386D 41

Freeway Transport Subsystem Interface Reference Guide
bytes in size (these values are described on page 77). Your application must give TSI the

address of the memory buffer that is at usOverhead bytes from the beginning of the data

area. Figure 2–6 shows a comparison of using the “C” malloc function versus the TSI

tBufAlloc function for buffer allocation. Figure 2–7 is a “C” code fragment demonstrat-

ing the use of the malloc function.

Note
For information about using your own buffers in a DLI applica-

tion, see the Freeway Data Link Interface Reference Guide.

Figure 2–6: Comparison of malloc and tBufAlloc Buffers

...
PCHAR pBuf;
TSI_SYS_CFG sysCfg;
int iBufSize, iConnID;
...
tPoll (0, TSI_POLL_GET_SYS_CFG, (PCHAR*)NULL, (PINT)NULL, (PCHAR)&sysCfg);
iBufSize = (int) sysCfg. usOverhead + sysCfg. iMaxBufSize;
pBuf = (PCHAR) malloc (iBufSize);
...
tWrite (iConnID, &pBuf[sysCfg. usOverhead], 100, TSI_WRITE_NORMAL);
...

Figure 2–7: Using the malloc Function for Buffer Allocation

Address returned by malloc

Address returned by tBufAlloc

Increasing memory addresses

TSI

TSI Data Area

(used in TSI function calls
that reference the buffer)

usOverhead

iMaxBufSize

Overhead Area
42 DC 900-1386D

2: TSI Concepts

Input from
Bob
Patterson: Fo
2.4, John
Wenker chose
to delete the
similar section
from DLI but
leave it in TS
2.3.7 Buffer Management (Client versus Server-Resident Applications)

Writing a server-resident application (SRA) using the TSI interface is much like writing

a client application. The usual sequence of steps in a client application is:

1. Call tBufAlloc (Section 4.2 on page 80) to obtain a buffer.

2. Load the buffer with data.

3. Call tWrite (Section 4.13 on page 120), which copies the data for further process-

ing.

4. Call tBufFree (Section 4.3 on page 82) to release the buffer allocated in Step 1.

5. Call tRead (Section 4.10 on page 109), supplying a NULL pointer for the buffer

address so that the TSI allocates the buffer for the client application.

6. Call tBufFree (Section 4.3 on page 82) to release the buffer allocated by the TSI in

Step 5.

However, there is one significant difference in the way buffers are managed for an SRA

which uses the TSI interface (refer back to Figure 1–3 on page 23 to see how an SRA fits

in a typical Freeway environment). When the TSI code at the SRA interacts with the TSI

code at the MsgMux, the address of the buffer is passed instead of copying the contents

of the buffer. At this point, the write is complete for the SRA; however, the buffer is still

in use. Eventually the MsgMux writes the buffer to the ICP through the ICP driver.

When the driver completes the write, the MsgMux releases the buffer. Therefore, even

though the SRA allocated the buffer, it must not release it.

Therefore, Step 4 above is eliminated, and the modified sequence of steps for an SRA is

shown below. Refer to the Freeway Server-Resident Application and Server Toolkit

Programmer Guide for more information on SRAs.

r

I.
DC 900-1386D 43

Freeway Transport Subsystem Interface Reference Guide
1. Call tBufAlloc (Section 4.2 on page 80) to obtain a buffer.

2. Load the buffer with data.

3. Call tWrite (Section 4.13 on page 120), which passes the address of the buffer.

Eventually the MsgMux writes the buffer to the ICP through the ICP driver. When

the driver completes the write, the MsgMux releases the buffer.

4. Call tRead (Section 4.10 on page 109), supplying a NULL pointer for the buffer

address so that the DLI allocates the buffer for the SRA.

5. Call tBufFree (Section 4.3 on page 82) to release the buffer allocated by the TSI in

Step 5.

2.4 System Resource Requirements

When designing your TSI application, you must consider TSI resource requirements.

They can be calculated as follows:

Total memory requirements = program size

+ (number of buffers x size of buffer)

+ (number of connections x 300)

+ (number of connections x size of I/O queues x 44)

+ 32,000

Where:

• “number of buffers” is defined by the TSI MaxBuffers parameter (page 54)

• “size of buffer” is defined by the TSI MaxBufSize parameter (page 55)

• “number of connections” is defined by the TSI MaxConns parameter (page 55)

• “size of I/O queues” is defined by the sum of the TSI MaxInQ parameter (page 56)

and the TSI MaxOutQ parameter (page 56)
44 DC 900-1386D

2: TSI Concepts
2.4.1 Signal Processing

The TSI disables all signals during processing. The signals are ultimately delivered when

they are re-enabled at the end of the TSI call. If this constraint causes a problem for your

client application, consider implementing one of the following:

• use non-blocking I/O as described in Section 2.2 on page 30

• use the Timeout TSI configuration parameter (page 57)

Under VMS, ASTs are disabled instead of signals.
DC 900-1386D 45

Freeway Transport Subsystem Interface Reference Guide
46 DC 900-1386D

Chapter
3 TSI Configuration
Note
In this document, the term “Freeway” can mean either a Freeway

server or an embedded ICP. For the embedded ICP, also refer to the

user guide for your ICP and operating system (for example, the

ICP2432 User Guide for Windows NT).

3.1 Configuration Process Overview

The transport subsystem interface (TSI) consists of two major components:

• The tsicfg configuration preprocessor program defines the TSI environment prior

to run time, using a text configuration file that you create or modify.

• The TSI reference library is used to build your TSI application.

The advantage of using the tsicfg preprocessor program is that you do not have to

rebuild your application when you redefine the TSI environment.

The TSI configuration process is a part of the installation procedure and the loopback

testing procedure described in the Freeway User Guide. However, during your client

application development and testing, you might need to perform TSI configuration

repeatedly.

The TSI configuration process is summarized as follows:
DC 900-1386D 47

Freeway Transport Subsystem Interface Reference Guide
1. Create or modify a text file specifying the configuration of the transport sub-

system interface (TSI) connections.

2. Execute the tsicfg preprocessor program with the text file from Step 1 as input.

This creates the TSI binary configuration file. If the optional TSI binary configu-

ration filename is supplied, the binary file is given that name plus the .bin exten-

sion. If the optional filename is not supplied, the binary file is given the same

name as your TSI text configuration file plus the .bin extension.

tsicfg TSI-text-configuration-filename [TSI-binary-configuration-filename]

Note
You must rerun tsicfg whenever you modify the text configuration

file so that the TSI functions can apply the changes.

When your application calls the tInit function, the TSI binary configuration file is used

to configure the TSI connections. Figure 3–1 shows the TSI architecture.

Note
The Freeway User Guide describes the make files and command

files provided to automate the above process and copy the resulting

binary configuration files to the appropriate directories. Addition-

ally, each protocol programmer’s guide describes the related proto-

col specifics of the TSI configuration process.
48 DC 900-1386D

3: TSI Configuration
Figure 3–1: TSI Architecture

Application

TSI

Transport
Environment

28
37

tsicfg

TSI Text
Configuration File

TSI Configuration
Preprocessor

TSI Binary
Configuration File
DC 900-1386D 49

Freeway Transport Subsystem Interface Reference Guide
3.2 Introduction to TSI Configuration

The tsicfg configuration preprocessor program translates a TSI text configuration file

into a binary configuration file. During the translation process, tsicfg processes and ver-

ifies each configuration entry in the text configuration file, and the results are stored in

the binary configuration file. This process ensures the validity of the configuration

parameters before their use by the TSI reference library. The TSI configuration services

provide the following features:

• Free-formatted configuration language

• Informative parameter names

• Procedure-like definition entry for each connection definition

• Extensive syntax checking capability

• Extensive semantic checking capability

• Connection-based definition capability

The TSI reference library is a set of function calls used by applications to exchange data

between two or more applications over a well-defined transport interface (for example,

TCP/IP, shared-memory, APPC/LU 6.2, and so on). The TSI reference library uses the

TSI binary configuration file to configure the TSI services as well as connections man-

aged by the TSI. Together with the TSI configuration services, the TSI reference library

provides a simple network programming environment for transport-independent

applications. It also provides end users the ability to configure individual TSI connec-

tions according to their needs.

3.2.1 TSI Configuration Language

The TSI text configuration file contains an optional “main” definition followed by one

or more unique connection definitions. The “main” definition specifies general TSI

characteristics and must use the name “main.” Each connection definition entry in the

TSI text configuration file defines a specific type of TSI connection to be established
50 DC 900-1386D

3: TSI Configuration
between the TSI application and a peer TSI application. Refer to Section 3.6.2 for details

of the language grammar. The TSI configuration is described as follows:

main
{

parameter-name = parameter-value; // comments are ignored //
}

connection-name
{

parameter-name = parameter-value;
}

Each definition entry must be assigned a name that is unique within the configuration

file; tsicfg makes no attempt to ensure the uniqueness of names within the same config-

uration file. Each connection-name uniquely identifies a connection within the same con-

figuration file; it is supplied by the user. Each parameter-name is uniquely defined by

tsicfg; the parameter-value is supplied by the user. Comments are considered white spaces

and are ignored by tsicfg.

3.2.2 Rules of the TSI Configuration File

A connection or a parameter name must adhere to the following naming rules:

1. It is similar to variable names in the C language.

2. It can be a string of alphabetic (A through Z, a through z, and _) and numeric

(0 through 9) characters.

3. The first character must be alphabetic.

4. The length must not be more than 20 characters.

5. Connection names are case-sensitive while parameter names are not.

6. The TSI does not verify the duplication of connection definition entries at the

connection level or at the parameter level. That means if you have defined the

same connection entry more than once, the first one is used. If you have defined a

parameter within a connection definition entry more than once, the last value is

used.
DC 900-1386D 51

Freeway Transport Subsystem Interface Reference Guide
3.2.3 Binary Configuration File Management

The binary configuration file is created in the same directory as the location of the text

configuration file (unless a different path is supplied with the optional filename

described in Section 3.1 on page 47). On all but VMS systems, if a file already exists in

that directory with the same name, the existing file is renamed by appending the .BAK

extension. If the renamed file duplicates an existing file in the directory, that existing file

is removed by the configuration preprocessor program.

Note
The default binary configuration name contains the period ‘.’

character which plays a special role in the processing of the config-

uration files. See Section 3.2.4.

3.2.4 On-line Configuration File Processing

TSI can perform the configuration processing on-line. While this feature is available,

Protogate recommends adherence to the off-line configuration file process previously

described in Section 3.1 on page 47, which is better managed and slightly more efficient.

The off-line process can be performed on-line during TSI initialization (tInit) by pro-

viding a configuration filename without an embedded ‘.’ character. When such a file-

name is recognized, TSI attempts to open the file as a text file and calls the TSI

configuration preprocessor program (tsicfg). The output file is named “filename”.bin.

An error in the configuration file aborts the tInit processing with an appropriate error in

the TSI log file.

This on-line method requires the configuration text file and the tsicfg preprocessor pro-

gram to reside in the same directory as the application executable. The resulting .bin file

is placed in this same directory.
52 DC 900-1386D

3: TSI Configuration

There are
several
instances of
“host” in this
chapter. Can
we change
some to
“client”?
Note
Unless on-line configuration is desired, be sure a ‘.’ character

appears in the configuration filename provided to tInit.

3.3 TSI Connection Definition

There are two groups of TSI configuration parameters: the “main” definition and the

connection definitions. Some of the parameters are found in both sets; in this case, the

parameter value in the “main” definition applies to the TSI application in general, while

the value in a specific connection definition applies only to those TSI connections using

that connection definition (unique connection-name). The connection definition param-

eters allow the application to use connections with different operating characteristics at

the same time. For example, a client TSI application using the TCP/IP socket interface

can connect to multiple TSI server applications on various remote host machines. For

each host machine, the client specifies a connection definition in its TSI configuration

file with the server parameter set to the IP (Internet Protocol) address of the remote

host. In addition, if the configuration needs of the application change (for example, the

IP address of a remote host changes), only the configuration file needs to be modified;

the application does not need to be modified or re-compiled.

The configuration parameters can be one of three types of values: integer, boolean, or

character string. Integer values can be specified as ANSI C decimal, octal, or hexadeci-

mal constants. Boolean and string values are specified as ANSI C character strings

(enclosed in double quotes). Boolean values must consist of a string containing the

word “yes” or the word “no.” The TSI configuration preprocessor ignores the case of

boolean values; that is, “Yes” and “YES” are also valid boolean values. In addition, tsicfg

ignores the case of parameter names. The parameter definitions in the following sec-

tions are given in upper and lower case for readability only. TSI uses a default value for

any parameters not explicitly defined.

DC 900-1386D 53

Freeway Transport Subsystem Interface Reference Guide
3.3.1 Parameters for the “main” Definition

The first section in the TSI text configuration file, which is called “main,” specifies the

TSI configuration for non-connection-specific operations. If a “main” definition is not

specified in the TSI text configuration file, a default “main” entry is used.

The “main” TSI parameters are shown alphabetically in Table 3–1, along with the

defaults. You need to include only those parameters whose values differ from the

defaults.

Table 3–1: TSI Parameters for “main” Definition

Parameter Default Valid Values Description

AsyncIO “no” a boolean Boolean value specifying the use of blocking or non-
blocking I/O. A value of “no” specifies blocking I/O.

DualAddress n/a n/a This parameter is replaced by the “Added Interfaces”
configuration described in the Freeway User Guide.

InterruptTrace “no” boolean A boolean value specifying whether interrupts should
be locked out during tracing.

LogLev 0 0–7 An integer value defining the level of logging the TSI
performs and stores in the file name defined by the
LogName parameter. A higher level specifies more
detailed logging; 0 specifies no logging.

LogName “tsilog” string
(ð 80)

A string of characters defining the name (path) of the
file for storing the TSI logging information. If the path
is not included, the current directory is assumed.

MaxBuffers 1024 4–4096 An integer value specifying the maximum number of
buffers to be allocated during run time for the TSI
buffer pool. To prevent your application running out
of buffers, take care when you specify MaxBuffers to
consider the number of TSI connections you need and
the queue sizes (MaxInQ and MaxOutQ on page 56).
See Section 2.3 on page 31 for details on buffer man-
agement.

a For Protogate’s Freeway server TSI, AsyncIO must be set to “yes” (refer to Section 3.5 on page 65)
54 DC 900-1386D

3: TSI Configuration

Leslie — The
following was
inserted in
anticipation
for SNMP
(add back
later): “Note
that the
SNMP task
(Section???)
functions as
an SRA on the
Freeway
server, using a
shared-
memory TSI
connection to
interrogate
the ICPs.
Since the
Server
parameter is
set to the
default
“Freeway” in
the SNMP
task’s TSI
configuration
file
(snmptcfg),
any
modification
of the
ServerName
parameter in
the “server’s”
configuration
file will
require the
Server
parameter in
the snmptcfg
file to be
changed to
match the new
name.”
MaxBufSize 1024 + TSI
overhead

1–64000 An integer value specifying the maximum size of each
buffer in the TSI buffer pool. This user-supplied value
does not include TSI overhead; the TSI overhead value
is calculated by TSI and supplied to the user via the
usOverhead parameter (page 77). See Section 2.3 on
page 31 for details on buffer management.

MaxConns 1024 1–1024 An integer value defining the maximum number of
connections the TSI can manage at one time.

ServerName “Freeway” string
(ð 20)

A string of characters specifying the name of a TSI
“server” application that runs in the VxWorks envi-
ronment. This parameter applies only to TSI “server”
applications using the shared-memory interface; the
purpose is to identify themselves to server-resident
applications (SRAs) operating as shared-memory cli-
ents. The Server parameter in a shared-memory “cli-
ent” connection’s configuration definition must
match the ServerName parameter in the “server’s” con-
figuration definition. Also see the Server parameter
(page 57)

StackSize 10240 1–64000 An integer value specifying the value of the stack to be
used by the TSI for spawning its internal tasks. This
parameter applies only to the VxWorks environment.

TraceLev 0 0–31 An integer value defining the level of tracing (or the
sum of several levels) which the TSI performs for this
session. This parameter can be overridden by the con-
nection definitions following the “main” section. See
also Appendix C.

0 = no trace 1 = read only
2 = write only 4 = interrupt only
8 = application IOCH 16 = user’s data

TraceName “tsitrace” string
(ð 80)

A string of characters defining the name (path) of the
file for storing the TSI tracing information. If the path
is not included, the current directory is assumed.

TraceSize 0 512–
1048576

An integer value specifying the size of the internal
trace buffer. The default is zero (tracing is not per-
formed). The smallest allowable size is 512.

Table 3–1: TSI Parameters for “main” Definition (Cont’d)

Parameter Default Valid Values Description
DC 900-1386D 55

Freeway Transport Subsystem Interface Reference Guide

A

L

M

M

M

M

a

3.3.2 Parameters for the Connection Definition (Non-transport Specific)

Each additional connection definition specifies unique TSI connections; that is, each

definition has a unique connection-name. The TSI parameters are shown alphabetically

in Table 3–2, along with the defaults. You need to include only those parameters whose

values differ from the defaults.

Table 3–2: TSI Parameters for Non-Transport Specific Connection

Parameter Default Values Description

syncIO “no” a boolean Boolean value specifying the use of blocking or non-blocking
I/O. A value of “no” specifies blocking I/O.

ogLev 0 0–7 An integer value defining the level of logging the TSI performs
for this connection. A higher level specifies more detailed log-
ging, while 0 specifies no logging. This value overrides the
LogLev defined in the “main” section.

axBufSize MaxBufSize
defined in
“main”

1 to
MaxBufSize
defined in
“main”

An integer value specifying the maximum data size of the TSI
buffers for this connection only. The value must be less than or
equal to the “main” entry. The default value is the size specified
in the “main” section.

axErrors 10 10–100 An integer value specifying the number of I/O errors the TSI
can tolerate before declaring the connection is unusable.

axInQ 10 2–1000 An integer value specifying the number of entries in the TSI
internal input queue. Make sure MaxBuffers defined in the
“main” section (page 54) is adequate for your requirements,
especially if your application uses non-blocking I/O. Use cau-
tion when changing the queue size parameters. TSI allocates
buffers for each connection based on this parameter, and
increasing the queue size could cause a buffer allocation prob-
lem on the server.

axOutQ 10 2–1000 An integer value specifying the number of entries in the TSI
internal output queue. See MaxInQ above.

 For Protogate’s Freeway server TSI, AsyncIO must be set to “yes” (refer to the Freeway User Guide)
56 DC 900-1386D

3: TSI Configuration
Server none string
(ð 20)

A string of characters identifying the TSI “server” application
with which to connect. This parameter is used differently for
each transport interface:
• For “tcp-socket” connections, this parameter specifies the

host machine on which the TSI “server” resides. The string
can be either the machine’s host name or its IP address in
“dot” notation (for example, “freeway2” or
“192.52.107.100”). This parameter is used in conjunction
with the WellKnownPort parameter (page 58) to establish
“tcp-socket” connections. Note that your application may be
blocked while TSI searches for the server’s name if your net-
work has Domain Name Server (DNS) setup.

• For “shared-memory” connections, this parameter identifies
the TSI peer “server” application or process. The client con-
nection’s Server parameter must match the server applica-
tion’s ServerName parameter (page 55) defined in the
“main” entry of the server application’s configuration file.
The Server parameter is used in conjunction with the
ShmPeerName parameter(page 59) to establish “shared-mem-
ory” connections.

Timeout 60 0–63999 An integer value specifying the number of seconds the TSI uses
to time activities within this connection.

TraceLev 0 0–31 An integer value defining the level of tracing (or the sum of
several levels) which the DLI performs for this session. If spec-
ified, this value overrides the “main” TraceLev parameter. See
also Appendix C.

0 = no trace 1 = read only
2 = write only 4 = interrupt only
8 = application IOCH 16 = user’s data

Transport no default
(must be
specified)

string
(ð 20)

A string of characters specifying the transport interface to be
used by this connection. There are no defaults. Supported
transport interfaces include “tcp-socket” for TCP/IP sockets
and “shared-memory” for VxWorks shared-memory (server-
resident applications).

Table 3–2: TSI Parameters for Non-Transport Specific Connection (Cont’d)

Parameter Default Values Description
DC 900-1386D 57

Freeway Transport Subsystem Interface Reference Guide
3.3.3 Parameters for Connection Definition (TCP/IP Socket Transport)

The TSI configuration parameters required for a TCP/IP socket transport connection

are shown alphabetically in Table 3–3, along with the defaults. You need to include only

those parameters whose values differ from the defaults. See Section 3.4.1 for an

example.

Table 3–3: TSI Parameters for TCP/IP Socket Transport Connection

Parameter Default Valid Values Description

TCPKeepAlive “no” Boolean A Boolean value specifying whether or not TCP/IP
should enable periodic transmission to keep a con-
nected link active while there are no user data trans-
missions on the link.

TCPNoDelay “no” Boolean A Boolean value specifying whether or not TCP/IP
should send a small packet as soon as possible.

WellKnownPort 0x2010 5001, 32676 An integer value (usually specified in hexadecimal)
specifying the TCP/IP port to be used by this connec-
tion. A “server” connection (tListen) will bind to this
port, while a “client” connection (tConnect) will
attempt to connect to this port on the server’s host
machine (specified by the client connection’s Server
parameter, page 57).

LocalPort 0x0000 1024–65535
(0x0400-
0xFFFF)

An integer value (usually specified in hexadecimal)
specifying the local IP port used to connect to a
DLI/TSI server, such as a Freeway. The default value of
0 allows the operating system to select any unused
local IP port. Since the client application uses the spec-
ified local IP port for each connection attempt using a
given TSI connection definition, this parameter can be
used to force a Freeway to terminate a connection
which was not terminated normally (for example, if
the client machine crashed without properly closing
its sockets, or if the client machine closed its sockets
while the network was physically disconnected).
58 DC 900-1386D

3: TSI Configuration
3.3.4 Parameters for Connection Definition (Shared-Memory Transport)

The TSI configuration parameters required for a VxWorks shared-memory transport

connection (server-resident applications) are shown alphabetically in Table 3–4, along

with the defaults. You need to include only those parameters whose values differ from

the defaults. See Section 3.4.2 for an example.

Table 3–4: TSI Parameters for Shared-Memory Transport Connection

Parameter Default Valid Values Description

ShmKey n/a n/a Reserved.

ShmMaxInQ 10 2–1000 An integer value specifying the size of the TSI internal
shared-memory input queue. It is recommended that this
parameter value match the value of the connection’s
MaxInQ parameter (page 56).

ShmMaxOutQ 10 2–1000 An integer value specifying the size of the TSI internal
shared-memory output queue. It is recommended that this
parameter value match the value of the connection’s
MaxOutQ parameter (page 56).

ShmPeerName no
default

string
(ð 20)

A string of characters specifying the connection-name of a
TSI “server” connection (tListen) to which this “client” con-
nection wishes to connect. This parameter is used in con-
junction with the connection’s Server parameter (page 57)
in establishing a “shared-memory” connection.
DC 900-1386D 59

Freeway Transport Subsystem Interface Reference Guide
3.4 Example TSI Configurations

This section describes the supported transport interfaces. Because TSI was intended to

shield the application from any transport interface dependencies, the same application

can be run over different transport interfaces; the user needs to modify only the appli-

cation’s TSI configuration file. The application might need to make modifications due

to operating system dependencies (especially under VxWorks); however, the interface

to TSI should remain basically constant. Recall that TSI applications “connect” using

the tConnect and tListen calls which take a connection-name (associated with a connection

definition) as a parameter. The transport-specific parameters within each connection

definition control this connection process.

3.4.1 TCP/IP Socket Transport Interface

To configure a TSI connection to use the TCP/IP socket transport interface, the con-

nection definition’s Transport parameter (page 57) must have the value “tcp-socket”. The

TCP/IP socket-specific parameters (see Table 3–3 on page 58) include:

• WellKnownPort

• LocalPort

• TCPKeepAlive

• TCPNoDelay

The WellKnownPort parameter along with the Server parameter (page 57) specify a “con-

nection point.” Assume that we have two TSI applications executing on two machines

connected by a TCP/IP network. An example would be the two applications labeled

Client1 and Server or the two applications labeled Client2 and Server in Figure 1–5 on

page 27.

A possible TSI configuration for the two applications is shown in Figure 3–2. “Server”

application X (connection-name “TCPserver”) wishes to listen for an incoming connec-

tion, while “client” application Y (connection-name “TCPclient”) wishes to connect to

“server” application X.
60 DC 900-1386D

3: TSI Configuration
Notice the following points regarding the two TSI configuration files in Figure 3–2:

• The “server” application performing the tListen call (application X) needs to spec-

ify only the WellKnownPort parameter in the TSI configuration file, not the Server

parameter. This is because the “server” TSI software automatically uses the

address of the machine on which it is running.

• The “client” application performing the tConnect call (application Y) specifies the

Server parameter as the host name (or IP address) of the remote machine as well

Figure 3–2: Example Configuration for TCP/IP Socket Transport Interface

// “Server” Application X // “Client” Application Y
// TSI configuration file : // TSI configuration file:
// The server’s host machine //
// name is “freeway2” at //
// IP address 192.52.107.100 //
main main
{ {

LogName = "server.log"; LogName = "client.log";
TraceName = "server.trc"; TraceName = "client.trc";
TraceSize = 64000; TraceSize = 64000;
. .
. .
. .

} }

// Begin Connection Definition: // Begin Connection Definition:
TCPserver // connection-name TCPclient // connection-name
{ {

transport = "tcp-socket"; transport = "tcp-socket";
asyncIO = "Yes"; asyncIO = "no";
. .
. .
. .

Server = "freeway2";
WellKnownPort = 0x2010; WellKnownPort = 0x2010;

} }

DC 900-1386D 61

Freeway Transport Subsystem Interface Reference Guide
as the WellKnownPort parameter to which the remote application is bound. If the

“client” application Y needs to connect to a similar “server” application running

on a different machine, only the Server and WellKnownPort parameters of the

“TCPclient” connection definition must be modified.

Using the Figure 3–2 connection definitions, the “server” application X would call

tListen using the connection-name “TCPserver”:

 ID = tListen ("TCPserver", funcptr);

The “client” application Y would call tConnect using the connection-name “TCPclient”:

 ID = tConnect ("TCPclient", funcptr);

3.4.2 Shared-Memory Transport Interface (VxWorks Only)

To configure a TSI connection to use the shared-memory transport interface, the con-

nection definition’s Transport parameter (page 57) must have the value “shared-memory”.

The shared-memory-specific parameters (see Table 3–4 on page 59) include:

• ShmMaxInQ

• ShmMaxOutQ

• ShmPeerName

• ShmKey

The ShmPeerName parameter along with the ServerName “main” parameter (page 55)

specify a “connection point.” Assume that we have two TSI applications (“server” and

“client”) executing as in the previous TCP/IP example; however, shared-memory appli-

cations must be running on the same machine under VxWorks. An example would be

the two applications labeled Client3 and Server in Figure 1–5 on page 27.

A possible TSI configuration for each application is shown in Figure 3–3. “Server”

application X (connection-name “SHMserver”) wishes to listen for an incoming connec-

tion, while “client” application Y (connection-name “SHMclient”) wishes to connect to

“server” application X.
62 DC 900-1386D

3: TSI Configuration

Leslie — The
following was
included as a
notebox (add
back for
SNMP): “Th
SNMP task
(Section???)
functions as a
server-
resident
application
(SRA) on the
Freeway
server, using a
shared-
memory TSI
connection to
interrogate
the ICPs.
Since the
Server
parameter is
set to the
default
“Freeway” in
the SNMP
task’s TSI
configuration
file
(snmptcfg),
any
modification
of the
ServerName
parameter in
the “server”
application’s
configuration
file (for
example,
muxcfg or
sramuxcfg)
will require
the Server
parameter in
the snmptcfg
file to be
changed to
match the new
name.”
 Notice the following points regarding the two TSI configuration files in Figure 3–3:

• The Server parameter is used to match a peer TSI shared-memory application, and

its value must match the value of the peer’s ServerName “main” parameter.

Figure 3–3: Example Configuration for Shared-Memory Transport Interface

// “Server” Application X // “Client” Application Y
// TSI configuration file : // TSI configuration file:
// //
// //
main main
{ {

LogName = "server.log"; LogName = "client.log";
TraceName = "server.trc"; TraceName = "client.trc";
TraceSize = 64000; TraceSize = 64000;
. .
. .
. .
ServerName = "freeway"

} }

// Begin Connection Definition: // Begin Connection Definition:
SHMserver // connection-name SHMclient // connection-name
{ {

transport = "shared-memory"; transport = "shared-memory";
. .
. .
. .
. Server = "freeway";
. ShmPeerName = "SHMserver";
ShmMaxInQ = 30; ShmMaxInQ = 30;
ShmMaxOutQ = 30; ShmMaxOutQ = 30;

} }

e

DC 900-1386D 63

Freeway Transport Subsystem Interface Reference Guide
• The ShmPeerName parameter is used to match a particular connection definition

(connection-name) in the peer’s configuration file.

Using the Figure 3–3 connection definitions, the “server” application X would call

tListen using the connection-name “SHMserver”:

 ID = tListen ("SHMserver", funcptr);

The “client” application Y would call tConnect using the connection-name “SHMclient”:

 ID = tConnect ("SHMclient", funcptr);
64 DC 900-1386D

3: TSI Configuration

Techpubs: If
you change
this section,
also change
the equivalen
section in
chapter 3 of
the Freeway
User Guide.
3.5 Protogate’s Freeway Server TSI Configuration

During the software installation procedures described in the Freeway User Guide, the

default Protogate server TSI configuration file named MuxCfg (see Figure 3–4) was

installed in the freeway/boot directory on the boot server. Freeway uses the information

in the MuxCfg file to configure the Protogate server-resident TSI software so it can com-

municate (using the Freeway message multiplexor) with the client TSI software. Refer

back to Figure 1–5 on page 27 to see the server TSI software relative to the Freeway mes-

sage multiplexor.

There is one critical difference in the Protogate server TSI software, namely that it must

use TSI non-blocking I/O support (that is, the AsyncIO parameter must be set to “yes”,

as shown in Figure 3–4). Changing the AsyncIO parameter to “no” or omitting it, will

prevent the Protogate server TSI software from operating as designed.

Caution
Before modifying the MuxCfg file for the Protogate server TSI soft-

ware, you should be familiar with the parameter descriptions in

Table 3–1 through Table 3–4 (page 54 through page 59). Of partic-

ular importance are those parameters that control server resources,

such as the TSI buffer pool size (MaxBuffers parameter on page 54)

or message size (MaxBufSize parameter on page 55). Improper val-

ues could adversely affect server operation.

Also keep the following points in mind if you must modify the MuxCfg file:

• The Transport parameter (page 57) has no default and must be defined.

• Unlike a client TSI configuration file (such as shown in Figure 3–2 on page 61),
the Server parameter (page 57) is not required for MuxCfg because the server TSI
software automatically uses the address of the machine on which it is running.

• The parameters can appear in any order in the configuration file and can be
upper-case, lower-case, or a mixture.

• If a parameter is not explicitly contained in the file, the default is used (defaults are
identified in Figure 3–4).

t
DC 900-1386D 65

Freeway Transport Subsystem Interface Reference Guide

3/6/96 Ginni
This figure is
not the real
thing. For
release 2.4, w
are still using
Original
coding by
Kiet, 27Jan94
See User
Guide.
//
// source control identifier
// @(#)Id
//
//--//
//
// Default TSI configuration file for the Protogate server-resident software:
//
// Date Initials Abstracts
// 12may94 pmt Original coding...
//
// Note that the parameters commented as default could have been omitted
//--//
main
{

AsyncIO = "yes"; // must be specified as yes
LogLev = 0; // default
MaxBuffers = 2048;
MaxConns = 128; // default
MaxBufSize = 1024; // default
StackSize = 10240; // default
TraceName = "/ram1/msgmux.trc";
TraceSize = 64000;
TraceLev= 3;

}
//
server1 // connection-name
{

AsyncIO = "yes"; // must be specified as yes
LogLev = 0;
MaxBufSize = 1024; // default
MaxErrors = 10; // default
MaxInQ = 10; // default
MaxOutQ = 10; // default
TCPKeepAlive = "no"; // default
TCPNoDelay = "no"; // default
Timeout = 63999;
TraceLev = 3;
Transport = "tcp-socket"; // must be specified (no default)
WellKnownPort = 0x'2010'; // default

}

Figure 3–4: TSI Configuration File (MuxCfg) for Protogate Server-Resident TSI

:

e

.
66 DC 900-1386D

3: TSI Configuration
3.6 Miscellaneous TSI Configuration Details

After you are familiar with the fundamentals of working with the tsicfg preprocessor

program, the additional details described in this section might be of interest.

3.6.1 TSI Configuration Error Messages

The TSI configuration preprocessor, tsicfg, can display one of the following error or

warning messages:

Invalid type specified — STRING expected Your parameter value does not match the

expected type. Action: Review your configuration source code for errors, and try

again.

Invalid type specified — BOOLEAN expected You must use a Boolean value (“YES”

or “NO”) for this parameter. Action: Review your configuration source code for

errors and try again.

Invalid type specified — DEC/HEX/OCT expected The expected type is decimal,

hexadecimal, or octal data format. Action: Review your configuration source code

for errors and try again.

Invalid type specified — FLOAT expected The expected type is floating point format.

Action: Review your configuration source code for errors and try again.

Invalid range specified The provided parameter value is out of range. Action: Review

your configuration source code for errors and try again.

Internal error! This is an internal error in the tsicfg program. Action: Rerun tsicfg with

your source file. If this error consistently occurs, save your configuration source

code and contact Protogate for further assistance.

No “main” — Default is used This is a warning message that your configuration

source code does not have the “main” section specified as the first entry in the
DC 900-1386D 67

Freeway Transport Subsystem Interface Reference Guide
configuration source code. Action: None if you do not wish to define the “main”

section yourself. Otherwise, consider adding the “main” section as the very first

section in the text configuration file.

Redefined “main” — Definition ignored This is a warning message that either you

defined the “main” section twice or that you did not code the “main” section as

the very first entry in your text configuration file. Action: Review your text config-

uration file, correct the problem, and rerun tsicfg.

Invalid transport name You specified a protocol name that is not supported by the

TSI. Action: Review your text configuration file and this manual for the supported

transport protocols. Correct the error and try again.

Undefined parameter name The provided parameter name is not defined. Action:

Review your configuration source code for errors and try again.

Invalid parameter for specified protocol This parameter does not belong to this pro-

tocol. Action: Review your configuration source code for errors and try again.

Failed processing file tsicfg failed to complete processing your configuration file.

Action: Review your configuration source code for errors and try again.

syntax error - cannot backup This is an internal LEX/YACC error. Action: Retry the

operation.

out of memory This is an internal LEX / YACC error. Action: Retry the operation.

yacc stack overflow This is an internal YACC error. Action: Retry the operation.

syntax error A syntax error was encountered in your configuration source code.

Action: Locate and correct the error and try the operation again.
68 DC 900-1386D

3: TSI Configuration
3.6.2 Protogate Definition Language (PDL) Grammar

The following extended BNF metalanguage describes the language used to create the TSI

text configuration file. The following is a brief description of the symbols used:

1. A string inside of <> is a non-terminal symbol. Its definition is located somewhere

down the list.

2. Strings inside of {} separated by a vertical bar (|) make up a list of options. You can

select one or none of the options.

3. A string inside of [] is an optional string.

4. Terminal symbols are those not surrounded by <>.

Context Free Grammar

<config_entry> ::= <connection_name> <leftbr> <config_stmt_list> <rightbr>

<connection_name> ::= <identifier>

<config_stmt_list> ::= <config_stmt>{<config_stmt_list>}

<config_stmt> ::= [<parameter_name> <equal><parameter_value>;]

<paramter_name> ::= <identifer>

<parameter_value> ::= {<string> | 0x<hex> | <decimal> | 0<octal>

0b<binary> | <float>}

<string> ::= <doublequote><str><doublequote>

<str> ::= [<char>{<str>}]

<decimal> ::= <decdigit>[<decimal>]

<octal> ::= <octdigit>[<octal>]

<binary> ::= <bindigit>[<binary>]

<hex> ::= <hexdigit>[<hex>]

<float> ::= <decimal>.<decimal>

<equal> ::= =

<leftbr> ::= {

<rightbr> ::= }

<doublequote> ::= "
DC 900-1386D 69

Freeway Transport Subsystem Interface Reference Guide
<char> ::= 1…255

<decdigit> ::= 0…9

<hexdigit> ::= <decdigit>, a–f

<octdigit> ::= 0…7

<bindigit> ::= 0…1

<alpha> ::= a–z, A–Z, _

<digit> :: <decdigit>

<identifer> ::= <alpha>[<restid>]

<restid> ::= <alphadigit>[<restid>]

<alphadigit> ::= <alpha> | <digit>
70 DC 900-1386D

Chapter
4 TSI Functions
Note
In this document, the term “Freeway” can mean either a Freeway

server or an embedded ICP. For the embedded ICP, also refer to the

user guide for your ICP and operating system (for example, the

ICP2432 User Guide for Windows NT).

4.1 Overview of TSI Functions

This chapter describes the transport subsystem interface (TSI) functions used by your

application program to interface to Protogate’s Freeway communications server. The

TSI is provided as a C library to be linked with your application program. Section 4.1.3

describes TSI data structures that the application programmer uses with the TSI.

Table A–1 on page 137 summarizes the error codes related to the TSI functions.

4.1.1 TSI Error Handling

The tserrno variable is globally available to your application and offers similar services to

errno provided in the C language. The TSI uses tserrno to store all its error codes. Your

application should check this value on all returns from TSI function calls. Applicable

error codes are listed with each function call described in this chapter. Appendix A gives

a complete list of TSI error codes.

Note
While developing your TSI application, if a particular error occurs

consistently, contact Protogate for further assistance.
DC 900-1386D 71

Freeway Transport Subsystem Interface Reference Guide
4.1.2 Categories of TSI Functions

The TSI library can be categorized as shown in Table 4–1.

Table 4–1: TSI Function Groups

Category TSI Functions Usage

Preparation and
termination

tInit, tTerm Initialize and terminate TSI
services

Connection handling tConnect, tListen, tDisconnect Establish and terminate a con-
nection with a peer TSI appli-
cation

Data transfer tRead, tWrite, tPoll, tPost1,
tSyncSelect

1 Server-resident application only

Exchange data with a peer TSI
application and obtain specific
information related to your
connection

Buffer management tBufAlloc, tBufFree Obtain and release fixed-size
TSI buffers
72 DC 900-1386D

4: TSI Functions
4.1.2.1 Summary of TSI Functions

The TSI functions used in writing a client application are presented alphabetically in

Section 4.2 through Section 4.13. For easy reference after you are familiar with the

details of each function call, Table 4–2 summarizes the TSI function syntax and param-

eters, listed in the most likely calling order.

Caution
When using non-blocking I/O, there must always be at least one

tRead request queued to avoid loss of data or responses from the

ICP.

An overview of using the TSI functions is:

• Start up communications (tInit, tConnect, tBufAlloc)

• Send requests and data using tWrite

• Receive responses using tRead

• For blocking I/O, use tSyncSelect to query read availability status for multiple con-

nections

• For non-blocking I/O, handle I/O completions at the software interrupt level in

the completion handler established by the tInit or tConnect function, or by peri-

odic use of tPoll to query the I/O completion status.

Shut down communications (tBufFree, tDisconnect, tTerm)
DC 900-1386D 73

Freeway Transport Subsystem Interface Reference Guide
Table 4–2: TSI Functions: Syntax and Parameters (Listed in Typical Call Order)

TSI Function Parameter(s) Parameter Usage

int tInit
(see page 91)

(char *cCfgFile,
 char *pUsrCB,
 int (*fUsrIOCH)(char *pUsrCB));

TSI binary configuration file name
Optional I/O complete control block
Optional IOCH and parameter

int tConnect
(see page 84)

(char *cTransportName,
 int (*fUsrIOCH)

(char *pUsrCB, int iConnID));

TSI connection definition entry
Optional I/O completion handler
Parameters for IOCH

int tPost
(see page 107)

(void);

int tListen
(see page 95)

(char *cTransportName,
 int (*fUsrIOCH)
 (char *pUsrCB, int iConnID));

TSI connection definition entry
Optional I/O completion handler
Parameters for IOCH

int tPoll
(see page 100)

(int iConnID,
 int iPollType,
 char **ppBuf,
 int *piBufLen,
 char *pStat);

Connection ID (tConnect/tListen)
Request type
Poll-type dependent parameter
Size of I/O buffer (bytes)
Status or configuration buffer

char *tBufAlloc
(see page 80)

(void);

int tRead
(see page 109)

(int iConnID,
 char **ppBuf,
 int iBufLen);

Connection ID (tConnect/tListen)
Buffer to receive data
Maximum bytes to be returned

int tWrite
(see page 120)

(int iConnID,
 char *pBuf,
 int iBufLen,
 int iWritePriority);

Connection ID (tConnect/tListen)
Source buffer for write
Number of bytes to write
Normal or expedite write
74 DC 900-1386D

4: TSI Functions
int tSyncSelect
(see page 114)

(int iNbrConnID,
 int connIDArray[],
 int readStatArray[]);

Number of connection IDs
Packed array of connection IDs
Array containing read status for IDs

char *tBufFree
(see page 82)

(char *pBuf); Buffer to return to pool

int tDisconnect
(see page 88)

(int iConnID,
 int iDiscType);

Connection ID (tConnect/tListen)
Mode (normal or force)

int tTerm
(see page 117)

(void);

Table 4–2: TSI Functions: Syntax and Parameters (Listed in Typical Call Order)

TSI Function Parameter(s) Parameter Usage
DC 900-1386D 75

Freeway Transport Subsystem Interface Reference Guide
4.1.3 TSI Data Structures

This section describes the following TSI data structures that your application can access

using the tPoll function.

• TSI system configuration structure

• TSI connection status structure

• TSI connection definition list

4.1.3.1 TSI System Configuration

After initializing the TSI services (tInit), your application can obtain system configura-

tion parameters from TSI by calling tPoll with the TSI_POLL_GET_SYS_CFG option

(Section 4.8). The information includes the size of buffers in the TSI data pool and the

overhead TSI uses for header storage. This information is useful if your application uses

its own buffers instead of TSI buffer management’s. Your application receives the sys-

tem configuration information in the data structure shown in Figure 4–1. Table 4–3

describes the fields.

typedef struct _TSI_SYS_CFG
{

int iMaxBufSize;
unsigned short usMaxConns;
unsigned short usMaxBufs;
unsigned short usNumActiveConns;
unsigned short usNumBufsUsed;
unsigned short usNumBufsAvail;
unsigned short usOverhead;
unsigned short usVersion;
unsigned short usRevision;
BOOLEAN tfAsyncIO;
unsigned char cTraceFileName[TSI_MAX_NAME];

} TSI_SYS_CFG;

Figure 4–1: TSI System Configuration Data Structure
76 DC 900-1386D

4: TSI Functions
Table 4–3: TSI System Configuration Data Structure Fields

Field Description

iMaxBufSize The maximum area available for user data in buffers from the TSI buffer pool.

usMaxConns The maximum number of connections that can be active simultaneously. This
value is configurable using the MaxConns TSI configuration parameter (page
55) in the “main” configuration section.

usMaxBufs The maximum number of buffers available for your application. This value is
configurable using the MaxBuffers TSI configuration parameter (page 54) in
the “main” configuration section.

usNumActiveConns The number of connections currently in use. This number should be less than
or equal to usMaxConns.

usNumBufsUsed The number of buffers currently in use. This number should be less than or
equal to usMaxBufs.

usNumBufsAvail The number of buffers currently available for use. This number plus
usNumBufsUsed should be equal to usMaxBufs.

usOverhead The number of additional bytes that must precede your data area in a buffer
that your application requests the TSI to read or to write. Your application
needs to be aware of this value only if it does not wish to use the TSI buffer
management scheme. This value, usOverhead + iMaxBufSize, must be equal
to the MaxBufSize TSI configuration parameter (page 55).

usVersion The current version of the TSI. You must know this number when you call
Protogate’s customer support.

usRevision The current revision of the TSI.

tfAsyncIO A BOOLEAN value indicating whether or not the TSI was configured to use
non-blocking I/O (zero specifies blocking I/O).

cTraceFileName The name of the file the TSI uses to trace the data that flows through the layer.
DC 900-1386D 77

Freeway Transport Subsystem Interface Reference Guide
4.1.3.2 TSI Connection Status

After establishing a connection, your application can obtain connection-related infor-

mation by calling tPoll with the TSI_POLL_GET_CONN_STATUS option (Section 4.8).

This information includes the negotiated buffer size (usMaxConnBufSize), which is the

actual data size available for this connection’s user data. Your application receives the

connection status information in the TSI_CONN_STAT data structure shown in

Figure 4–2. Table 4–4 describes the fields.

Note
Refer to the Freeway Data Link Interface Reference Guide for an

example program to request DLI session status. Requesting TSI

connection status is similar.

4.1.3.3 TSI Connection Definition List

The connection definition list is returned to your application if it invokes tPoll with the

TSI_POLL_GET_CFG_LIST option. The configuration list is returned through the

ppBuf argument, and the number of the connection definitions is given by the piBufLen

argument. Refer to tPoll, Section 4.8, for information on this list of connection defini-

tions.

typedef struct _TSI_CONN_STAT
{

short iQReadSize;
short iQWriteSize;
short iQNumRead;
short iQNumWrite;
short iQNumReadDone;
short iQNumWriteDone;
short iConnStatus;
short iNumErrors;
short iMaxErrors;
short usMaxConnBufSize
short iNumCalls;
BOOLEAN tfOverflow

} TSI_CONN_STAT;

Figure 4–2: TSI Connection Status Data Structure
78 DC 900-1386D

4: TSI Functions
Table 4–4: TSI Connection Status Data Structure Fields

Field Description

iQReadSize The size of the input queue. This value can be configured using the MaxInQ TSI
configuration parameter (page 56) in the connection definition section.

iQWriteSize The size of the output queue. This value can be configured using the MaxOutQ
TSI configuration parameter (page 56) in the connection definition section.

iQNumRead The current number of read requests in the read queue. This value is less than or
equal to iQReadSize.

iQNumWrite The current number of write requests in the write queue. This value is less than or
equal to iQWriteSize.

iQNumReadDone The current number of read requests that are complete or timed out in the input
queue. This value is less than or equal to iQReadSize.

iQNumWriteDone The current number of write requests that are complete or timed out in the output
queue. This value is less than or equal to iQWriteSize.

iConnStatus The current status of the connection. The valid connection status values are:

TSI_STATE_NOT_CONNECTED The current TSI connection is being ended.

TSI_STATE_NOT_IN_USE The current TSI connection is not available for use
because it failed to establish a connection or has finished disconnecting. A
cleanup is underway.

TSI_STATE_NOT_CONNECTED The TSI is still trying to establish a connec-
tion with Freeway or the peer TSI application.

TSI_STATE_CONNECTED The TSI successfully established a connection with
Freeway or the peer TSI application. Your application can now read or write
to this connection.

iNumErrors The current number of I/O errors that has occurred for this connection since the
connection was established. Your application can monitor this value to check the
health of an active connection.

iMaxErrors The maximum number of errors this connection can tolerate before it rejects I/O
requests from your application. This value can be defined using the MaxErrors
TSI configuration parameter (page 56) in the connection definition section.

usMaxConnBufSize The maximum buffer area available to the user for the transfer of data. The value
can vary between connections, and the value is valid only after the connection is
established. This size does not include any TSI overhead requirements.

iNumCalls Reserved

tfOverflow Reserved
DC 900-1386D 79

Freeway Transport Subsystem Interface Reference Guide
4.2 tBufAlloc

The tBufAlloc function allocates a fixed-size buffer that is maintained by TSI services.

Your application can use these buffers to exchange data with peer TSI applications or

for any other purpose. To avoid a buffer depletion problem, your application must

return all unused buffers to TSI using tBufFree (Section 4.3).

Though you are not required to use tBufAlloc, you should consider using it for all TSI

I/O operations for the following reasons:

• The TSI buffer services account for buffer overhead requirements.

• The TSI allocates all buffers up front, resulting in better real-time performance

than the normal C malloc and free functions

• The number of TSI buffers is configurable for operating environments with lim-

ited system resources (MaxBuffers, page 54)

To enhance performance, the TSI implementation uses the memory area just before the

data area to store its headers. Due to this implementation, if your application does not

wish to use the TSI buffer management, it must allocate sufficient memory for not only

its data but also the TSI headers. To obtain the amount of memory required for the TSI

overhead, your application can invoke tPoll with the TSI_POLL_GET_SYS_CFG option

(usOverhead field on page 77). Your application can also use tPoll with the

TSI_POLL_GET_SYS_CFG option to obtain the status of buffer management (see

Table 4–3 on page 77). Refer to Section 2.3 on page 31 for more information on buffer

management issues.

Synopsis

char *tBufAlloc (void);

Parameters

None
80 DC 900-1386D

4: TSI Functions
Returns

If the tBufAlloc function completes successfully, it returns an address that points to the

buffer area to be used by your application. Note that the address returned is the address

of the data area of the TSI buffer; this address must be used by any further manipula-

tions on the buffer such as tRead, tWrite, tPoll, and tBufFree. Otherwise it returns NULL,

and tserrno contains one of the following error codes (listed alphabetically):

TSI_BUFA_ERR_NEVER_INIT The TSI was never initialized; that is, tInit was

never called.

Action: Review your application and try again.

TSI_BUFA_ERR_NO_BUFS The TSI exhausted buffers. Possible problems are:

(1) your application did not release buffers after use, or (2) your application

is configured for non-blocking I/O, and it has too many outstanding con-

nections with a large queue size (for example, MaxBuffers = 1000, 10 out-

standing connections, and each has 100 entries in the queue).

Action: Severe error; consider increasing the number of buffers in the TSI

configuration file (MaxBuffers on page 54). Review your application and

make sure it releases unused buffers to the TSI.

TSI_BUFA_ERR_SEVERE_ERR The TSI internal call to QAdd failed.

Action: If this error occurs consistently, contact Protogate for assistance.

For additional error codes, refer to Appendix A.
DC 900-1386D 81

Freeway Transport Subsystem Interface Reference Guide
4.3 tBufFree

Your application must use tBufFree to release the TSI buffers that it allocated using tBu-

fAlloc. It must also release any read buffer that TSI allocated in tRead (Section 4.10). The

buffer is returned to the TSI internal free buffer pool. It is the responsibility of your

application to prevent buffer depletion by releasing the unused TSI buffers.

Synopsis

char *tBufFree (
char *pBuf); /* Buffer to return to buffer pool */

Parameters

char *pBuf This field contains the data address of the TSI buffer that was returned by

tBufAlloc (or that was allocated by tRead).

Returns

If the tBufFree function completes successfully, it returns the value of pBuf. Otherwise it

returns NULL, and tserrno contains one of the following error codes (listed alphabeti-

cally):

TSI_BUFF_ERR_INVALID_BUF The buffer pointer provided to tBufFree is either

NULL or –1.

Action: Review your application and try again.

TSI_BUFF_ERR_NEVER_INIT The TSI was never initialized; that is, tInit is never

called.

Action: Review your program and try again.

TSI_BUFF_ERR_NOT_ALLOCATED The TSI invoked tBufFree to free a buffer

and the buffer is not allocated.
82 DC 900-1386D

4: TSI Functions
Action: Make sure that your application frees only a TSI buffer and that it

frees it only once. Review your application and try again.

TSI_BUFF_ERR_SEVERE_ERR The TSI invoked tBufFree to free a buffer and

either the buffer pool is empty or the buffer does not belong to the TSI.

Action: Review your application and try again.

For additional error codes, refer to Appendix A.
DC 900-1386D 83

Freeway Transport Subsystem Interface Reference Guide
4.4 tConnect

The tConnect function establishes a connection to a peer TSI application. The connec-

tion parameters are provided through the TSI configuration file. The TSI searches its

configuration file for a match of the connection name provided as the first parameter of

this function call. Once found, the TSI loads the connection parameters into memory

and begins to establish a connection with the peer TSI application. The destination is

part of the TSI connection parameters.

For non-blocking I/O, tConnect returns as soon as it detects a potential blocking condi-

tion. Your application is not blocked while the TSI attempts to complete the connection

request. When the connection is made, the TSI calls one or both of the IOCH functions

provided through the tInit and tConnect calls. If no IOCH functions are provided, none

is called. Either tInit or tConnect can be used to supply the IOCH; however, the tConnect

IOCH requires a connection ID, and is called for that particular connection only.

Your application uses the iConnID returned from this call for all other TSI calls (tRead,

tWrite, and so on). If this connection is configured for non-blocking I/O, you must

ensure that the connection is fully established before you call the tRead, tWrite, or

tDisconnect functions.

Note
If you need to request connection status to obtain the maximum

buffer size (which may change due to negotiation procedures dur-

ing tConnect), your application should wait until after a successful

tConnect before calling tPoll with the

TSI_POLL_GET_SESS_STATUS option (Section 4.1.3.2 on

page 78). See Section 2.3.2.3 on page 39 for details of the negotia-

tion process.

If your application did not previously call tInit, tConnect makes the tInit call. The default

values are used.
84 DC 900-1386D

4: TSI Functions
Synopsis

int tConnect (
char *cTransportName, /* TSI connection definition entry name */
int (*fUsrIOCH) (char *pUsrCB, int iConnID));

/* Optional IOCH for specific connection */

Parameters

char *cTransportName A string of characters that specifies the name of the desired con-

nection definition entry in the TSI binary configuration file. The associated con-

figuration entry defines the characteristics of the connection you are about to

make.

int (*fUsrIOCH) (char *pUsrCB, int iConnID) This field should contain the address of the

I/O completion handler (IOCH) that the TSI invokes immediately after it services

an I/O condition for this connection. The IOCH is invoked by the TSI only if this

connection is configured for non-blocking I/O. You must write the IOCH your-

self. When an I/O condition occurs for this connection, the TSI invokes this

IOCH with the pUsrCB value (that you provided through tInit) and the connec-

tion ID returned by this call. You can provide a different fUsrIOCH for each con-

nection ID or use the same fUsrIOCH for all IDs. If your application does not wish

the TSI to invoke your IOCH, this parameter should be NULL.

Returns

The tConnect function returns a connection ID or ERROR. The connection ID can have

a value from zero to the maximum number of connections (MaxConns parameter, page

55) minus one. If the connection definition for the function parameter cTransportName

specifies blocking I/O, a returned connection ID indicates that the connection has com-

pleted successfully. If the connection definition specifies non-blocking I/O and a con-

nection ID is returned, the application must examine tserrno and invoke tPoll with the

TSI_POLL_GET_CONN_STATUS option to determine when the connection has suc-

cessfully completed. If the connection has not completed upon return, tserrno is set to

TSI_EWOULDBLOCK.
DC 900-1386D 85

Freeway Transport Subsystem Interface Reference Guide
If the tConnect function returns ERROR, the connection failed, and your application

must check tserrno which contains one of the following error codes (listed alphabeti-

cally):

TSI_CONN_ERR_CLOSE_FAILED The TSI failed to close its transport-depen-

dent connection when it failed to complete the connection request.

Action: If this error occurs consistently, contact Protogate for assistance.

TSI_CONN_ERR_CONN_INIT_FAILED TSI failed to initialize a connection

entry for your application.

Action: Check the TSI connection configuration.

TSI_CONN_ERR_INVALID_PROT The transport parameter in the connection

definition of the TSI configuration file is not valid.

Action: Check whether your configuration program, tsicfg, is at the same

level as your library.

TSI_CONN_ERR_INVALID_STATE The TSI encountered an invalid state in its

state processing machine.

Action: If this error occurs consistently, contact Protogate for assistance.

TSI_CONN_ERR_OPEN_FAILED The TSI failed to establish a transport-depen-

dent connection to the peer TSI application.

Action: Terminate your application and review your TSI configuration file.

TSI_CONN_ERR_QADD_FAILED The TSI failed to insert its internal request in

the internal I/O queue.

Action: Severe error; terminate your application and try again.
86 DC 900-1386D

4: TSI Functions
TSI_CONN_ERR_RETRY_EXCEEDED The TSI retry count exceeded its limit.

Action: Terminate your application and review your configuration parame-

ter for this connection.

TSI_CONN_ERR_SOCK_ALLOC_FAILED The TSI failed to allocate the

resources necessary to support the connection.

Action: Review your connection configuration parameters. You can also

review your error log for additional information.

TSI_CONN_ERR_TINIT_FAILED The TSI failed to initialize its services. This

error occurs only if your application does not explicitly call the tInit func-

tion.

Action: Check your binary configuration file. If the default binary configu-

ration file (tsicfg.bin) was used by the TSI, verify its existence.

TSI_EWOULDBLOCK The requested action could not be completed immedi-

ately. The TSI would have blocked this operation if your connection was

using blocking I/O.

Action: Use tPoll to check whether your request completed. You can pro-

gram your application to be notified by one of the IOCH routines that you

provided when you invoked the tInit, tConnect, or tListen function. Refer to

Appendix B for information on managing TSI applications using non-

blocking I/O.

For additional error codes, refer to Appendix A.
DC 900-1386D 87

Freeway Transport Subsystem Interface Reference Guide
4.5 tDisconnect

The tDisconnect function terminates an active connection between your application and

the peer TSI application.

If this connection is configured for non-blocking I/O, the application must examine

tserrno and invoke tPoll with the TSI_POLL_GET_CONN_STATUS option to determine

when the connection has been successfully disconnected.

It is suggested that your application perform I/O cleanup and then issue a Normal

tDisconnect request to the TSI. Issuing tTerm while active connections exist should be the

last option.

Synopsis

int tDisconnect (
int iConnID, /* Connection ID from tConnect/tListen */
int iDiscType); /* Disconnect mode (normal or force) */

Parameters

int iConnID The connection ID is provided by the TSI through the tConnect or tListen

function call. This ID uniquely identifies a TSI connection between your applica-

tion and the peer TSI application.

int iDiscType This parameter allows your application to request the TSI to terminate an

active connection in either of the following close modes (whether the connection

is using blocking or non-blocking I/O):

TSI_DISC_FORCE When your application issues a Force disconnect for an active

connection, the TSI empties the I/O queues and proceeds with the discon-

nect process without considering the status of the I/O queues. Note that

when your application issues a tTerm while active connections exist, the TSI

itself issues a Force disconnect request before it frees the TSI service struc-

ture.
88 DC 900-1386D

4: TSI Functions
TSI_DISC_NORMAL The TSI rejects a Normal disconnect request if its internal

input and output queues contain outstanding I/O requests. Your applica-

tion should consider checking the I/O queue prior to calling tDisconnect

with this mode. You can obtain the status of I/O queues using the tPoll call.

Returns

If the tDisconnect function completes successfully, it returns OK. Otherwise, it returns

ERROR, and tserrno contains one of the following error codes (listed alphabetically):

TSI_DISC_ERR_CLOSE_FAILED The TSI failed to close the listener.

Action: Severe error; if this error occurs consistently, contact Protogate for

assistance.

TSI_DISC_ERR_DISC_FAILED The disconnect failed and the connection has

been returned to the connected state.

Action: If this error occurs consistently, contact Protogate for assistance.

TSI_DISC_ERR_INVALID_ID The provided connection ID is invalid.

Action: Review your program’s logic. If this error occurs consistently, con-

tact Protogate for assistance.

TSI_DISC_ERR_INVALID_STATE The TSI encountered an invalid state in its

state processing machine.

Action: Review the TSI trace and error logs. If this error occurs consistently,

contact Protogate for assistance.

TSI_DISC_ERR_INVALID_TYPE Invalid disconnect type requested (use

TSI_DISC_NORMAL or TSI_DISC_FORCE).

Action: Review your program’s logic.
DC 900-1386D 89

Freeway Transport Subsystem Interface Reference Guide
TSI_DISC_ERR_NEVER_INIT The TSI was never initialized. You must invoke

tInit before using this function.

Action: Correct your program’s logic and try again.

TSI_DISC_ERR_Q_NOT_EMPTY Your application requested a normal discon-

nect on a given connection, and the internal I/O queues for that connection

are not empty.

Action: Review your program’s logic, and try again.

TSI_DISC_ERR_QADD_FAILED The TSI failed to add the disconnect packet to

its internal queue.

Action: If this error occurs consistently, contact Protogate for assistance.

TSI_DISC_ERR_SEVERE_ERROR The TSI failed to access its internal I/O

queues.

Action: Severe error; terminate your application and try again.

TSI_EWOULDBLOCK The requested action could not be completed immedi-

ately. The TSI would have blocked this operation if your connection was

using blocking I/O.

Action: Use tPoll to check whether your request completed. You can pro-

gram your application to be notified by one of the IOCH routines that you

provided when you invoked the tInit, tConnect, or tListen function. Refer to

Appendix B for information on managing TSI applications using non-

blocking I/O.

For additional error codes, refer to Appendix A.
90 DC 900-1386D

4: TSI Functions
4.6 tInit

The tInit function is usually the first TSI function your application calls. It initializes the

TSI services based upon the “main” definition in the TSI binary configuration file

(described in Section 3.3.1 on page 54) provided through the first parameter, cCfgFile.

This function call is optional; if your application does not explicitly call tInit, the tListen

or tConnect function calls it implicitly, in which case the default values are used.

Even though the TSI does not require your application to call tInit prior to its being

used, it is suggested that your application always call tInit and tTerm. If tTerm is not

called before your application ends, connection and system resources might not be

released properly.

Synopsis

int tInit (
char *cCfgFile, /* TSI binary configuration file name */
char *pUsrCB, /* I/O complete control block */
int (*fUsrIOCH) (char *pUsrCB)); /* Optional IOCH */

Parameters

char *cCfgFile The binary configuration file that contains all TSI run-time parameters.

This file results from execution of the TSI configuration program, tsicfg, upon a

TSI text configuration file. If this parameter is a NULL pointer, the default file,

tsicfg.bin, is used. Whether or not you supply the configuration file name, the

binary configuration file must exist for the TSI to operate. An optional on-line

configuration method is described in Section 3.2.4 on page 52.

char *pUsrCB This field should contain the address of the data area that is accessible by

your supplied I/O completion handler (IOCH), fUsrIOCH, below. When the TSI

is configured for non-blocking I/O, it invokes your supplied IOCH function after

it services an I/O condition. The TSI passes this field as the first parameter to your

supplied fUsrIOCH function.
DC 900-1386D 91

Freeway Transport Subsystem Interface Reference Guide
int (*fUsrIOCH) (char *pUsrCB) This field should contain the address of the I/O com-

pletion handler (IOCH) that TSI invokes immediately after it processes all active

connections. You must write the IOCH yourself. The IOCH is called only if the

TSI is configured for non-blocking I/O. If your application does not wish the TSI

to invoke your IOCH, this parameter should be NULL. Either tInit or tConnect can

be used to supply the IOCH; however, the tConnect IOCH requires a connection

ID, and is called for that particular connection only.

Returns

If tInit completes successfully, it returns OK. Otherwise it returns ERROR, and tserrno

contains one of the following error codes (listed alphabetically):

TSI_INIT_ERR_ACT_ADD_REM_FAILED The TSI failed to add its internal

active connection queue.

Action: Check your system resources. Refer to Section 2.4 on page 44 to cal-

culate system resources required by the TSI.

TSI_INIT_ERR_ACT_QINIT_FAILED The TSI failed to initialize its internal

active connection queue.

Action: Check your system resources. Refer to Section 2.4 on page 44 to cal-

culate system resources required by the TSI.

TSI_INIT_ERR_ALREADY_INIT Your application already issued tInit.

Action: Review your program logic and try again.

TSI_INIT_ERR_BUF_ADD_REM_FAILED The TSI failed to set up its buffer pool

queue.

Action: Severe error; terminate your application and try again.
92 DC 900-1386D

4: TSI Functions
TSI_INIT_ERR_BUF_QINIT_FAILED The TSI failed to initialize its buffer pool

queue.

Action: Check your system resources. Refer to Section 2.4 on page 44 to cal-

culate system resources required by the TSI.

TSI_INIT_ERR_CFG_LOAD_FAILED The TSI failed to load the system configu-

ration parameters from the provided binary configuration file.

Action: Check the binary configuration file used by the TSI. If your applica-

tion calls tInit directly, make sure the binary configuration file containing

the configuration your application provides exists. If your application does

not call tInit directly, the TSI calls this function for you; make sure the

default configuration file (tsicfg.bin) exists. Verify the binary file name

includes a ‘.’ character. If a text file is supplied (as discussed in Section 3.2.4

on page 52), verify the file name and its existence in the current directory

(where the application program is executing). Review your program logic

and try again.

TSI_INIT_ERR_LOG_INIT_FAILED The TSI failed to initialize its internal log-

ging and tracing facility.

Action: Check your logging-related and tracing-related parameters in the

currently used TSI configuration file.

TSI_INIT_ERR_NO_MEM The TSI memory initialization failed.

Action: Make sure your operating environment provides sufficient memory

resources for your application.

TSI_INIT_ERR_NO_RESOURCE No memory resource is available for the TSI to

start its services.

Action: Make sure your operating environment provides sufficient memory

resources for your application.
DC 900-1386D 93

Freeway Transport Subsystem Interface Reference Guide
TSI_INIT_ERR_NO_TRACE_BUFFER No memory is available for the TSI trace

buffer.

Action: Check your system resources. Refer to Section 2.4 on page 44 to cal-

culate system resources required by the TSI.

TSI_INIT_ERR_SETRLIMIT_FAILED The TSI call to setrlimit failed. SUNOS,

AIX, and SOLARIS only.

Action Check your system resources.

TSI_INIT_ERR_TASK_VAR_FAILED The TSI failed to establish its internal task

variables (VxWorks only).

Action: If this error occurs consistently, contact Protogate for assistance.

TSI_INIT_ERR_TSICB_ALLOC_FAILED The TSI failed to allocate memory for

its internal system control block.

Action: Check your system resources. Refer to Section 2.4 on page 44 to cal-

culate system resources required by the TSI. If this error occurs consistently,

contact Protogate for assistance.

For additional error codes, refer to Appendix A.
94 DC 900-1386D

4: TSI Functions
4.7 tListen

The tListen function waits for a connection request from a peer TSI application. It is

similar to the tConnect function, except that the TSI waits for the peer TSI application to

make a connection request (via tConnect). As with tConnect, the TSI searches the config-

uration file for a match of the connection name provided as the first parameter of this

function call, then loads the parameters into memory. Once a connection request is

received and validated, a connection is then made available to the application. Your

application must issue another tListen call if it wishes to receive any additional connec-

tion requests.

For non-blocking I/O, tListen returns immediately as soon as it detects a potential

blocking condition. Your application is not blocked while the TSI is waiting for a con-

nection request. When the connection is made, the TSI calls one or both of the IOCH

functions provided through the tInit and tListen calls. If no IOCH functions are pro-

vided, none is called. When using non-blocking I/O, the application can have up to

TSI_MAX_LISTEN (defined in tsidefs.h file) outstanding “listens” for each connection

definition in the application’s TSI configuration file. For example, at startup the appli-

cation can call tListen multiple times to have several “listening connections” waiting for

incoming connection requests.

Your application uses the iConnID returned from this call for all other TSI calls (tRead,

tWrite, and so on). If this connection is configured for non-blocking I/O, you must

ensure that the connection is fully established before you call the tRead, tWrite, or

tDisconnect functions.

Synopsis

int tListen (
char *cTransportName, /* Transport name in TSI config file */
int (*fUsrIOCH) (char *pUsrCB, int iConnID));

/* Optional IOCH for specific connection */
DC 900-1386D 95

Freeway Transport Subsystem Interface Reference Guide
Parameters

char *cTransportName A string of characters that specifies the name of the desired trans-

port definition entry in the TSI binary configuration file. The associated configu-

ration entry defines the characteristics of the connection to be completed when a

connection request arrives.

int (*fUsrIOCH) (char *pUsrCB, int iConnID) This field should contain the address of the

I/O completion handler (IOCH) that TSI invokes immediately after it services an

I/O condition for this connection. The TSI invokes the IOCH only if this connec-

tion is configured for non-blocking I/O. You must write the IOCH yourself.

When an I/O condition occurs for this connection, the TSI invokes passes the

pUsrCB value (that you provided with tInit) and the connection ID returned by

this call. You can provide a different fUsrIOCH for each connection or use the

same fUsrIOCH for all IDs. If your application does not wish the TSI to invoke

your IOCH, this parameter should be NULL. The tInit function (Section 4.6) can

also be used to define a general-purpose IOCH that is not restricted to one partic-

ular connection.

Returns

The tListen function returns a non-negative connection ID or ERROR. The connection

ID can have a value from zero to the maximum number of connections (MaxConns

parameter, page 55) minus one. If the connection definition for the function parameter

cTransportName specifies blocking I/O, a returned connection ID indicates that the con-

nection has completed successfully. If the connection definition specifies non-blocking

I/O and a connection ID is returned, the application must examine tserrno and invoke

tPoll with the TSI_POLL_GET_CONN_STATUS option to determine when the connec-

tion has successfully completed. If the connection has not completed upon return, tser-

rno is set to TSI_EWOULDBLOCK.
96 DC 900-1386D

4: TSI Functions
If this function returns ERROR, the connection failed and tserrno contains one of the

following error codes (listed alphabetically):

TSI_EWOULDBLOCK The requested action could not be completed immedi-

ately. The TSI would have blocked this operation if your connection was

using blocking I/O.

Action: Use tPoll to check whether your request completed. You can pro-

gram your application to be notified by one of the IOCH routines that you

provided when you invoked the tInit, tConnect, or tListen function. Refer to

Appendix B for information on managing TSI applications using non-

blocking I/O.

TSI_LSTN_ERR_CLOSE_FAILED The TSI failed to close its transport-depen-

dent connection when it failed to complete the connection request.

Action: If this error occurs consistently, contact Protogate for assistance.

TSI_LSTN_ERR_CONN_INIT_FAILED The TSI failed to initialize a connection

for the listener.

Action: Check whether your connection name (first argument of tListen) is

properly defined in the TSI configuration. Check your error log for addi-

tional error codes.

TSI_LSTN_ERR_INVALID_PROT The value of the transport parameter in your

configuration file is invalid.

Action: Check whether configuration program, tsicfg, is at the same level as

your library.

TSI_LSTN_ERR_INVALID_STATE The TSI encountered an invalid state in its

state processing machine.

Action: If this error occurs consistently, contact Protogate for assistance.
DC 900-1386D 97

Freeway Transport Subsystem Interface Reference Guide
TSI_LSTN_ERR_LSTN_FAILED The TSI failed to establish a transport-depen-

dent connection to the peer TSI application.

Action: Review your TSI configuration file.

TSI_LSTN_ERR_NO_LISTENERS The TSI failed to remove a connection from

the internal listening queue.

Action: If this error occurs consistently, contact Protogate for assistance.

TSI_LSTN_ERR_NOT_SERVER A non-listener TSI connection tried to execute a

transport-dependent listen.

Action: If this error occurs consistently, contact Protogate for assistance.

TSI_LSTN_ERR_QADD_FAILED The TSI failed to add a connection entry into

its internal queue.

Action: Severe error; if this error occurs consistently, contact Protogate for

assistance.

TSI_LSTN_ERR_QFULL The internal listening queue for this connection defini-

tion (cTransportName) is full and is not able to accept more listening

requests.

Action: Your application can post another listening request later, when one

of the queued listeners completes a connection.

TSI_LSTN_ERR_QINIT_FAILED The TSI failed to allocate an internal listening

queue for the listener.

Action: Severe error; terminate your application and try again.

TSI_LSTN_ERR_SETOPT_FAILED This error is specific to the TCP/IP socket

interface. The TSI failed in setting socket options on a newly accepted

socket.
98 DC 900-1386D

4: TSI Functions
Action: If this error occurs consistently, contact Protogate for assistance.

TSI_LSTN_ERR_SOCK_ALLOC_FAILED The TSI failed to allocate a TCP/IP

socket for the listener.

Action: Review the TSI log for additional information.

TSI_LSTN_ERR_TINIT_FAILED The TSI failed to initialize its services. This

error can occur only if your application did not explicitly call the tInit func-

tion.

Action: Check your binary configuration file. If the default binary configu-

ration file (tsicfg.bin) was used by the TSI, verify its existence.

For additional error codes, refer to Appendix A.
DC 900-1386D 99

Freeway Transport Subsystem Interface Reference Guide
4.8 tPoll

The tPoll function queries information related to I/O operations, connection status, or

system configuration status. The poll type parameter specifies the type of query; the

most common uses are to acquire the status of a TSI connection and to poll for I/O

completions (only for those connections using non-blocking I/O). Your application

can call tPoll as often as necessary.

Synopsis

int tPoll (
int iConnID, /* Connection ID from tConnect/tListen */
int iPollType, /* Request type */
char **ppBuf, /* Poll-type dependent parameter */
int *piBufLen, /* Size of I/O buffer in bytes */
char *pStat); /* Status or configuration buffer */

Parameters

int iConnID The connection ID (returned from a tConnect or tListen function) that

uniquely identifies an active connection serviced by the TSI. If a connection ID is

not relevant to the iPollType parameter specified (TSI_POLL_GET_SYS_CFG,

TSI_POLL_GET_CFG_LIST, TSI_POLL_TRACE_OFF, TSI_POLL_TRACE_ON,

TSI_POLL_TRACE_WRITE), this parameter should be set to zero.

int iPollType This parameter specifies the type of poll request to the TSI. Valid poll

types are:

TSI_POLL_GET_CFG_LIST Request the TSI to get a list of all TSI connection

definition names defined in the application’s TSI configuration file. The list

is returned through the ppBuf parameter in NULL-terminated string lists

(see Section 4.1.3.3 on page 78). The number of connection definition

names in the list is returned in the piBufLen parameter. The list does not

contain the definition of the “main” section.
100 DC 900-1386D

4: TSI Functions
TSI_POLL_GET_CONN_STATUS Request the TSI to get the current connection

status of the connection ID, iConnID, given. The connection status is

returned through the TSI_CONN_STAT structure (see Section 4.1.3.2 on

page 78). The pointer to the TSI_CONN_STAT structure must be provided

through the pStat parameter.

TSI_POLL_GET_SYS_CFG Request the TSI to get the TSI system configuration.

The system configuration is returned through the TSI_SYS_CFG structure

(see Section 4.1.3.1 on page 76). The pointer to the TSI_SYS_CFG structure

must be provided through the pStat parameter.

TSI_POLL_READ_CANCEL Request the TSI to remove a read request from this

connection’s (iConnID parameter) input queue regardless of the completion

status of the read request. If the content of the ppBuf (*ppBuf) parameter is

NULL, the TSI removes the first entry in the input queue regardless of its

completion status. If the content of ppBuf is not NULL, the TSI searches

through its input queue for a matching address pointer. If it finds a match,

it removes that request regardless of its completion status.

TSI_POLL_READ_COMPLETE Request the TSI to remove the first read request

from this connection’s input queue if it is either complete, timed-out, or a

read error occurred. The address and length of the buffer are returned

through the ppBuf and piBufLen parameters. This request removes the first

entry in the input queue only if the request is marked “read complete,”

“read timed-out,” or “read error.” In all cases, the application is responsible

for freeing the returned buffer.

TSI_POLL_TRACE_OFF Request the TSI to disable tracing services. See

Appendix C.

TSI_POLL_TRACE_ON Request the TSI to enable tracing services. See

Appendix C.
DC 900-1386D 101

Freeway Transport Subsystem Interface Reference Guide
TSI_POLL_TRACE_STORE Use this poll type to write your own information

into the TSI trace buffer. Use the pStat parameter to indicate the area of

memory to be copied to the trace buffer and the piBufLen parameter to indi-

cate the length of the area to be copied. The length of your trace area must

be less than or equal to the size of the trace buffer (TraceSize on page 55).

Otherwise, your trace area will be truncated when copied into the TSI trace

buffer.

TSI_POLL_TRACE_WRITE Request the TSI to write the contents of the trace

buffer to the trace file.

TSI_POLL_WRITE_CANCEL Request the TSI to remove a write request from

this connection’s (iConnID parameter) output queue regardless of the com-

pletion status of the write request. If the content of the ppBuf (*ppBuf)

parameter is NULL, the TSI removes the first entry in the output queue

regardless of its completion status. If the content of ppBuf is not NULL, the

TSI searches through the output queue for a matching address pointer. If it

finds a match, it removes that request regardless of its completion status.

TSI_POLL_WRITE_COMPLETE Request the TSI to remove the first write

request from this connection’s output queue if it is either complete or

timed-out. The address and length of the buffer are returned through the

ppBuf and piBufLen parameters. This request removes the first entry in the

output queue only if the request is marked “write complete,” “write timed-

out,” or “write error.” In any case, the application is responsible for freeing

the returned buffer.

char **ppBuf This parameter specifies an address of a pointer to a buffer area. This

parameter must not be NULL when the poll type is

TSI_POLL_READ_COMPLETE, TSI_POLL_READ_CANCEL,

TSI_POLL_WRITE_COMPLETE, or TSI_POLL_WRITE_CANCEL.
102 DC 900-1386D

4: TSI Functions
int *piBufLen This field is used to return the length of the buffer pointed to by the con-

tent of the ppBuf parameter (for I/O completes and cancels) or the number of

entries in the configuration list for the TSI_POLL_GET_CFG_LIST option.

char *pStat This field can be a pointer to a connection status or a system configuration

structure. If the request is for the connection status, this field is the address of the

user-supplied TSI_CONN_STAT structure (Section 4.1.3.2 on page 78). Other-

wise, it points to the user-supplied TSI_SYS_CFG structure (Section 4.1.3.1 on

page 76).

Returns

If the tPoll function completes successfully, it returns OK. Otherwise it returns ERROR,

and tserrno contains one of the following error codes (listed alphabetically):

TSI_POLL_ERR_BAD_PTR The ppBuf parameter supplied to tPoll was a NULL

pointer. This error pertains only to the TSI_POLL_READ_COMPLETE,

TSI_POLL_WRITE_COMPLETE, TSI_POLL_READ_CANCEL, and

TSI_POLL_WRITE_ CANCEL options.

Action: Modify your application to supply the address of a pointer.

TSI_POLL_ERR_BUF_NOT_FOUND The TSI could not find the buffer pointed

to by *ppBuf in its I/O queues. This error pertains only to the

TSI_POLL_READ_ CANCEL and TSI_POLL_WRITE_CANCEL options.

Action: Severe error; if this error occurs consistently, contact Protogate for

assistance.

TSI_POLL_ERR_GETLIST_FAILED The TSI failed to get a list of connection def-

inition entries from the TSI configuration file.

Action: Verify the configuration file.

TSI_POLL_ERR_INTERNAL An internal TSI error occurred.
DC 900-1386D 103

Freeway Transport Subsystem Interface Reference Guide
Action: Note the events leading to the error, obtain the TSI log, and contact

Protogate for assistance.

TSI_POLL_ERR_INVALID_ID Your connection is no longer valid.

Action: Review your error log, terminate your application, and try again.

TSI_POLL_ERR_INVALID_IOQ The TSI could not access the connection’s I/O

queues. This error pertains only to the TSI_POLL_READ_COMPLETE,

TSI_POLL_WRITE_COMPLETE, TSI_POLL_READ_CANCEL, and

TSI_POLL_WRITE_ CANCEL options.

Action: Severe error; if this error occurs consistently, contact Protogate for

assistance.

TSI_POLL_ERR_INVALID_REQ_TYPE The iPollType parameter did not contain

a valid value.

Action: Review your application to ensure that a valid poll option is used.

TSI_POLL_ERR_NEVER_INIT The TSI was never initialized.

Action: Revise your program and try again.

TSI_POLL_ERR_OVERFLOW The buffer returned in the ppBuf parameter was

too small to handle the incoming TSI packet. The overflow portion of the

incoming packet was discarded. Note that this buffer must still be freed by

the application. This error pertains only to the

TSI_POLL_READ_COMPLETE option.

Action: Increase the buffer size supplied to tRead up to the maximum

defined for the connection.

TSI_POLL_ERR_QEMPTY The pertinent I/O queue is empty. This error pertains

only to the TSI_POLL_READ_COMPLETE,
104 DC 900-1386D

4: TSI Functions
TSI_POLL_WRITE_COMPLETE, TSI_POLL_READ_CANCEL, and

TSI_POLL_WRITE_CANCEL options.

Action: This can be a normal condition if the application is attempting to

empty the corresponding queue.

TSI_POLL_ERR_QREM_FAILED The TSI failed to remove a buffer from a non-

empty I/O queue. This error pertains only to the non-specific (no buffer

pointer was supplied) TSI_POLL_READ_CANCEL and

TSI_POLL_WRITE_CANCEL options.

Action: Severe error; if this error occurs consistently, contact Protogate for

assistance.

TSI_POLL_ERR_READ_NOT_COMPLETE The head entry in the TSI read queue

is still pending (but has not timed out or incurred an error in processing).

This error code pertains only to the TSI_POLL_READ_COMPLETE option.

Action: This is a normal condition when polling for I/O completions.

TSI_POLL_ERR_READ_TIMEOUT The head entry in the TSI read queue has

timed out. Note that the buffer returned in the ppBuf parameter must still be

freed by the application. This error code pertains only to the

TSI_POLL_READ_ COMPLETE option.

Action: Consider raising the timeout parameter value in the connection def-

inition of the TSI configuration file.

TSI_POLL_ERR_SOCK_CLOSED A fatal error occurred on this buffer’s

attempted I/O operation. The connection between the client application

and Freeway has been closed.

Action: Cancel all outstanding read and write requests, and free the buffers.

Close the connection. After a successful close, another connection can be

attempted. Examine the error logs for details of the failure.
DC 900-1386D 105

Freeway Transport Subsystem Interface Reference Guide
TSI_POLL_ERR_UNBIND The connection between the client application and

Freeway has been closed. The system has performed “Unbind” processing.

The connection was closed either because of a “Force Unbind” received

from the peer entity (Freeway or client), or because of a failure with the I/O

connection.

Action: Cancel all outstanding read/write requests and free the buffers.

Close the connection. After a successful close, another connection can be

attempted. Examine the message logs on the peer system (if the error

occurred in the client application, examine the Freeway log).

TSI_POLL_ERR_WRITE_NOT_COMPLETE The head entry in the TSI write

queue is still pending (but has not timed out or incurred an error in pro-

cessing). This error code pertains only to the

TSI_POLL_WRITE_COMPLETE option.

Action: This is a normal condition when polling for I/O completions.

TSI_POLL_ERR_WRITE_TIMEOUT The head entry in the TSI write queue has

timed out. Note that the buffer returned in the ppBuf parameter must still be

freed by the application. This error code pertains only to the

TSI_POLL_WRITE_ COMPLETE option.

Action: Consider raising the timeout parameter value in the connection def-

inition of the TSI configuration file.

For additional error codes, refer to Appendix A.
106 DC 900-1386D

4: TSI Functions
4.9 tPost

The tPost function operates only in the VxWorks environment where the basic non-

blocking I/O system services are not provided. It signals the TSI to begin processing I/O

requests queued by your application.

Currently, tPost implements a controlled task switch environment for VxWorks

through the use of binary semaphore mechanisms. Your application must call this

function as the last operation before it relinquishes task control to the operating system

(for example, sleeping or taking semaphores). Your application must take special con-

sideration to operate in a VxWorks environment. Refer to Appendix B for designing

and implementing server-resident applications under a VxWorks environment.

Synopsis

int tPost (void);

Parameters

None

Returns

If the tPost function completes successfully, it returns OK. Otherwise it returns ERROR,

and tserrno contains one of the following error codes (listed alphabetically):

TSI_POST_ERR_CLIENT_INVALID_SEM The TSI call to the VxWorks semGive

function failed because the semaphore ID is not valid.

Action: Internal error. If this error occurs consistently, contact Protogate for

assistance.

TSI_POST_ERR_NEVER_INIT The TSI was never initialized (tInit).

Action: Correct your program and try again.
DC 900-1386D 107

Freeway Transport Subsystem Interface Reference Guide
TSI_POST_ERR_SERVER_INVALID_SEM The TSI call to the VxWorks semGive

function failed because the semaphore ID is not valid.

Action: Internal error. If this error occurs consistently, contact Protogate for

assistance.

For additional error codes, refer to Appendix A.
108 DC 900-1386D

4: TSI Functions
4.10 tRead

The tRead function requests the TSI to receive data from the peer TSI application over

the specified connection ID.

The use of tRead varies slightly when using non-blocking I/O as opposed to blocking

I/O. If the read is for a connection using non-blocking I/O, note the following:

• If tRead returns ERROR and tserrno is set to TSI_READ_ERR_QFULL, the input

queue for this connection is full and cannot accept any more requests at this time.

• If tRead returns ERROR and tserrno is set to TSI_EWOULDBLOCK, the read could

not be completed immediately, but was queued to the input queue. Upon comple-

tion, the read can be retrieved from the queue by calling tPoll with the

TSI_POLL_READ_COMPLETE option.

Synopsis

int tRead (
int iConnID, /* Connection ID from tConnect/tListen */
char **ppBuf, /* Buffer to receive data */
int iBufLen); /* Maximum bytes to be returned */

Parameters

int iConnID The connection ID uniquely identifies an active connection serviced by the

TSI. This ID is returned from the tConnect or tListen function call.

char **ppBuf This field contains the address of a pointer to a read buffer. The buffer can

be allocated using the tBufAlloc function or a similar C function. However, if the

buffer is allocated by a function other than tBufAlloc, your application must pro-

vide sufficient header space for the TSI control information (usOverhead field on

page 77). If its content is NULL, TSI allocates a buffer for your application.

This parameter must not be NULL, but it can be the address of a NULL pointer

(*ppBuf = NULL), which instructs the TSI to allocate a TSI read buffer for the
DC 900-1386D 109

Freeway Transport Subsystem Interface Reference Guide
application. Upon return, the TSI fills in this pointer with the address of the allo-

cated TSI buffer. If you let TSI allocate the read buffer, your application is still

responsible for releasing that buffer when it no longer needs it, using tBufFree.

int iBufLen This field specifies the maximum number of bytes to be read. This value

must be greater than zero and less than the maximum buffer size configured

(iMaxBufSize, page 77, as reported by the tPoll call with the

TSI_POLL_GET_SYS_CFG option). The TSI is a message-based transport service,

meaning that data is not transferred as a continuous stream of bytes; the data is

broken up into discrete packets (messages) that also contain TSI control informa-

tion. When an application requests a read, it is returned in the next incoming

packet. Because the application does not know the data size of the incoming

packet, it is suggested that the application always request to read the maximum

buffer size allowed and supply an appropriate sized buffer (or let TSI allocate the

buffer). Incoming packets are handled as follows:

• If the data length of the next incoming packet is less than or equal to

iBufLen, tRead returns the length of the incoming packet.

• If the data length of the next incoming packet is greater than iBufLen, tRead

returns ERROR and tserrno is set to TSI_READ_ERR_OVERFLOW. The

buffer is truncated to the number of bytes requested, and the remaining

data is discarded.

Returns

The tRead function returns the number of bytes transferred if the TSI successfully com-

pletes the I/O request. For both blocking and non-blocking I/O connections, a positive

return value signifies a successful completion of the read. Otherwise, the return code is

ERROR, and tserrno contains one of the following error codes (listed alphabetically):
110 DC 900-1386D

4: TSI Functions
TSI_EWOULDBLOCK The requested action could not be completed immedi-

ately. The TSI would have blocked this operation if your connection was

using blocking I/O.

Action: Use tPoll to check whether your request completed. You can pro-

gram your application to be notified by one of the IOCH routines that you

provided when you invoked the tInit, tConnect, or tListen function. Refer to

Appendix B for information on managing TSI applications using non-

blocking I/O.

TSI_READ_ERR_INTERNAL A TSI internal error was detected during read pro-

cessing. The TSI log will indicate the specific error.

Action: Obtain the TSI error log, and contact Protogate for assistance.

TSI_READ_ERR_INVALID_BUF This function was invoked with a NULL ppBuf

pointer.

Action: Correct your application and try again.

TSI_READ_ERR_INVALID_ID Your connection ID is no longer valid.

Action: Review your application and try again.

TSI_READ_ERR_INVALID_LENGTH Your requested read length (iBufLen) must

be greater than zero and less than or equal to the maximum buffer length

allowed by the TSI.

Action: Use tPoll to obtain the maximum buffer size allowed by the TSI

(iMaxBufSize). Review your program and try again.

TSI_READ_ERR_INVALID_STATE This connection is not in a proper state to

accept a read request.

Action: Review your program and try again.
DC 900-1386D 111

Freeway Transport Subsystem Interface Reference Guide
TSI_READ_ERR_LIMIT_EXCEEDED This connection has a large number of I/O

errors that exceeded the maximum number of errors allowed.

Action: Consider increasing the maximum I/O errors parameter in the con-

nection definition entry. Review your operating environments.

TSI_READ_ERR_NEVER_INIT The TSI was never initialized. Your application

must initialize the TSI (tInit) before calls to other TSI functions (except

tConnect and tListen) are made.

Action: Review your application.

TSI_READ_ERR_NO_BUFS Your application requested that the TSI allocate a

buffer, but the allocation failed.

Action: Review your program and make sure you free unused buffers. Also,

check to see if you configured enough buffers for your application.

TSI_READ_ERR_OVERFLOW The TSI encountered an overflow of data in your

read request. The read length specified was smaller than the size of the

incoming TSI packet. See the discussion under the Description heading.

Action: Increase the buffer size supplied to tRead up to the maximum

defined for the connection.

TSI_READ_ERR_QADD_FAILED The TSI failed to add your request to its inter-

nal I/O queues for this connection.

Action: Severe error; terminate your application and try again.

TSI_READ_ERR_QFULL The TSI cannot accept more read requests because its

input queue is full.

Action: Your application must remove complete or timed-out read requests,

using the tPoll call, before it can request more reads. Review your program

and handle this error accordingly.
112 DC 900-1386D

4: TSI Functions
TSI_READ_ERR_READ_TIMEOUT Your request was not completed in a timely

manner.

Action: Consider increasing the timeout value in the configuration parame-

ters for this connection.

TSI_READ_ERR_SELECT The TSI received an error from a system select call

during a read attempt using blocking I/O.

Action: Retry the operation. If the error persists, review your application.

TSI_READ_ERR_SOCK_CLOSED A system read attempt failed, and TSI has

closed the connection.

Action: Cancel all outstanding read and write requests, and free the buffers.

Close the connection. After a successful close, another connection can be

attempted. Examine the log files for abnormal conditions prior to the read

failure.

TSI_READ_ERR_UNBIND This connection between Freeway and the client

application has been closed. The system has performed “Unbind” process-

ing. The connection was closed either because of a “Force Unbind” received

from the peer entity (Freeway or client), or because of a failure with the I/O

connection.

Action: Cancel all outstanding read/write requests and free the buffers.

Close the connection. After a successful close, another connection can be

attempted. Examine the log files on the peer system (if the error occurred in

the client application, examine the Freeway log).

For additional error codes, refer to Appendix A.
DC 900-1386D 113

Freeway Transport Subsystem Interface Reference Guide
4.11 tSyncSelect

The tSyncSelect function queries a set of connection IDs for a read data available condi-

tion. This feature is available only for clients in a Freeway server environment (it is not

supported in an embedded ICP environment) using blocking I/O. The client applica-

tion can query a connection(s) for read data, and if available, perform the read opera-

tion without blocking. This operation does not block; it interrogates the system for read

data available and immediately returns this status to the user.

The user builds a connection ID array (connIDArray) containing the list of connections

for which read availability is requested. The number of connections can be from 1 to the

defined maximum number of connections (see the TSI MaxConns parameter on page

55). Connection IDs must begin at position 0 in the array (first position in the array),

and be packed (no non-used positions). The contents of this array are not modified by

the interface. The number of connection IDs packed in this array is passed in iNbrCon-

nID. In addition, a result array is passed which will contain the returned read availability

status of the connections in the corresponding array position of the connection ID

array. A connection’s availability status is either TRUE (data available) or FALSE (data

not available).

Synopsis

int tSyncSelect (
int iNbrConnID, /* # of connection ids in connIDArray */
int connIDArray[], /* packed array of connection ids for */

 /* requested read data status */
int readStatArray[]); /* array containing read data status */

/* for connections in connIDArray */

Parameters

int iNbrConnID The number of connection IDs to be queried in the following connec-

tion ID array. If a value of 0 is passed (no connection IDs to be queried), the func-

tion returns zero (0).
114 DC 900-1386D

4: TSI Functions
int connIDArray[] An array containing the connection IDs whose read availability status

is requested. The connection IDs are those returned from tConnect. Connection

ids must begin at position 0 (the first array element), and be packed (no non-used

positions). These values are not modified by the call.

int readStatArray[] An array passed to the interface for the returned TRUE/FALSE read

availability status for connections in the corresponding positions of the connec-

tion ID array (connIDArray). This array is modified by the interface. If an error

occurs in the call, the contents of this array are indeterminable; all elements

should be ignored.

Returns

If the tSyncSelect function completes successfully, it returns the number of connections

in the connection ID array that have read data available (if 3 of 7 connections in the

array have read data available, a value of 3 is returned). If no connections have data

available, 0 is returned.

Successful completion also returns the readStatArray with a TRUE/FALSE value in each

position corresponding to the connection ID in the connection ID array. TRUE means

that connection has data available; FALSE means data is not currently available. If the

function returns a 0 or ERROR, values in this array are indeterminable; they should be

ignored. If this function is successful, it modifies iNbrConnID positions in this array.

For any error condition, the tSyncSelect return code is ERROR, and terrno contains one

of the following error codes (listed alphabetically):

TSI_SYNCSELECT_ERR_INVALID_STATE A connection(s) in the connection

ID array (connIDArray) is not in the proper state to accept this request. con-
DC 900-1386D 115

Freeway Transport Subsystem Interface Reference Guide
nections must be “opened” (in the “ready” state) before this operation can

be performed.

Action: Ensure all connections in the connection ID array have successfully

opened.

TSI_SYNCSELECT_ERR_SELECT_ERROR An error was returned from the sys-

tem select function.

Action: Review the TSI log file for the specific error, and take corrective

action.

Example

One connection is open, tConnect returned with a connection ID of 4.

connIDArray[0] = 4;
if ((nbrReads = tSyncSelect(1, connIDArray, readStatArray)) == ERROR)
{

error processing
}
if (nbrReads) /* with only one read in array, we need not look further */
{

if (readStatArray[0] == TRUE)
{
/* process read available for connection connIDArray[0] – tRead */
}

}

With multiple connections in array, go through readStatArray iNbrConnID times or until

nbrReads of TRUE are found.
116 DC 900-1386D

4: TSI Functions
4.12 tTerm

The tTerm function closes all connections and frees all TSI-related system resources.

Under normal conditions your application should call tTerm to close all active connec-

tions before it exits to the operating system. You should also make an effort to call tTerm

when your application ends abnormally.

The tTerm function can be invoked at any time during the life of your application. To

use the TSI again, you must call tInit to re-establish the TSI operating environment. It is

not recommended that you call tTerm too often in your application because of the tim-

ing cost associated with it. However, in some applications this capability might be

essential if your system and network resources are scarce and your application is not

time-critical. If you call tTerm while there are active connections, the TSI issues a forced

tDisconnect on the active connections before it brings down its service structure. Issuing

tTerm while active connections exist should be the last option.

Note
The successful writing of client trace files to the client file system

requires successful completion of the tTerm function. When the

client application abnormally terminates, TSI trace files are not

written.

Synopsis

int tTerm (void);

Parameters

None
DC 900-1386D 117

Freeway Transport Subsystem Interface Reference Guide
Returns

If this function completes successfully, it returns OK. Otherwise it returns ERROR, and

tserrno contains one of the following error codes (listed alphabetically):

TSI_TERM_ERR_ACT_REM_FAILED The TSI failed to terminate its internal

active connection queue.

Action: Severe error; terminate your application and try again.

TSI_TERM_ERR_ACT_TERM_FAILED The TSI failed to terminate its internal

active connection queue.

Action: Severe error; terminate your application and try again.

TSI_TERM_ERR_BUF_FREE_FAILED The TSI failed in removing buffers used

by the application.

Action: Severe error; terminate your application and try again.

TSI_TERM_ERR_BUFM_TERM_FAILED The TSI failed to terminate buffer

management services.

Action: Review your TSI configuration services and TSI error log.

TSI_TERM_ERR_DISC_FAILED The TSI failed to disconnect an active connec-

tion.

Action: Severe error; terminate your application and try again.

TSI_TERM_ERR_LOG_END_FAILED The TSI failed to terminate its internal

logging and tracing facility.

Action: Check your logging-related and tracing-related parameters in the

currently used TSI configuration file.

TSI_TERM_ERR_NEVER_INIT The TSI was never initialized with a call to tInit.
118 DC 900-1386D

4: TSI Functions
Action: Review your program’s logic, and try again.

TSI_TERM_ERR_RES_FREE_FAILED The TSI failed to free connection-related

resources.

Action: Review the TSI connection log, terminate your application and try

again.

For additional error codes, refer to Appendix A.
DC 900-1386D 119

Freeway Transport Subsystem Interface Reference Guide
4.13 tWrite

The tWrite function requests the TSI to send data to a peer TSI application over the

specified connection ID.

For both blocking and non-blocking I/O connections, a positive return value signifies a

successful completion of the write. If the write is for a connection using non-blocking

I/O, note the following:

• If tWrite returns ERROR and tserrno is set to TSI_WRIT_ERR_QFULL, the output

queue for this connection is full and cannot accept any more requests at this time.

• If tWrite returns ERROR and tserrno is set to TSI_EWOULDBLOCK, the write

could not be completed immediately, but was queued to the output queue. Upon

completion, the write can be retrieved from the queue by calling tPoll with the

TSI_POLL_WRITE_COMPLETE option.

Synopsis

int tWrite (
int iConnID, /* Connection ID from tConnect/tListen */
char *pBuf, /* Source buffer for transfer */
int iBufLen, /* Number of bytes to transfer */
int iWritePriority); /* Normal or expedite queueing */

Parameters

int iConnID This field uniquely identifies an active connection serviced by the TSI. This

ID is returned from a tConnect or tListen function call.

char *pBuf This field contains the address of the write buffer to be sent to the peer TSI

application. This parameter must not be NULL. The buffer can be allocated using

the tBufAlloc function or a similar C function. However, if the buffer is allocated

by a function other than tBufAlloc, your application must provide sufficient

header space for the TSI control information (usOverhead field on page 77).
120 DC 900-1386D

4: TSI Functions
Caution
Normally, if the client application allocates the write buffer using

tBufAlloc, it must release the buffer using tBufFree when the write

request completes. A server-resident application is an exception

(see Section 2.3.7 on page 43).

int iBufLen This field specifies the number of bytes to be sent. This value must be

greater than zero and less than the maximum buffer size configured (iMaxBufSize,

page 77, as reported by the tPoll call with the TSI_POLL_GET_SYS_CFG option).

int iWritePriority This field specifies the priority of the write operation. Your applica-

tion can use this field to expedite a request to the peer TSI application. The default

type is a normal write operation. Note that this field has no meaning for a connec-

tion using blocking I/O, as only one write can be pending at a time. Valid types

are:

TSI_WRITE_EXPEDITE If this type is used, your current request is inserted

before any output requests whose actual output operation has not started

and after any output request that has already started or that was issued with

TSI_WRITE_EXPEDITE. This exercises the priority queue concept.

TSI_WRITE_NORMAL If this type is used, your output request is added to the

end of the connection internal output queue. This exercises the FIFO con-

cept of queue.

Returns

The tWrite function returns the transfer count if the TSI successfully completes the I/O.

Otherwise, the return code is ERROR, and tserrno contains one of the following error

codes (listed alphabetically):
DC 900-1386D 121

Freeway Transport Subsystem Interface Reference Guide
TSI_EWOULDBLOCK The requested action could not be completed immedi-

ately. The TSI would have blocked this operation if your connection was

using blocking I/O.

Action: Use tPoll to check whether your request completed. You can pro-

gram your application to be notified by one of the IOCH routines that you

provided when you invoked the tInit, tConnect, or tListen function. Refer to

Appendix B for information on managing TSI applications using non-

blocking I/O.

TSI_WRIT_ERR_INVALID_BUF Your application invoked this function with a

NULL pBuf pointer.

Action: Correct your application and try again.

TSI_WRIT_ERR_INTERNAL A TSI internal error was detected during write pro-

cessing. The TSI log will indicate the specific error.

Action: Have the TSI error log available, and contact Protogate.

TSI_WRIT_ERR_INVALID_ID Your connection ID is no longer valid.

Action: Review your log, terminate your program, and try again.

TSI_WRIT_ERR_INVALID_LENGTH The buffer length (iBufLen) must be

greater than zero and less than the maximum buffer length allowed by the

TSI.

Action: Use tPoll to obtain the maximum buffer length allowed by the TSI

(iMaxBufSize). Correct your application and try again.

TSI_WRIT_ERR_INVALID_STATE This connection is not in a proper state to

accept a write request.

Action: Review your program and try again.
122 DC 900-1386D

4: TSI Functions
TSI_WRIT_ERR_INVALID_WRITE_TYPE tWrite allows either

TSI_WRITE_NORMAL or TSI_WRITE_EXP.

Action: Review your program’s logic, and try again.

TSI_WRIT_ERR_LIMIT_EXCEEDED This connection has a large number of I/O

errors that exceeded the maximum number of errors allowed.

Action: Consider increase the maximum I/O errors parameter in the con-

nection definition entry. Review your operating environments.

TSI_WRIT_ERR_NEVER_INIT The TSI was never initialized. Your application

must initialize the TSI (tInit) before it can use it.

Action: Review your application.

TSI_WRIT_ERR_QADD_FAILED The TSI failed to add your write request to its

internal I/O queues for this connection.

Action: Severe error; terminate your application and try again.

TSI_WRIT_ERR_QFULL The TSI cannot accept more write requests because its

output queue is full.

Action: Your application must remove complete or timed-out write

requests, using the tPoll call, before it can request more writes. Review your

program and handle this error accordingly.

TSI_WRIT_ERR_SELECT The TSI received an error from a system select call dur-

ing a write attempt using blocking I/O.

Action: Retry the operation. If the error persists, review your application.

TSI_WRIT_ERR_SOCK_CLOSED A system write attempt failed, and TSI has

closed the connection.
DC 900-1386D 123

Freeway Transport Subsystem Interface Reference Guide
Action: Cancel all outstanding read and write requests, and free the buffers.

Close the connection. After a successful close, another connection can be

attempted. Examine the log files for abnormal conditions prior to the write

failure.

TSI_WRIT_ERR_UNBIND This connection between Freeway and the client

application has been closed. The system has performed “Unbind” process-

ing. The connection was closed either because of a “Force Unbind” received

from the peer entity (Freeway or client), or because of a failure with the I/O

connection.

Action: Cancel all outstanding read/write requests and free the buffers. Close the

connection. After a successful close, another connection can be attempted.

Examine the log files on the peer system (if the error occurred in the client

application, examine the Freeway log).

TSI_WRIT_ERR_WRITE_TIMEOUT Your request was not completed in timely

manner.

Action: Increase the timeout value in the configuration for this connection.

For additional error codes, refer to Appendix A.
124 DC 900-1386D

Appendix
A TSI Common Error Codes
This chapter describes the internal and command-specific TSI error codes.

Note
While developing your TSI application, if a particular error occurs

consistently, contact Protogate for further assistance.

A.1 Internal Error Codes

To assist you in debugging your application, the following codes (listed alphabetically)

describe internal error conditions of TSI services. These codes are returned in the global

variable tserrno.

TSI_CINIT_ERR_CFG_LOAD_FAILED TSI failed to load the configuration entry from

the TSI configuration file.

Action: Ensure that your tsicfg program and your TSI library is up-to-date. Make

sure your application uses a correct connection entry name through the first

parameter of the tConnect or tListen function call. Note that the connection entry

name is case-sensitive.

TSI_CINIT_ERR_DEQ_FAILED TSI failed to dequeue its internal active connection

entry.

Action: If this error occurs consistently, it is considered a severe error; contact Pro-

togate for further assistance.
DC 900-1386D 125

Freeway Transport Subsystem Interface Reference Guide
TSI_CINIT_ERR_GET_ENTRY_FAILED TSI failed to add the newly created connec-

tion entry to its internal connection queue.

Action: Severe error. Terminate your application and try again.

TSI_CINIT_ERR_QFULL TSI failed to add a new connection entry to its internal con-

nection queue.

Action: Consider increasing the number of connections (MaxConns parameter)

through the TSI configuration file. If this error occurs consistently even though

the maximum number of connections is adequately defined, contact Protogate

for further assistance.

TSI_CINIT_ERR_RESA_FAILED TSI failed to allocate system resources for this newly

created connection.

Action: Review more error messages to pinpoint the problems. Recalculate your

system resource requirements and adjust your configuration file accordingly.

TSI_CLNT_ERR_EVT_PROC_FAILED TSI failed to complete its internal event pro-

cessing routine.

Action: If this error occurs consistently, contact Protogate for further assistance.

VxWorks only.

TSI_CLNT_ERR_TASK_VAR_FAILED TSI failed to add task variables to the VxWorks

system. Severe error.

Action: Contact Protogate for further assistance. VxWorks only.

TSI_EVTG_ERR_ILL_CMD_TYPE A TSI command packet with an invalid command

field was processed. Severe error.

Action: Terminate your application and try again.
126 DC 900-1386D

A: TSI Common Error Codes
TSI_INTERN_ERR_01 A TSI error occurred during write processing without being

correctly identified. TSI_WRIT_ERR_INTERNAL is returned to the applica-

tion.

Action: If this error occurs consistently, contact Protogate for further assistance.

TSI_INTERN_ERR_02 A TSI error occurred during read processing without being cor-

rectly identified. TSI_READ_ERR_INTERNAL is returned to the application.

Action: If this error occurs consistently, contact Protogate for further assistance.

TSI_INTERN_ERR_03 A TSI_INTERN_ERR_01 or TSI_INTERN_ERR_02 error has

been recognized in returning a buffer from a tPoll request for read/write comple-

tions. TSI_POLL_ERR_INTERNAL is returned to the application.

Action: If this error occurs consistently, contact Protogate for further assistance.

TSI_INT_ERR_SELECT_FAILED TSI failed to perform a select on its active socket file

descriptors. Severe error.

Action: Terminate your application and try again. Non-blocking I/O with socket

interface only.

TSI_INTR_ERR_CLIENT_SPAWN_FAILED TSI failed to spawn its internal IOClient

task. Severe error.

Action: Ensure that your VxWorks system resources are properly configured.

Make sure that your linkage completes successfully. VxWorks only.

TSI_INTR_ERR_SEM_FAILED TSI failed to create a binary semaphore for its internal

usage. Severe error.

Action: Ensure that your VxWorks system resource is properly configured.

VxWorks only.
DC 900-1386D 127

Freeway Transport Subsystem Interface Reference Guide
TSI_INTR_ERR_SERVER_SPAWN_FAILED TSI failed to spawn its internal IOServer

task. Severe error.

Action: Ensure that your VxWorks system resources are properly configured.

Make sure that your linkage completes successfully. VxWorks only.

TSI_INTR_ERR_SIG_ERR TSI failed to install its SIGIO signal to UNIX or a UNIX-like

system. Severe error.

Action: Make sure your TSI application does not use SIGIO signal. UNIX or

UNIX-like only.

TSI_INTR_ERR_SOCKET_SPAWN_FAILED TSI failed to spawn its internal IOSocket

task. Severe error.

Action: Ensure that your VxWorks system resources are properly configured.

Make sure that your linkage completes successfully. VxWorks only.

TSI_IO_ERR_INVALID_EXEC_STATE The TSI has gone through an invalid state

transition. Severe error.

Action: Make sure that your network is functioning properly. Terminate your

application and try again.

TSI_LOGI_ERR_LOG_OPEN_FAILED TSI failed to open its internal error log.

Action: Check access authority for the current directory.

TSI_LOGI_ERR_TRC_OPEN_FAILED TSI failed to open the trace file for input.

Action: Check access authority for the current directory.

TSI_MEMI_ERR_CALLOC_FAILED TSI failed to obtained adequate memory

resources to operate.
128 DC 900-1386D

A: TSI Common Error Codes
Action: Recalculate your system resource requirements. If needed, reconfigure

your TSI configuration file. VxWorks with shared-memory package only.

TSI_MEMI_ERR_NEVER_INIT TSI is not initialized correctly.

Action: Review your program logic and try again. VxWorks with shared-memory

package only.

TSI_MEMI_ERR_SM_CREAT_FAILED TSI failed to create shared memory for its

operating environment.

Action: Recalculate your system resource requirements. If needed, reconfigure

your TSI configuration file. VxWorks with shared-memory package only.

TSI_RECV_PACK_ERR_NO_BUFS The TSI failed to obtain a buffer for an internal

control packet.

Action: Ensure that your TSI configuration file includes an adequate number of

buffers.

TSI_RECV_PACK_ERR_QADD_FAILED The TSI failed to queue a read for an incom-

ing control packet. Severe error.

Action: Ensure that your TSI configuration file defines an adequate queue size.

TSI_RESA_ERR_BUFIO_FAILED TSI failed to obtain two internal IO buffers for the

newly created connection. The connection request will fail.

Action: Ensure that your TSI configuration file includes adequate buffer configu-

ration.

TSI_RESA_ERR_INVALID_PROT TSI failed to recognize the protocol specified in the

configuration file.

Action: Ensure that your tsicfg and your TSI library are up-to-date.
DC 900-1386D 129

Freeway Transport Subsystem Interface Reference Guide
TSI_RESA_ERR_QIO_FAILED TSI failed to create its internal IO queue for the newly

requested connection.

Action: Recalculate your system resource requirements. If needed, re-configure

your TSI to match your limited system resources and try again.

TSI_SEND_PACK_ERR_NO_BUFS The TSI failed to obtain a buffer for an internal

control packet.

Action: Ensure that your TSI configuration file includes an adequate number of

buffers.

TSI_SEND_PACK_ERR_QADD_FAILED The TSI failed to queue a write for an outgo-

ing control packet. Severe error.

Action: Ensure that your TSI configuration file defines an adequate queue size.

TSI_SHM_ERR_CTL_PROC_QTERM_FAIL An error occurred while terminating the

TSI shared-memory queues.

Action: If this error occurs consistently, contact Protogate for assistance.

TSI_SHM_ERR_CTRL_PROC_FAILED An error occurred while the TSI was process-

ing a shared-memory control packet.

Action: If this error occurs consistently, contact Protogate for assistance.

TSI_SHM_ERR_INVALID_STATUS An invalid status was reached while executing a

shared-memory open. Severe error.

Action: If this error occurs consistently, contact Protogate for assistance.

TSI_SHM_ERR_KILL_SIG1_FAILED The TSI failed to send SIGUSR1 to process a

shared-memory open.
130 DC 900-1386D

A: TSI Common Error Codes
Action: Make sure that your TSI application does not use SIGUSR1 on VxWorks.

Terminate your application and try again. If this error occurs consistently, con-

tact Protogate for assistance.

TSI_SHM_ERR_NOT_OPEN The TSI attempted to close a shared-memory transport

that was not open.

Action: Review your application logic. Terminate your application and try again.

TSI_SHM_ERR_NO_BUFS The TSI failed to obtain a buffer for an internal control

packet.

Action: Ensure that your TSI configuration file includes an adequate number of

buffers.

TSI_SHM_ERR_NO_RESOURCE The TSI failed to initialize the shared-memory

queues for a connection.

Action: Your application probably has inadequate memory resources; check the

TSI configuration.

TSI_SHM_ERR_OPEN_PROC_NO_BUFS The TSI failed to obtain a buffer for an inter-

nal control packet.

Action: Ensure that your TSI configuration file includes an adequate number of

buffers.

TSI_SHM_ERR_OPEN_PROC_NO_LSTN A shared-memory open request was

rejected. No outstanding listens were posted to the requested Transport Name.

Action: Ensure that your TSI configuration file includes an adequate number of

buffers.

TSI_SHM_ERR_PIPE_OPEN_FAILED The TSI failed to open its peer’s shared-memory

open request pipe.
DC 900-1386D 131

Freeway Transport Subsystem Interface Reference Guide
Action: Ensure that the client connection definition’s server parameter matches

the server main definition’s servername parameter in the corresponding TSI con-

figuration files.

TSI_SHM_ERR_PIPE_READ_FAILED A TSI shared-memory listening connection

incurred an error attempting to read from the shared-memory request pipe.

Action: Severe error. Terminate your application and try again.

TSI_SHM_ERR_PIPE_SEL_FAILED A TSI shared-memory listening connection

incurred an error attempting to perform a select on the shared-memory request

pipe.

Action: Severe error. Terminate your application and try again.

TSI_SHM_ERR_PIPE_WRITE_FAILED A TSI shared-memory client connection

incurred an error attempting to write an open request to the shared-memory

request pipe.

Action: Severe error. Terminate your application and try again.

TSI_SHM_ERR_QREM_AT_CTLBUF_FAIL The TSI incurred an error attempting to

remove a TSI control packet from the connection’s queue.

Action: Severe error. Terminate your application and try again.

TSI_SOCK_ERR_ACCEPT_ERR An accept on a TSI listening socket failed.

Action: Check system resources to ensure that the system limit for open file

descriptors has not been reached.

TSI_SOCK_ERR_ALREADY_CLOSED The TSI attempted to close a socket that was

not open.

Action: Internal logic error. Contact Protogate to report problem.

TSI_SOCK_ERR_CLOSE_ERR The TSI incurred an error while closing an open socket.
132 DC 900-1386D

A: TSI Common Error Codes
Action: Terminate your application and try again.

TSI_SOCK_ERR_CONNECT_ERR The TSI failed to connect a client socket.

Action: Severe error. Terminate your application and try again.

TSI_SOCK_ERR_GET_HNAME_FAILED The TSI failed to convert the server host

name to an IP address.

Action: Ensure that the TSI configuration file contains a valid host name for the

serverName parameter.

TSI_SOCK_ERR_INVALID_IOQ_STATUS The IO status field of a TSI socket packet

contains an invalid status. Severe error.

Action: Terminate your application and try again.

TSI_SOCK_ERR_INVALID_RTN_VALUE The TSI generated an invalid internal value.

Action: If this error occurs consistently, contact Protogate for further assistance.

TSI_SOCK_ERR_NO_SOCKET The TSI did not have a valid socket file descriptor to

perform a socket open or listen.

Action: Terminate your application and try again.

TSI_SOCK_ERR_READ_FAILED The TSI encountered an error performing a read

from a socket.

Action: Check the TSI log file just prior to this error for more detailed informa-

tion.

TSI_SOCK_ERR_SELECT_ERR The TSI encountered an error performing a select on

a socket.

Action: Terminate your application and try again.
DC 900-1386D 133

Freeway Transport Subsystem Interface Reference Guide
TSI_SOCK_ERR_SEM_CREATE_FAILED TSI failed to create an internal semaphore

for its internal socket task.

Action: Recalculate your system resource requirements. If needed, reconfigure

your TSI configuration file. VxWorks only.

TSI_SOCK_ERR_SOCKET_CLOSED A socket that the TSI was attempting to perform

IO upon closed.

Action: Check the peer software and attempt to discover why the peer socket

closed.

TSI_SOCK_ERR_TASK_VAR_FAILED TSI failed to add task variables to the VxWorks

system. Severe error.

Action: Contact Protogate for further assistance. VxWorks only.

TSI_SOCK_ERR_WRITE_FAILED The TSI encountered an error performing a write to

a socket.

Action: Check the TSI log file just prior to this error for more detailed informa-

tion.

TSI_SOCKA_ERR_BIND_FAILED TSI failed to bind a well-known port to its listening

socket.

Action: Make sure that your well-known port is not being used by any other appli-

cation within your system. Terminate your application and try again.

TSI_SOCKA_ERR_FCNTL_FAILED TSI failed to set the socket file descriptor to a non-

blocking I/O mode.

Action: Ensure that your TCP/IP software package supports non-blocking I/O

and that your application is configured to use non-blocking I/O. Otherwise, con-

tact Protogate for further assistance.
134 DC 900-1386D

A: TSI Common Error Codes
TSI_SOCKA_ERR_LISTEN_FAILED TSI failed to listen for a connection request

through a well-known port specified in the TSI configuration file.

Action: If this error occurs consistently, contact Protogate for further assistance.

TSI_SOCKA_ERR_SETOPT_FAILED TSI failed to set TCP/IP TCP_NODELAY and

KEEP_ALIVE options.

Action: Ensure that your TCP/IP socket interface package supports these socket

options. If your TCP/IP software does not support these options, consider turn-

ing them off using the TSI configuration file. Otherwise, contact Protogate for

further assistance.

TSI_SOCKA_ERR_SOCKET_FAILED TSI failed to obtain a new socket for the newly

requested connection.

Action: Consider increasing the maximum number of file descriptors through

system resource services (UNIX: getrlimit function).

TSI_SRVR_ERR_EVT_PROC_FAILED TSI failed to complete its internal event pro-

cessing routine.

Action: If this error occurs consistently, contact Protogate for further assistance.

VxWorks only.

TSI_SRVR_ERR_PIPE_CREATE_FAILED TSI failed to create a named pipe for its

internal shared-memory protocol package.

Action: If you develop a server-resident application, make sure your linkage com-

pletes successfully. VxWorks only.

TSI_SRVR_ERR_PIPE_OPEN_FAILED TSI failed to open its internal named pipe.

Action: Terminate your application and try again. VxWorks only.
DC 900-1386D 135

Freeway Transport Subsystem Interface Reference Guide
TSI_SRVR_ERR_SIG_ERR TSI failed to install an interrupt handler for SIGUSR1 sig-

nal.

Action: Ensure that your TSI application in the VxWorks environment does not

use the SIGUSR1 signal. VxWorks only.

TSI_SRVR_ERR_TASK_VAR_FAILED TSI failed to add task variables to VxWorks

system. Severe error.

Action: Contact Protogate for further assistance. VxWorks only.
136 DC 900-1386D

A: TSI Common Error Codes

This table
needs to be
reviewed for
completeness
(like John
Wenker did
for DLI).
A.2 Command-Specific Error Codes

Table A–1 lists alphabetically all the error codes related to specific TSI commands

described in Chapter 4. These codes are returned in the global variable tserrno.

Table A–1: TSI Command-specific Error Codes

Command(s)
Causing Error Error Code

Reference
Page

tBufAlloc

TSI_BUFA_ERR_NEVER_INIT page 81

TSI_BUFA_ERR_NO_BUFS page 81

TSI_BUFA_ERR_SEVERE_ERR page 81

tBufFree

TSI_BUFF_ERR_INVALID_BUF page 82

TSI_BUFF_ERR_NEVER_INIT page 82

TSI_BUFF_ERR_NOT_ALLOCATED page 82

TSI_BUFF_ERR_SEVERE_ERR page 83

tConnect

TSI_CONN_ERR_CLOSE_FAILED page 86

TSI_CONN_ERR_CONN_INIT_FAILED page 86

TSI_CONN_ERR_INVALID_PROT page 86

TSI_CONN_ERR_INVALID_STATE page 86

TSI_CONN_ERR_OPEN_FAILED page 86

TSI_CONN_ERR_QADD_FAILED page 86

TSI_CONN_ERR_RETRY_EXCEEDED page 87

TSI_CONN_ERR_SOCK_ALLOC_FAILED page 87

TSI_CONN_ERR_TINIT_FAILED page 87

tDisconnect

TSI_DISC_ERR_CLOSE_FAILED page 89

TSI_DISC_ERR_DISC_FAILED page 89

TSI_DISC_ERR_INVALID_ID page 89

TSI_DISC_ERR_INVALID_STATE page 89

TSI_DISC_ERR_INVALID_TYPE page 89

TSI_DISC_ERR_NEVER_INIT page 90

TSI_DISC_ERR_Q_NOT_EMPTY page 90

TSI_DISC_ERR_QADD_FAILED page 90

TSI_DISC_ERR_SEVERE_ERROR page 90

DC 900-1386D 137

Freeway Transport Subsystem Interface Reference Guide
tConnect

TSI_EWOULDBLOCK

page 87

tDisconnect page 90

tListen page 97

tRead page 111

tWrite page 122

tInit

TSI_INIT_ERR_ACT_ADD_REM_FAILED page 92

TSI_INIT_ERR_ACT_QINIT_FAILED page 92

TSI_INIT_ERR_ALREADY_INIT page 92

TSI_INIT_ERR_BUF_ADD_REM_FAILED page 92

TSI_INIT_ERR_BUF_QINIT_FAILED page 93

TSI_INIT_ERR_CFG_LOAD_FAILED page 93

TSI_INIT_ERR_LOG_INIT_FAILED page 93

TSI_INIT_ERR_NO_MEM page 93

TSI_INIT_ERR_NO_RESOURCE page 93

TSI_INIT_ERR_NO_TRACE_BUFFER page 94

TSI_INIT_ERR_SETRLIMIT_FAILED page 94

TSI_INIT_ERR_TASK_VAR_FAILED page 94

TSI_INIT_ERR_TSICB_ALLOC_FAILED page 94

Table A–1: TSI Command-specific Error Codes (Cont’d)

Command(s)
Causing Error Error Code

Reference
Page
138 DC 900-1386D

A: TSI Common Error Codes
tListen

TSI_LSTN_ERR_CLOSE_FAILED page 97

TSI_LSTN_ERR_CONN_INIT_FAILED page 97

TSI_LSTN_ERR_INVALID_PROT page 97

TSI_LSTN_ERR_INVALID_STATE page 97

TSI_LSTN_ERR_LSTN_FAILED page 98

TSI_LSTN_ERR_NO_LISTENERS page 98

TSI_LSTN_ERR_NOT_SERVER page 98

TSI_LSTN_ERR_QADD_FAILED page 98

TSI_LSTN_ERR_QFULL page 98

TSI_LSTN_ERR_QINIT_FAILED page 98

TSI_LSTN_ERR_SETOPT_FAILED page 98

TSI_LSTN_ERR_SOCK_ALLOC_FAILED page 99

TSI_LSTN_ERR_TINIT_FAILED page 99

tPoll

TSI_POLL_ERR_BAD_PTR page 103

TSI_POLL_ERR_BUF_NOT_FOUND page 103

TSI_POLL_ERR_GETLIST_FAILED page 103

TSI_POLL_ERR_INTERNAL page 103

TSI_POLL_ERR_INVALID_ID page 104

TSI_POLL_ERR_INVALID_IOQ page 104

TSI_POLL_ERR_INVALID_REQ_TYPE page 104

TSI_POLL_ERR_NEVER_INIT page 104

TSI_POLL_ERR_OVERFLOW page 104

TSI_POLL_ERR_QEMPTY page 104

TSI_POLL_ERR_QREM_FAILED page 105

TSI_POLL_ERR_READ_NOT_COMPLETE page 105

TSI_POLL_ERR_READ_TIMEOUT page 105

TSI_POLL_ERR_SOCK_CLOSED page 105

TSI_POLL_ERR_UNBIND page 106

TSI_POLL_ERR_WRITE_NOT_COMPLETE page 106

TSI_POLL_ERR_WRITE_TIMEOUT page 106

Table A–1: TSI Command-specific Error Codes (Cont’d)

Command(s)
Causing Error Error Code

Reference
Page
DC 900-1386D 139

Freeway Transport Subsystem Interface Reference Guide
tPost

TSI_POST_ERR_CLIENT_INVALID_SEM page 107

TSI_POST_ERR_NEVER_INIT page 107

TSI_POST_ERR_SERVER_INVALID_SEM page 108

tRead

TSI_READ_ERR_INTERNAL page 111

TSI_READ_ERR_INVALID_BUF page 111

TSI_READ_ERR_INVALID_ID page 111

TSI_READ_ERR_INVALID_LENGTH page 111

TSI_READ_ERR_INVALID_STATE page 111

TSI_READ_ERR_LIMIT_EXCEEDED page 112

TSI_READ_ERR_NEVER_INIT page 112

TSI_READ_ERR_NO_BUFS page 112

TSI_READ_ERR_OVERFLOW page 112

TSI_READ_ERR_QADD_FAILED page 112

TSI_READ_ERR_QFULL page 112

TSI_READ_ERR_READ_TIMEOUT page 113

TSI_READ_ERR_SELECT page 113

TSI_READ_ERR_SOCK_CLOSED page 113

TSI_READ_ERR_UNBIND page 113

tSyncSelect
TSI_SYNCSELECT_ERR_INVALID_STATE page 115

TSI_SYNCSELECT_ERR_SELECT_ERROR page 116

tTerm

TSI_TERM_ERR_ACT_REM_FAILED page 118

TSI_TERM_ERR_ACT_TERM_FAILED page 118

TSI_TERM_ERR_BUF_FREE_FAILED page 118

TSI_TERM_ERR_BUFM_TERM_FAILED page 118

TSI_TERM_ERR_DISC_FAILED page 118

TSI_TERM_ERR_LOG_END_FAILED page 118

TSI_TERM_ERR_NEVER_INIT page 118

TSI_TERM_ERR_RES_FREE_FAILED page 119

Table A–1: TSI Command-specific Error Codes (Cont’d)

Command(s)
Causing Error Error Code

Reference
Page
140 DC 900-1386D

A: TSI Common Error Codes
tWrite

TSI_WRIT_ERR_INTERNAL page 122

TSI_WRIT_ERR_INVALID_BUF page 122

TSI_WRIT_ERR_INVALID_ID page 122

TSI_WRIT_ERR_INVALID_LENGTH page 122

TSI_WRIT_ERR_INVALID_STATE page 122

TSI_WRIT_ERR_INVALID_WRITE_TYPE page 123

TSI_WRIT_ERR_LIMIT_EXCEEDED page 123

TSI_WRIT_ERR_NEVER_INIT page 123

TSI_WRIT_ERR_QADD_FAILED page 123

TSI_WRIT_ERR_QFULL page 123

TSI_WRIT_ERR_SELECT page 123

TSI_WRIT_ERR_SOCK_CLOSED page 123

TSI_WRIT_ERR_UNBIND page 124

TSI_WRIT_ERR_WRITE_TIMEOUT page 124

Table A–1: TSI Command-specific Error Codes (Cont’d)

Command(s)
Causing Error Error Code

Reference
Page
DC 900-1386D 141

Freeway Transport Subsystem Interface Reference Guide
142 DC 900-1386D

Appendix
B UNIX, VxWorks,
and VMS I/O
B.1 UNIX Environment

In a UNIX environment, the TSI gains access to non-blocking I/O services through the

use of the UNIX signal delivery mechanism. At initialization, TSI installs a signal han-

dler (or IOCH) to be executed upon delivery of the signal. When a signal is delivered to

a TSI application, the TSI IOCH immediately suspends the delivery of that signal again

until it completes its I/O services through the IOCH function. TSI exits the IOCH either

when it runs out of system resources to accept additional I/O, or when it has no addi-

tional I/O to accept. In either case, system resources are tied up by TSI while it is in the

IOCH function unless it is interrupted by another system service request (that is,

another signal delivery) with a higher priority than its own. A TSI application using

non-blocking I/O can provide TSI with its own IOCH; the TSI IOCH subsequently

invokes the application IOCH after it completes its I/O services.

In short, non-blocking I/O operation is not only complex but also expensive. Therefore,

it requires careful planning and design so that your application uses the system

resources wisely.

B.1.1 Blocking I/O operations

Blocking I/O operation requires no IOCHs. Blocking I/O does not use any signal deliv-

ery mechanism to handle the delivery of data. Blocking I/O allows the orderly execution

of your application and requires far less system resources than non-blocking I/O.

Blocking I/O is also easier to debug and troubleshoot than non-blocking I/O. Careful

design through the isolation of system and protocol dependency allows your applica-
DC 900-1386D 143

Freeway Transport Subsystem Interface Reference Guide
tion to work using either blocking I/O or non-blocking I/O. The TSI services allow your

application to switch from blocking to non-blocking I/O, and vice versa, without the

recompilation of your application code.

It is not efficient to handle multiple connections under blocking I/O operation, because

your application is blocked until the data arrives or TSI times out while waiting. While

your application is waiting for I/O in one connection, data from other connections is

blocked.

B.1.2 Non-Blocking I/O Operations

The TSI uses the SIGIO signal for its non-blocking BSD socket interface. Therefore,

your application should not block the delivery of SIGIO signals (for example,

sigprocmask) at any time, especially when expecting data from the network.

If you use non-blocking I/O, design your application with robust IOCH function(s).

Also, the application IOCH should perform as little work as possible and, before it exits,

use some notification techniques to awaken the main routines to perform the remain-

ing tasks. Some possible notification techniques are system semaphores, sleep and

wakeup calls using the SIGALRM signal, and so on.

B.1.3 SOLARIS use of SIGALRM

The use of a default signal handler through SIGALRM signal can cause a system core

dump inside the SOLARIS internal SIGALRM signal handler. You can work around it

by providing your own signal handler for SIGALRM. The following code segment

assists you in setting up a SIGALRM handler for the SIGALRM signal:
144 DC 900-1386D

B: UNIX, VxWorks, and VMS I/O
void genSigHdlr (int signal)
{

return;
}

void main ()
{

struct sigaction SigAction;

SigAction. sa_handler = genSigHdlr;
sigfillset (&SigAction. sa_mask);
SigAction. sa_flags = 0;

if (sigaction (SIGALRM, &SigAction, (struct sigaction *)NULL) ==
ERROR)

{
fprintf (stderr, "sigaction failed %d\n", errno);
return ERROR;

}
.....
return OK;

}

Notice that genSigHdlr does nothing but return to the system.

B.1.4 Polling I/O Operations

Your application can implement polling I/O operations if it uses TSI with non-blocking

I/O but provides no IOCH functions. Since your application provides no mechanism

for TSI to notify it when an I/O condition occurs, your application must poll TSI for the

completion of I/O requests that it posts to TSI. Polling I/O operations involve the tPoll

function (Section 4.8 on page 100). Polling I/O is helpful if your application manages

multiple connections, data arrives at a predictable rate, and the timing of data is not

critical.

B.2 VxWorks Environment

The TSI operates only in a VxWorks environment that is similar to that of the Freeway

server. VxWorks has several features similar to UNIX; however, it has a unique operat-

ing environment and a real-time operating system. The use of the TSI by an application
DC 900-1386D 145

Freeway Transport Subsystem Interface Reference Guide
that runs on the Freeway server is often called a server-resident application (SRA). The

SRA can be configured to interact with Protogate’s message multiplexor subsystem

through the shared-memory transport mechanism supported by TSI, or it can be con-

figured to interact with other systems using the BSD socket interface which is also sup-

ported by TSI. Whichever transport your SRA program uses, you should understand

not only the VxWorks operating system but also the way the Freeway server is config-

ured and how Protogate implements TSI under VxWorks. For more information on

SRAs, see Section 2.3.7 on page 43 and the Freeway Server-Resident Application and

Server Toolkit Programmer Guide

B.2.1 Blocking I/O Operations

Blocking I/O in VxWorks is similar to that of the UNIX environment.

B.2.2 Non-Blocking I/O Operations

Non-blocking I/O in VxWorks with Protogate’s Freeway server requires your applica-

tion to cooperate with other tasks. VxWorks on Freeway is configured to operate in a

cooperative manner. This means that VxWorks operates as a non-preemptive multi-

tasking environment. When your application does not have data to be processed, it

must relinquish the CPU so that other tasks can run. You can use your own interrupt

service routine to notify or resume your application when its data arrives.

The TSI uses a binary semaphore to support non-blocking I/O delivery from both net-

work and shared-memory environments. Since VxWorks running on Freeway is con-

figured for a cooperative environment, your application must also act cooperatively.

Your application must call tPost immediately before relinquishing its control to

VxWorks. Your application must relinquish the control through taskDelay, binary

semaphores, or other means; otherwise, only your task has control of the CPU which

prevents other important tasks from running.

Your application should not use global variables freely if multiple instances of the same

application are running concurrently. VxWorks global variables are shared among all
146 DC 900-1386D

B: UNIX, VxWorks, and VMS I/O
tasks unless you define them as a particular task's variables (using taskVarAdd). Task

variables are expensive to maintain by VxWorks and therefore should be used spar-

ingly.

B.3 VMS Environment

The TSI uses the process-level Asynchronous System Trap (AST) for non-blocking data

delivery from the network. Therefore, your application should not block the delivery of

ASTs (using sys$setast) at any time, especially when expecting data from the network.
DC 900-1386D 147

Freeway Transport Subsystem Interface Reference Guide
148 DC 900-1386D

Appendix
C TSI Logging and Tracing
To support debugging efforts, TSI provides tracing and logging services to troubleshoot

both application and network problems.

C.1 TSI Logging

 There are two kinds of TSI logging services: general logging and connection-related

logging. As the name implies, general logging includes error or information that is not

related to any particular connection. Connection-related logging indicates error or

information related to a specific connection. To monitor data, you must use the TSI

tracing services described in Section C.2.

General logging is defined in the “main” section of the TSI text configuration file. The

LogLev parameter (page 54) specifies the level of logging your application needs and

can be from 0 to 7, with level 0 being no logging, level 1 being the most severe error, and

7 being the least severe. In the “main” section, the LogName parameter (page 54) defines

the log file name where your logging information is to reside. The default file name is

“tsilog”. If you wish logging information to be output to the screen, define LogName as

“stdout.” The number of entries to “stdout” is unlimited. A disk file is limited to 1000

entries, and this number is not configurable.

Connection-related logging can be defined in each individual TSI connection defini-

tion. You can log for some connections but not for the others; and different connec-

tions can log errors at different levels. All error codes are defined in Appendix A and in

each individual function description (for example, tConnect in Section 4.4 on page 84).
DC 900-1386D 149

Freeway Transport Subsystem Interface Reference Guide
The following is the format of the each log entry:

SessX: TSI_YYY_ZZZ_Information(terrno/errno)

where:

X is connection ID. For general logging, X will be 999. Otherwise, it indicates a connec-

tion-related entry.

YYY is brief function name of TSI. For example, if ZZZ is CONN it indicates the log

entry is from tConnect function.

ZZZ can be ERR or INFO. ERR indicates an error condition; INFO indicates information

only.

tserrno is a TSI error code for this entry; errno is the last encountered ‘C’ errno value.

C.2 TSI Tracing

C.2.1 Trace Definitions

The TSI tracing facility captures and stores real-time data in its internal wrap-around

buffer. The size of this buffer is configurable up to 1 megabyte of memory. There are

two kinds of TSI tracing: general tracing and connection-specific tracing. In general

tracing, trace data has no connection-specific information, whereas connection-specific

trace data pertains to only one specific connection ID.

To activate tracing, first specify the TSI “main” configuration parameters. Specify the

TraceSize parameter (page 55) up to 1 megabyte of memory. The TraceName parameter

(page 55) defines the file name where your trace information is to reside.

Specify the level of tracing using the TraceLev parameter (page 55). This parameter

defaults to zero if not defined (no tracing). The TraceLev parameter can be defined in

the “main” section for general tracing or in each individual connection definition (page

56). Each connection definition can have a different TraceLev value.
150 DC 900-1386D

C: TSI Logging and Tracing
The TraceLev parameter can be the sum of one or more of the following values:

1 = trace the read (input) data

2 = trace the write (output) data

4 = trace the TSI interrupt services

8 = trace the application IOCH services

16 = trace the user’s data

For example, if you want to trace both read and write data, specify 3 for the TraceLev

parameter. If you want to trace read, write, and user’s data, specify 19 for the TraceLev

parameter.

The most commonly used trace level is for I/O passing through the TSI service layer

(TraceLev = 3). TSI also provides the interrupt and application I/O completion handler

(IOCH) trace levels within TSI to assist the application in troubleshooting the IOCH

mechanism. The user data trace level allows the application to store its own data in the

trace buffer.

Note
TSI does not decode user data with its tsidecode program

(Section C.2.2).

You can turn tracing on or off at any time after TSI is initialized using tPoll with the

TSI_POLL_TRACE_ON or TSI_POLL_TRACE_OFF options. Tracing is done internally

with the TSI trace buffer. Trace data is not written to the trace file until tTerm is called

or tPoll is called with the TSI_POLL_TRACE_WRITE option. Therefore, your applica-

tion should always call tTerm before it exits to the operating system. If tracing is

required and is defined in the TSI configuration file, it is automatically on when tInit is

called. You can use tPoll with the TSI_POLL_TRACE_STORE option to store your own
DC 900-1386D 151

Freeway Transport Subsystem Interface Reference Guide
trace buffer inside the TSI trace buffer. Refer to tPoll (Section 4.8 on page 100) for more

information. Since TSI tracing does not involve disk I/O until tTerm is executed, there is

little or no performance impact.

C.2.2 Decoded Trace Layout

You can run either the tsidecode or dlidecode program against the trace file produced by

TSI (run dlidecode only if your application is using DLI). The decoded output is dis-

played on the screen for UNIX-like systems. In VMS, the decoded output is written to

the file named tsi.sum (or dli.sum). You can run dlidecode against the trace file produced

by either DLI or TSI. Refer to the Freeway Data Link Interface Reference Guide for details

on DLI tracing.

The format of the decoded trace can be described as follows. See Section C.2.3 for an

actual decoded trace example.

line 1: Protogate 2000(C) TSI Trace Decoder
line 2: Max buffer size: xyz
line 3: TRACE SOURCE: yyy
--
line 4: @@@@@ Actual Data offset aa Size = bb
line 5: cc: hex data and printable ascii equivalent.
line 6: @@@@@ Decode begins
line 7: dd(desc) Conn ee: time and date
line 8: TSI header info:
line 9: iHdrLen = ff iDataLen = gg uiSeqNo = hh
line 10: iPacketType (ii) = textii iCmd (jj) = textjj
line 11: DATA : hex data and printable ascii equivalent.

Each line of the above format is explained as follows:

line 1: indicates the copyright and the name of the tsidecode program. Note that tside-

code can run only against the TSI trace file, unlike dlidecode which can run on

both DLI and TSI trace files.

line 2: prints the currently used maximum buffer size that is defined in the TSI con-

figuration file (MaxBufSize on page 55). Note that the size excludes the over-
152 DC 900-1386D

C: TSI Logging and Tracing
head used by TSI; it describes the maximum number of actual data bytes

allowed by TSI. See Section 2.3 on page 31.

line 3: prints the source of the trace.

line 4: describes the actual offset (aa) from the beginning of the trace file where this

packet is stored and the number of bytes contained in this packet has (bb).

Section C.2.4 describes how to read the TSI trace file in case you want to write

your own decoder to decode your own trace data that you store in TSI trace

buffer using tPoll with the TSI_POLL_TRACE_STORE option.

line 5: prints the actual hex values and their equivalent printable ASCII text. The off-

set (cc) is the actual offset from the beginning of the packet, based on 0. Each

line contains up to 16 bytes from the trace packet. Note that line 5 can be

repeated if the actual size of the trace packet is more than 16 bytes long.

line 6: indicates that the actual decoding begins. This is where the headers are broken

into individual fields.

line 7: dd indicates the direction of the packet; dd can be ====> to indicate an out-

going packet or <==== to indicate an incoming packet. For non-I/O related

packets (for example, user’s data packet), dd is either ***** or #####. If the

trace packet is for I/O, desc can be READ(1)/WRITE(2) n bytes. If the packet is a

non-I/O packet, desc can be one of the following:

CONNECTION INTERRUPT BEGINS(4): indicates that TSI begins its interrupt

handler to process I/O requests.

CONNECTION INTERRUPT ENDS(5): indicates that TSI ends its interrupt

handler routine and is ready to return to TSI.

CONNECTION ISR(3): indicates that TSI is about to call the IOCH of a specific
DC 900-1386D 153

Freeway Transport Subsystem Interface Reference Guide
connection ID. The address of this IOCH was provided to TSI through the

tConnect function.

APPLICATION ISR BEGINS(6): indicates that TSI is about to call the generic

IOCH that was provided by the application to TSI through the tInit function.

APPLICATION ISR ENDS(7): indicates that the generic IOCH routine returns

control to TSI.

AT(8): indicates that this trace buffer belongs to the application. The tsidecode

program will not attempt to decode this packet. You have to write your own

decode function to interpret your own data packet.

line 8: begins the TSI header information.

line 9 and line 10: show detailed information of the TSI header.

line 11: indicates the details of the data in both hex values and printable ASCII equiv-

alent.

C.2.3 Example tsidecode Program Output

The following are example segments of decoded trace output from the TSI trace file

using the tsidecode program (output using the dlidecode program would be virtually

identical except for the first few lines):

Protogate 2000(C) TSI Trace Decoder

Max buffer size: 564

@@@@@ Actual Data offset 8 Size = 0
@@@@@ Decoding begins

ERROR
DATA : 00 00 00 00 00 00 00 00 00 2e a8 3d 6a =j
154 DC 900-1386D

C: TSI Logging and Tracing

@@@@@ Actual Data offset 20 Size = 30
000000: 00 00 00 14 00 00 00 0a 00 00 00 00 00 01 00 01
000016: 00 01 00 01 02 34 00 14 00 00 00 00 00 00 4........

@@@@@ Decoding begins

====>(WRITE 30 bytes)Conn 0: Fri Oct 21 15:15:07 1994

TSI header info:
iHdrLen = 20 iDataLen = 10 uiSeqNo = 0
iPacketType(1) = CONTROL iCmd(1) = BIND

TSI BIND info:
iMaxBufSize = 564 iMaxHdrSize = 20
Segmenting = NO Buffering = NO Negotiable = NO

@@@@@ Actual Data offset 62 Size = 30
000000: 00 00 00 14 00 00 00 0a 00 00 00 00 00 01 00 01
000016: 00 01 00 01 02 34 00 14 00 00 00 00 00 00 4........

@@@@@ Decoding begins

====>(WRITE 30 bytes)Conn 1: Fri Oct 21 15:15:07 1994

TSI header info:
iHdrLen = 20 iDataLen = 10 uiSeqNo = 0
iPacketType(1) = CONTROL iCmd(1) = BIND

TSI BIND info:
iMaxBufSize = 564 iMaxHdrSize = 20
Segmenting = NO Buffering = NO Negotiable = NO

@@@@@ Actual Data offset 104 Size = 20
000000: 00 00 00 14 00 00 00 00 00 00 00 06 00 01 00 06
000016: 00 01 00 01

@@@@@ Decoding begins

<====(READ 20 bytes)Conn 0: Fri Oct 21 15:15:07 1994

TSI header info:
iHdrLen = 20 iDataLen = 0 uiSeqNo = 6
iPacketType(1) = CONTROL iCmd(6) = ACK
DC 900-1386D 155

Freeway Transport Subsystem Interface Reference Guide

@@@@@ Actual Data offset 136 Size = 96
000000: 00 00 00 14 00 00 00 4c 00 00 00 01 00 02 00 00 L........
000016: 00 01 00 01 00 00 00 00 00 00 00 00 00 0a 00 16
000032: 00 01 00 01 00 01 00 00 00 00 00 00 00 00 00 00
000048: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000064: 69 63 70 30 00 00 00 00 00 00 00 00 00 00 00 00 icp0............
000080: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

@@@@@ Decoding begins

====>(WRITE 96 bytes)Conn 0: Fri Oct 21 15:15:07 1994

TSI header info:
iHdrLen = 20 iDataLen = 76 uiSeqNo = 1
iPacketType(2) = DATA iCmd(0) =

DATA : 00 00 00 00 00 00 00 00 00 0a 00 16 00 01 00 01
DATA : 00 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00
DATA : 00 00 00 00 00 00 00 00 00 00 00 00 69 63 70 30 icp0
DATA : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
DATA : 00 00 00 00 00 00 00 00 00 00 00 00

@@@@@ Actual Data offset 244 Size = 20
000000: 00 00 00 14 00 00 00 00 00 00 00 06 00 01 00 06
000016: 00 01 00 01

@@@@@ Decoding begins

<====(READ 20 bytes)Conn 1: Fri Oct 21 15:15:07 1994

TSI header info:
iHdrLen = 20 iDataLen = 0 uiSeqNo = 6
iPacketType(1) = CONTROL iCmd(6) = ACK

@@@@@ Actual Data offset 276 Size = 96
000000: 00 00 00 14 00 00 00 4c 00 00 00 01 00 02 00 00 L........
000016: 00 01 00 01 00 00 00 00 00 00 00 00 00 0a 00 16
000032: 00 01 00 01 00 01 00 01 00 00 00 00 00 00 00 00
000048: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000064: 69 63 70 30 00 00 00 00 00 00 00 00 00 00 00 00 icp0............
000080: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

@@@@@ Decoding begins
156 DC 900-1386D

C: TSI Logging and Tracing
====>(WRITE 96 bytes)Conn 1: Fri Oct 21 15:15:07 1994

TSI header info:
iHdrLen = 20 iDataLen = 76 uiSeqNo = 1
iPacketType(2) = DATA iCmd(0) =

DATA : 00 00 00 00 00 00 00 00 00 0a 00 16 00 01 00 01
DATA : 00 01 00 01 00 00 00 00 00 00 00 00 00 00 00 00
DATA : 00 00 00 00 00 00 00 00 00 00 00 00 69 63 70 30 icp0
DATA : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
DATA : 00 00 00 00 00 00 00 00 00 00 00 00

@@@@@ Actual Data offset 384 Size = 20
000000: 00 00 00 14 00 00 00 40 00 00 00 01 00 02 00 00 @........
000016: 00 01 00 01

@@@@@ Decoding begins

<====(READ 20 bytes)Conn 0: Fri Oct 21 15:15:07 1994

TSI header info:
iHdrLen = 20 iDataLen = 64 uiSeqNo = 1
iPacketType(2) = DATA iCmd(0) =

@@@@@ Actual Data offset 416 Size = 64
000000: 00 00 00 00 00 00 00 00 00 0a 00 16 00 01 00 01
000016: 00 00 00 00 00 03 00 00 00 00 00 00 00 00 00 00
000032: 00 00 00 14 00 00 00 00 00 03 00 00 46 72 65 65 Free
000048: 77 61 79 20 52 65 6c 65 61 73 65 20 32 2e 30 00 way Release 2.0.

@@@@@ Decoding begins

<====(READ 64 bytes)Conn 0: Fri Oct 21 15:15:07 1994

DATA : 00 00 00 00 00 00 00 00 00 0a 00 16 00 01 00 01
DATA : 00 00 00 00 00 03 00 00 00 00 00 00 00 00 00 00
DATA : 00 00 00 14 00 00 00 00 00 03 00 00 46 72 65 65 Free
DATA : 77 61 79 20 52 65 6c 65 61 73 65 20 32 2e 30 00 way Release 2.0.

DC 900-1386D 157

Freeway Transport Subsystem Interface Reference Guide
C.2.4 Trace Binary Format

You can use the following information to write your own decoder if you need to pro-

vide your own trace information. The trace file format is shown in Figure C–1.

Figure C–2 shows the TRACE_FCB ‘C’ structure.

Figure C–1: TSI Trace File Format

typedef struct _TRACE_FCB
{

int iMaxBufSize;
short iTraceSource;
short iPadding;

} TRACE_FCB, *PTRACE_FCB;

Figure C–2: TRACE_FCB ‘C’ Structure

TRACE_FCB

TSI_TRACE_HDR

TRACE_PACKET

TSI_TRACE_HDR

TRACE_PACKET

TSI_TRACE_HDR

TRACE_PACKET

…

158 DC 900-1386D

C: TSI Logging and Tracing
Figure C–3 shows the format of each trace packet in the TSI_TRACE_HDR ‘C’ structure.

C.3 Freeway Server Tracing

Tracing service is also provided from the Freeway server. Refer to the Freeway User

Guide for more information. You can use the trace information from both the client

application and the Freeway server to diagnose and troubleshoot your client applica-

tion. The Freeway trace service is identical to that of the client application; however, the

direction of the trace is the reverse of that of the client. For example, for the same data

packet, the client would indicate a read packet while the server would indicate a write

packet. Care therefore must be taken when translating the two traces.

typedef struct _TSI_TRACE_HDR
{

unsigned short usTrcType; /* type of tracing */
unsigned short usTrcConnID; /* current connection ID */
int iTrcDataSize; /* sizeof the trace packet */
time_t tTrcTime /* time stamp */

} TSI_TRACE_HDR, *PTSI_TRACE_HDR;

Figure C–3: TSI_TRACE_HDR ‘C’ Structure
DC 900-1386D 159

Freeway Transport Subsystem Interface Reference Guide
160 DC 900-1386D

Index
A

Asynchronous I/O
see Non-blocking I/O

AsyncIO TSI parameter 54, 56, 65
Audience 11

B

Binary configuration files
management 52

Bit numbering 15
Blocking I/O 30

signal processing 45
UNIX 143
VxWorks 146

BSC msgBlkSize parameter 32, 33, 34
Buffer management 31

allocation and release 40
buffer size negotiation 39
cautions 41
client buffers 32
client configuration 35
client versus server-resident 43
connection-specific buffers 38
example calculation 33
headers 41
ICP buffers 32
muxCfg file 41
see Functions
server buffers 33
TSI buffer pool definition 36
using your own buffers 41

Byte ordering 15

C

Caution
DC 900-1386D
data loss 73
signal processing 45

Client buffer configuration 35
Client buffers 32

allocation and release 40
connection-specific 38

Client-server environment 22
summary of steps 23

Concepts of TSI 29
Configuration 29, 47

binary files
management 52

client buffers 35
error messages 67
file

example 60
grammar (PDL) 69
language 50
on-line processing 52
system 37, 76
TSI 47

asyncIO parameter 54, 56, 65
binary file 50
dualAddress parameter 54
interruptTrace parameter 54
localPort parameter 58
logLev parameter 54, 56, 149
logName parameter 54, 149
main parameters 54
maxBuffers parameter 36, 41, 44, 54, 65,

77, 80
maxBufSize parameter 33, 36, 37, 38, 39,

40, 41, 44, 55, 56, 65, 77, 152
maxConns parameter 44, 55, 77, 85, 96
maxErrors parameter 56, 79
161

Freeway Transport Subsystem Interface Reference Guide
maxInQ parameter 44, 56, 79
maxOutQ parameter 44, 56, 79
non-transport specific 56
server parameter 57, 60, 61, 63
serverName parameter 55, 62, 63
shared memory transport 59

example 62
shmKey parameter 59
shmMaxInQ parameter 59
shmMaxOutQ parameter 59
shmPeerName parameter 59, 62, 64
Simpact server 65

example 66
stackSize parameter 55
summary 47
TCP/IP socket transport 58

example 60
TCPKeepAlive parameter 58
TCPNoDelay parameter 58
timeout parameter 45, 57
traceLev parameter 55, 57, 150, 151
traceName parameter 55, 150
traceSize parameter 55, 150
transport parameter 57, 60, 62, 65
wellKnownPort parameter 58, 60, 61

tsicfg program 48
rules 51

Configuration parameters
connection definition

non-transport specific 56
shared memory transport 59
TCP/IP socket transport 58

main definition 54
Configuration preprocessor

see tsicfg program
Connection

definition 53
definition list 78
main definition 54
non-transport specific 56
shared memory transport 59

example 62
status 78
TCP/IP socket transport 58

example 60
162
Connection status 39, 40
Connection-specific buffers 38
Context free grammar 69
Customer support 16

D

Data
caution, data loss 73

Data structures 76
connection definition 78
connection status 78
system configuration 76

Data transfer
see also Functions

DLI configuration parameters
BSC msgBlkSize 32, 33, 34

DLI header 38
DLITE embedded interface 18
Documents

reference 12
Download software 23
DualAddress TSI parameter 54

E

Electrical interface 21
Embedded ICP

overview 18
Error codes 125

command-specific 137
internal 125
see also Functions (return codes listed under

each function)
tserrno global variable 71, 125, 137
TSI_READ_ERR_OVERFLOW 41, 110
TSI_READ_ERR_QFULL 109
TSI_WRIT_ERR_INVALID_LENGTH 39, 41
TSI_WRIT_ERR_QFULL 120

Error handling
TSI logging 149

Error messages
tsicfg 67

Ethernet 21
Examples

calculation of buffer sizes 33
configuration file 60
DC 900-1386D

Index
F

Features
product 21
TSI 25

Files
binary configuration

management 52
muxCfg 41
on-line configuration 52
see also Configuration, file
server MuxCfg configuration 65

example 66
Freeway

client-server environment 22
configuration 29
overview 18

Functions
categories 72
dlPoll

DLI_POLL_GET_SESS_STATUS
option 38, 40

syntax synopsis 74
tBufAlloc 40, 74, 80

return codes 81, 137
tBufFree 41, 75, 82

return codes 82, 137
tConnect 74, 84

return codes 85, 137
tDisconnect 75, 88

return codes 89, 137
tInit 74, 91

return codes 92, 138
tListen 74, 95

return codes 96, 139
tPoll 74, 100

return codes 103, 139
TSI_POLL_GET_CFG_LIST option 78
TSI_POLL_GET_CONN_STATUS

option 39, 40, 78
TSI_POLL_GET_SESS_STATUS option 84
TSI_POLL_GET_SYS_CFG option 37, 76,

80
tPost 74, 107

return codes 107, 140
tRead 74, 109
DC 900-1386D
return codes 110, 140
tSyncSelect 75, 114

return codes 115, 140
tTerm 75, 117

return codes 118, 140
tWrite 74, 120

return codes 121, 141

G

Grammar
context free 69
PDL 69

H

Headers
DLI 38
example 38
TSI 37, 41

History of revisions 15

I

ICP buffers 32
Internet addresses 23
InterruptTrace TSI parameter 54
I/O

blocking vs non-blocking 30
completion handler (IOCH) 31, 143
poll 145
signal processing 45
UNIX environment 143
VxWorks environment 145

L

LAN interface processor 18
Library

TSI reference 50
LocalPort TSI parameter 58
Logging services 149
LogLev TSI parameter 54, 56, 149
LogName TSI parameter 54, 149

M

MaxBuffers TSI parameter 36, 41, 44, 54, 65, 77,
80

MaxBufSize TSI parameter 33, 36, 37, 38, 39,
163

Freeway Transport Subsystem Interface Reference Guide
40, 41, 44, 55, 56, 65, 77, 152
MaxConns TSI parameter 44, 55, 77, 85, 96
MaxErrors TSI parameter 56, 79
MaxInQ TSI parameter 44, 56, 79
MaxOutQ TSI parameter 44, 56, 79
msgBlkSize BSC parameter 32, 33, 34
MuxCfg file 41
MuxCfg server configuration file 65

example 66
Files

server MuxCfg configuration 33, 40, 41

N

Negotiation of buffer size 39
Non-blocking I/O 30

I/O completion handler 31
signal processing 45
UNIX 144
VxWorks 146

O

On-line configuration file processing 52
Operating system

Protogate’s real-time 18
Overview

embedded ICP 18
Freeway server 18
product 17
TSI 25

P

Poll I/O 145
UNIX 145

Product
features 21
overview 17
support 16

R

Reference documents 12
Resource requirements 44
Revision history 15
rlogin 21
164
S

Server buffers 33
Server processor 18
Server TSI parameter 57, 60, 61, 63
ServerName TSI parameter 55, 62, 63
Server-resident application 22, 43, 57, 59, 146
Session status 84
ShmKey TSI parameter 59
ShmMaxInQ TSI parameter 59
ShmMaxOutQ TSI parameter 59
ShmPeerName TSI parameter 59, 62, 64
SIGALRM 144
SIGIO 144
Signal processing 45
SNMP 21
Software

download 23
Solaris 144
StackSize TSI parameter 55
Status

connection 39, 40, 78
session 84

Support, product 16
Synchronous I/O

see Blocking I/O
System

configuration 37, 76
resource requirements 44

T

tBufAlloc (see also Functions) 80
tBufFree (see also Functions) 82
tConnect (see also Functions) 84
TCP/IP 21
TCPKeepAlive TSI parameter 58
TCPNoDelay TSI parameter 58
tDisconnect (see also Functions) 88
Technical support 16
telnet 21
Timeout TSI parameter 45, 57
tInit (see also Functions) 91
tListen (see also Functions) 95
tPoll (see also Functions) 100
tPost (see also Functions) 107
TraceLev TSI parameter 55, 57, 150, 151
DC 900-1386D

Index
TraceName TSI parameter 55, 150
TraceSize TSI parameter 55, 150
Tracing services 149, 150

binary format 158
example 154
file layout 152
Freeway server 159

Transport TSI parameter 57, 60, 62, 65
tRead (see also Functions) 109
Troubleshooting 149
tserrno global variable 71, 125, 137
TSI

concepts 29
configuration 47

see also Configuration, TSI
data structures 76
error codes 125
error handling 71
features 25
functions 71, 73

see also Functions
syntax synopsis 74

overview 25
reference library 50

TSI buffer pool definition 36
tsicfg program 47, 48

error messages 67
tSyncSelect (see also Functions) 114
tTerm (see also Functions) 117
tWrite (see also Functions) 120

U

UNIX environment 143

V

VMS environment 147
VxWorks 18
VxWorks environment 145

W

WAN interface processor 18
WellKnownPort TSI parameter 58, 60, 61
DC 900-1386D
 165

Freeway Transport Subsystem Interface Reference Guide
166
 DC 900-1386D

Freeway Transport Subsystem Interface
Reference Guide

DC 900-1386D
Customer Report Form

We are constantly improving our products. If you have suggestions or problems you would

like to report regarding the hardware, software or documentation, please complete this form

and mail it to Protogate at 12225 World Trade Drive, Suite R, San Diego, CA 92128, or fax it

to (877) 473-0190.

If you are reporting errors in the documentation, please enter the section and page number.

Your Name:

Company:

Address:

Phone Number:

Product:

Problem or

Suggestion:

Protogate, Inc.
Customer Service

12225 World Trade Drive, Suite R
San Diego, CA 92128

	Freeway��® Transport Subsystem Interface Reference Guide
	Contents
	List of Figures
	List of Tables
	Preface
	1 Overview
	1.1� Product Overview
	1.1.1� Freeway Server
	Figure 1–1:� �Freeway Configuration
	1.1.2� Embedded ICP
	Figure 1–2:� Embedded ICP Configuration
	1.2� Freeway Client-Server Environment Using TSI
	Figure 1–3:� A Typical Freeway Environment
	1.2.1� Establishing�Freeway Internet Addresses
	1.2.2� Defining the TSI Configuration
	1.2.3� Establishing a Freeway TSI Connection
	1.2.4� Exchanging Data through the �Freeway Message Multiplexor
	1.2.5� Closing a Freeway Session
	1.3� TSI Overview and Features
	Figure 1–4:� TSI Environment
	Figure 1–5:� TSI in the Freeway Operating Environment
	2 TSI Concepts
	2.1� Configuration in the Freeway Environment
	2.2� Blocking versus Non-blocking I/O
	2.2.1� I/O Completion Handler for Non-Blocking I/O
	2.3� Buffer Management
	2.3.1� Overview of the Freeway System Buffer Relationships
	2.3.1.1� Example Calculation to Change ICP, Client, and Server Buffer Sizes
	Table 2–1:� Required Values for Calculating New �MaxBufSize Parameter
	Figure 2–1:� Client DLI Configuration File Changes (BSC Example)
	Figure 2–2:� Client TSI Configuration File Changes
	Figure 2–3:� Server MuxCfg TSI Configuration File Changes
	2.3.2� Client TSI Buffer Configuration
	2.3.2.1� TSI Buffer Pool Definition
	Figure 2–4:� TSI Buffer Size Example
	Figure 2–5:� DLI Buffer Size Example
	2.3.2.2� Connection-Specific Buffer Definition
	2.3.2.3� TSI Buffer Size Negotiation
	2.3.3� Server TSI Buffer Configuration
	2.3.4� Buffer Allocation and Release
	2.3.5� Cautions for Changing Buffer Sizes
	2.3.6� Using Your Own Buffers
	Figure 2–6:� Comparison of malloc and tBufAlloc Buffers
	Figure 2–7:� Using the malloc Function for Buffer Allocation
	2.3.7� Buffer Management (Client versus Server-Resident Applications)
	2.4� System Resource Requirements�
	2.4.1� Signal Processing
	3 TSI Configuration
	3.1� Configuration Process Overview
	Figure 3–1:� TSI Architecture
	3.2� Introduction to TSI Configuration
	3.2.1� TSI Configuration Language�
	3.2.2� Rules of the TSI Configuration File�
	3.2.3� Binary Configuration File Management
	3.2.4� On-line Configuration File Processing
	3.3� TSI Connection Definition
	3.3.1� Parameters for the “main” Definition
	Table 3–1:� TSI Parameters for “main” Definition�
	3.3.2� Parameters for the Connection Definition (Non-transport Specific)
	Table 3–2:� TSI Parameters for Non-Transport Specific Connection�
	3.3.3� Parameters for Connection Definition (TCP/IP Socket Transport)
	Table 3–3:� TSI Parameters for TCP/IP Socket Transport Connection
	3.3.4� Parameters for Connection Definition (Shared-Memory Transport)
	Table 3–4:� TSI Parameters for Shared-Memory Transport Connection
	3.4� Example TSI Configurations
	3.4.1� TCP/IP Socket Transport Interface
	Figure 3–2:� Example Configuration for TCP/IP Socket Transport Interface
	3.4.2� Shared-Memory Transport Interface (VxWorks Only)
	Figure 3–3:� Example Configuration for Shared-Memory Transport Interface
	3.5� Protogate’s Freeway Server TSI Configuration
	Figure 3–4:� TSI Configuration File (MuxCfg) for Protogate Server-Resident TSI
	3.6� Miscellaneous TSI Configuration Details
	3.6.1� TSI Configuration Error Messages�
	3.6.2� Protogate Definition Language (PDL) Grammar�
	4 TSI Functions
	4.1� Overview of TSI Functions
	4.1.1� TSI Error Handling
	4.1.2� Categories of TSI Functions
	Table 4–1:� TSI Function Groups
	4.1.2.1� Summary of TSI Functions
	Table 4–2:� TSI Functions: Syntax and Parameters (Listed in Typical Call Order)
	4.1.3� TSI Data Structures
	4.1.3.1� TSI System Configuration
	Figure 4–1:� TSI System Configuration Data Structure
	Table 4–3:� TSI System Configuration Data Structure Fields
	4.1.3.2� TSI Connection Status�
	Figure 4–2:� TSI Connection Status Data Structure
	Table 4–4:� TSI Connection Status Data Structure Fields
	4.1.3.3� TSI Connection Definition List
	4.2� tBufAlloc��
	4.3� tBufFree�
	4.4� tConnect�
	4.5� �tDisconnect�
	4.6� tInit�
	4.7� tListen�
	4.8� tPoll�
	4.9� tPost�
	4.10� tRead��
	4.11� tSyncSelect�
	4.12� tTerm�
	4.13� tWrite�
	A TSI Common Error Codes
	A.1� Internal Error Codes
	A.2� Command-Specific Error Codes
	Table A–1:� TSI Command-specific Error Codes�
	B UNIX, VxWorks, and VMS I/O
	B.1� UNIX Environment
	B.1.1� Blocking I/O operations
	B.1.2� Non-Blocking I/O Operations
	B.1.3� SOLARIS use of SIGALRM
	B.1.4� Polling I/O Operations
	B.2� VxWorks Environment
	B.2.1� Blocking I/O Operations
	B.2.2� Non-Blocking I/O Operations
	B.3� VMS Environment
	C TSI Logging and Tracing
	C.1� TSI Logging
	C.2� TSI Tracing
	C.2.1� Trace Definitions
	C.2.2� Decoded Trace Layout
	C.2.3� Example tsidecode Program Output
	C.2.4� Trace Binary Format
	Figure C–1:� TSI Trace File Format
	Figure C–2:� TRACE_FCB ‘C’ Structure
	Figure C–3:� TSI_TRACE_HDR ‘C’ Structure
	C.3� �Freeway Server Tracing
	Index

