
Protogate, Inc
12225 World 
San Diego, CA
October 2004
.
Trade Drive, Suite R

 92128

X.25
 Call Service API Guide

DC 900-1392E



Protogate, Inc.
12225 World Trade Drive, Suite R
San Diego, CA 92128
(858) 451-0865

X.25 Call Service API Guide
© 2000-2004 Protogate, Inc. All rights reserved
Printed in the United States of America

This document can change without notice. Protogate, Inc. accepts no liability for any errors this 
document might contain.

Freeway® is a registered trademark of Protogate, Inc.
All other trademarks and trade names are the properties of their respective holders.



Contents
Preface 11

1 Overview 17

1.1 Getting Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 Configuring the TSI and DLI . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3 Service Access Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4 Permanent Virtual Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.5 Switched Virtual Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.5.1 Outgoing SVC Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.5.2 Incoming SVC Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.6 Quality of Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Writing CS API User-Client Software 25

2.1 X.25 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.1 X.25 Connection Establishment . . . . . . . . . . . . . . . . . . . . . 25

2.1.1.1 PVC Connections . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1.1.2 SVC Connections . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1.2 X.25 Connection Operation . . . . . . . . . . . . . . . . . . . . . . . 33

2.1.2.1 X.25 Normal Data Transfer . . . . . . . . . . . . . . . . . . . . 35

2.1.2.2 X.25 Interrupt Data Transfer . . . . . . . . . . . . . . . . . . . 37

2.1.2.3 X.25 Circuit Reset . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.1.2.4 X.25 Procedure Errors — CS_STA_ERROR . . . . . . . . . . . 40

2.1.3 X.25 Connection Termination . . . . . . . . . . . . . . . . . . . . . . 40

2.1.3.1 PVC Connection Termination . . . . . . . . . . . . . . . . . . 40

2.1.3.2 SVC Connection Termination. . . . . . . . . . . . . . . . . . . 40

2.2 HDLC Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2.1 HDLC Connection Establishment . . . . . . . . . . . . . . . . . . . . 41

2.2.2 HDLC Connection Operation . . . . . . . . . . . . . . . . . . . . . . 42
DC 900-1392E 3



X.25 Call Service API Guide
2.2.2.1 HDLC Normal Data Transfer . . . . . . . . . . . . . . . . . . 44

2.2.2.2 HDLC UI Frame Data Transfer . . . . . . . . . . . . . . . . . 45

2.2.2.3 HDLC Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.2.3 HDLC Connection Termination . . . . . . . . . . . . . . . . . . . . 46

2.3 Client Program Environment . . . . . . . . . . . . . . . . . . . . . . . . 47

2.3.1 Handling Unsolicited Input . . . . . . . . . . . . . . . . . . . . . . 47

2.3.2 Child Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 CS API Run-time File Dependencies 49

3.1 CS API Configuration File . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 CS API Log File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 CS API Operational Modes 53

4.1 Non-Blocking I/O Operations . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Blocking I/O Operations . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Multitasking Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4 Event-driven Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5 Event Handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 CS API Reference 71

5.1 Connection Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1.1 cs_init . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1.2 cs_attach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.1.3 cs_bind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Active Connection Handling . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2.1 cs_connect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2.2 cs_connect_nb_remote . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3 Passive Connection Handling . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3.1 cs_register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3.2 cs_listen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3.3 cs_accept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3.4 cs_redirect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3.5 cs_refuse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4 Data Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.4.1 cs_read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.4.2 cs_reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4 DC 900-1392E



Contents
5.4.3 cs_select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.4.4 cs_write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.5 Connection Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.5.1 cs_deregister . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.5.2 cs_disconnect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.5.3 cs_unbind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.5.4 cs_detach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.5.5 cs_terminate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.6 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.6.1 cs_sperror . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.6.2 cs_sleep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.6.3 cs_config . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.6.4 cs_getpid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.6.5 debuglog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.6.6 cs_suicide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.6.7 cs_suspend_events . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.6.8 cs_resume_events . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.6.9 cs_gen_event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.6.10 cs_bufsize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.7 QOS Item Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

A CS API Include Files 143

A.1 cs_api.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

A.2 cs_dfine.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

A.3 cs_struc.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

A.4 cs_errno.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

A.5 cs_proto.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

A.6 cs_x25.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

B Sample Programs 157

B.1 pasv.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

B.2 actv.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
DC 900-1392E 5



X.25 Call Service API Guide
C X.25 Diagnostic Codes 165

D X.25 Packet Types Cross Reference 169

Glossary 173

Index 179
6 DC 900-1392E



List of Figures
Figure 2–1: X.25 PVC Connection Establishment . . . . . . . . . . . . . . . . . . . . 27

Figure 2–2: X.25 SVC Call Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 2–3: X.25 SVC Call Reception . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 2–4: X.25 Connection Operation . . . . . . . . . . . . . . . . . . . . . . . . . 34

Figure 2–5: HDLC Connection Establishment . . . . . . . . . . . . . . . . . . . . . . 42

Figure 2–6: HDLC Connection Operation . . . . . . . . . . . . . . . . . . . . . . . . 43
DC 900-1392E 7



X.25 Call Service API Guide
8 DC 900-1392E



List of Tables
Table 4–1: Non-blocking I/O Events . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Table 4–2: Blocking I/O Function Return Values . . . . . . . . . . . . . . . . . . . . . 59

Table 5–1: CS API Function Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Table 5–2: CS API Errors Defined in cserrno.h Include File . . . . . . . . . . . . . . . 72

Table 5–4: CS API Functions QOS Support . . . . . . . . . . . . . . . . . . . . . . . 129

Table 5–3: CS API QOS Options Listed . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Table 5–4: CS API Functions QOS Support . . . . . . . . . . . . . . . . . . . . . . . 131

Table C–1: X.25 Diagnostic Codes for qos Item HF_DIAG . . . . . . . . . . . . . . . 166

Table D–1: X.25 Packet vs. DLI Packet Cross Reference. . . . . . . . . . . . . . . . . . 169
DC 900-1392E 9



X.25 Call Service API Guide
10 DC 900-1392E



Preface
Purpose of Document

This document describes how to develop wide-area network (WAN) communications

applications using Protogate’s X.25 protocol service on Protogate’s Freeway communi-

cations hardware. It also describes a high-level call service application program inter-

face (CS API) to the X.25 service. 

Intended Audience

This document should be read by applications programmers. You must be familiar with

the C programming language and have a working knowledge of permanent virtual cir-

cuit (PVC) and switched virtual circuit (SVC) concepts and operations. Experience in

applying state machine (finite-state automata) concepts to program design might also

be helpful.

Organization of Document

Chapter 1 discusses application program interface concepts and procedures in general.

Chapter 2 builds on the basic concepts introduced in Chapter 1 by providing “how-to”

style instructions for writing X.25 and HDLC client software that uses the CS API func-

tions described in Chapter 5.

Chapter 3 describes the files used by the CS API at run-time. 

Chapter 4 describes the CS API operational modes.
DC 900-1392E 11



X.25 Call Service API Guide

5/25/99 
Ginni: 
Removed all 
Getting 
Started 
manuals.
Chapter 5 is a detailed reference for the CS API functions. 

Appendix A shows a copy of the cs_api.h, cs_dfine.h, cs_struc.h, cs_errno.h, and cs_proto.h

include files, which give the actual values defined for the symbolically named parameter

values described in Chapter 5. 

Appendix B shows a pair of sample programs, pasv.c and actv.c, that connect and trans-

fer messages back and forth.

Appendix C shows the meaning assigned to various X.25 diagnostic codes associated

with the quality of service item HF_DIAG.

Appendix D is a cross reference between the short packet type names contained in the

cs_x25.h file and the DLI names as used in the Freeway X.25 Low-Level Interface

document.

The Glossary lists Freeway terminology and acronyms.

Protogate References

The following general product documentation list is to familiarize you with the avail-

able Protogate Freeway and embedded ICP products. The applicable product-specific

reference documents are mentioned throughout each document (also refer to the

“readme” file shipped with each product). Most documents are available on-line at Pro-

togate’s web site, www.protogate.com.

General Product Overviews

• Freeway 1100 Technical Overview 25-000-0419

• Freeway 2000/4000/8800 Technical Overview 25-000-0374

• ICP2432 Technical Overview 25-000-0420

• ICP6000X Technical Overview 25-000-0522

Hardware Support

• Freeway 1100/1150 Hardware Installation Guide DC 900-1370
12 DC 900-1392E



Preface
• Freeway 1200/1300 Hardware Installation Guide DC 900-1537

• Freeway 2000/4000 Hardware Installation Guide DC 900-1331

• Freeway 8800 Hardware Installation Guide DC 900-1553

• Freeway ICP6000R/ICP6000X Hardware Description DC 900-1020

• ICP6000(X)/ICP9000(X) Hardware Description and Theory of 
Operation

DC 900-0408

• ICP2424 Hardware Description and Theory of Operation DC 900-1328

• ICP2432 Hardware Description and Theory of Operation DC 900-1501

• ICP2432 Hardware Installation Guide DC 900-1502

Freeway Software Installation Support

• Freeway Release Addendum: Client Platforms DC 900-1555

• Freeway User’s Guide DC 900-1333

• Loopback Test Procedures DC 900-1533

Embedded ICP Installation and Programming Support

• ICP2432 User’s Guide for Digital UNIX DC 900-1513

• ICP2432 User’s Guide for OpenVMS Alpha DC 900-1511

• ICP2432 User’s Guide for OpenVMS Alpha (DLITE Interface) DC 900-1516

• ICP2432 User’s Guide for Solaris STREAMS DC 900-1512

• ICP2432 User’s Guide for Windows NT DC 900-1510

• ICP2432 User’s Guide for Windows NT (DLITE Interface) DC 900-1514

Application Program Interface (API) Programming Support

• Freeway Data Link Interface Reference Guide DC 900-1385

• Freeway Transport Subsystem Interface Reference Guide DC 900-1386

• QIO/SQIO API Reference Guide DC 900-1355

Socket Interface Programming Support

• Freeway Client-Server Interface Control Document DC 900-1303

Toolkit Programming Support

• Freeway Server-Resident Application and Server Toolkit 
Programmer’s Guide

DC 900-1325
DC 900-1392E 13



X.25 Call Service API Guide
Document Conventions

Protogate’s CS API for Freeway X.25 operates on a variety of client computer systems.

In this document, bits within a byte, word, or longword are identified by the binary log-

arithm of their value. That is, bit n is valued as 2 to the nth power (bit 0 is 1, bit 1 is 2,

bit 2 is 4, bit 3 is 8, and so on).

The term “Freeway” refers to any of the Freeway server models (for example, Freeway

500/3100/3200/3400 PCI-bus servers, Freeway 1000 ISA-bus servers, or Freeway

2000/4000/8800 VME-bus servers). References to “Freeway” also may apply to an

• OS/Impact Programmer’s Guide DC 900-1030

• Protocol Software Toolkit Programmer’s Guide DC 900-1338

Protocol Support

• ADCCP NRM Programmer’s Guide DC 900-1317

• Asynchronous Wire Service (AWS) Programmer’s Guide DC 900-1324

• Addendum: Embedded ICP2432 AWS Programmer’s Guide DC 900-1557

• AUTODIN Programmer’s Guide DC 908-1558

• Bit-Stream Protocol Programmer’s Guide DC 900-1574

• BSC Programmer’s Guide DC 900-1340

• BSCDEMO User’s Guide DC 900-1349

• BSCTRAN Programmer’s Guide DC 900-1406

• DDCMP Programmer’s Guide DC 900-1343

• FMP Programmer’s Guide DC 900-1339

• Military/Government Protocols Programmer’s Guide DC 900-1602

• N/SP-STD-1200B Programmer’s Guide DC 908-1359

• SIO STD-1300 Programmer’s Guide DC 908-1559

• X.25 Call Service API Guide DC 900-1392

• X.25/HDLC Configuration Guide DC 900-1345

• X.25 Low-Level Interface DC 900-1307
14 DC 900-1392E



Preface
embedded ICP product using DLITE (for example, the embedded ICP2432 using

DLITE on a Windows NT system).

Physical “ports” on the ICPs are logically referred to as “links.” However, since port and

link numbers are usually identical (that is, port 0 is the same as link 0), this document

uses the term “link.”

Program code samples are written in the “C” programming language.

Earlier Freeway terminology used the term “synchronous” for blocking I/O and “asyn-

chronous” for non-blocking I/O. Some parameter names reflect the previous terminol-

ogy.

X.25 packet types (e.g. IDATA, HOPEN_SESSION, etc.) listed in this document use the

short form as contained in the cs_x25.h file. Appendix D is a cross reference between the

short packet type names and the DLI names as used in the X.25 Low-Level Interface

document.

Revision History

The revision history of the X.25 Call Service API Guide, Protogate document DC 900-

1392E, is recorded below:  

 Revision Release Date Description

DC 900-1322A June 1994 Original release.

DC 900-1322B March 1995 Minor clarifications.

DC 900-1322C April 1995 Update file names.

DC 900-1322D May 1996 Minor corrections.
Modify cs_unbind (Section 5.5.3 on page 115).
Add cs_gen_event function (Section 5.6.9 on page 127), ICP reset 
detection (Section 5.4.2 on page 102), and dead socket detection 
(Table 4–1 on page 55 and Table 4–2 on page 59).
Add Appendix D, “X.25 Packet Types Cross Reference”.

DC 900-1322E September 1996 Add new error codes in Chapter 4.
DC 900-1392E 15



X.25 Call Service API Guide
Customer Support

If you are having trouble with any Protogate product, call us at (858) 451-0865 Monday

through Friday between 8 a.m. and 5 p.m. Pacific time.

You can also fax your questions to us at (877) 473-0190 any time. Please include a cover

sheet addressed to “Customer Service.”

We are always interested in suggestions for improving our products. You can use the

report form in the back of this manual to send us your recommendations.

DC 900-1392A 
(2.5)

Special version 
for Freeway 
Server 2.5 

Release

February 1997 Add browser interface note (page 19).
Add Section 2.2 on page 41, HDLC Applications.
Add HDLC_RAW protocol (page 50).
Update Table 4–1 on page 55, Table 4–2 on page 59 and 
Table 5–2 on page 72.
Add cs_listen information (page 91).

DC 900-1392B
Special version 

for Freeway 
Server 2.x 

Release

July 1997 Minor corrections.
Add caution about exhausting memory pool (page 69).
Add blocking I/O information to Chapter 4 (functions: cs_attach, 
cs_bind, cs_register, cs_bind, cs_accept, cs_redirect, cs_refuse, 
cs_deregister, cs_disconnect, cs_unbind, cs_detach).
Add new cs_bufsize function (Section 5.6.10 on page 128).
Change control.h file name to cs_x25.h (Appendix D).

DC 900-1392C November 1997 Minor terminology changes for Freeway embedded product.
Modify Section 1.3 on page 19.
Add cs_select example (page 106).

DC 900-1392D June 1999 Add HF_ICF_CALLBUSY qos parameter (page 136 and 
Table 5–3 on page 130).
Update include files in Appendix A (add cs_x25.h file).

DC 900-1392E October 2004 Update contact information for Protogate.
Add writing and reading of UI-frame data (Section 2.2.2.2 on 
page 45).
Add CS_DF_UI flag to cs_write (Section 5.4.4 on page 108).
Add HUNDATA, IUNDATA, HTEST, and ITEST packet definitions 
(Appendix A.2, Appendix A.6, Appendix D).

 Revision Release Date Description
16 DC 900-1392E



Chapter
1 Overview
Protogate’s Freeway WAN communications product provides serial communications

services access to client computers. The Freeway server product uses the transmission-

control protocol/internet protocol (TCP/IP) over an Ethernet local area network. The

Freeway embedded product connects your PCIbus computer directly to the WAN (for

example, via an embedded ICP2432 board).

The CS API provides connection-oriented data services to the client application. The

CS API provides both X.25 permanent virtual circuit (PVC), X.25 switched virtual cir-

cuit (SVC), and HDLC services through a subroutine library. The subroutine library

implements functions that allow the application to use X.25 or HDLC services to access

or establish virtual circuits and to transfer data. 

1.1 Getting Started

Before you can use the CS API, you must make sure all the following prerequisites have

been met.

Install the Freeway Hardware See the applicable hardware installation guide for your

Freeway system (refer to the Protogate References on page 12). 

Download the X.25/HDLC Software Freeway software must be download after any

power-up or hardware reset. Protogate provides software that supports both the

X.25 and HDLC protocols. Read the Freeway User’s Guide for instructions on how

to install the software on a Freeway server system. For a Freeway embedded sys-

tem, refer to the user’s guide for your particular operating system.
DC 900-1392E 17



X.25 Call Service API Guide
Configure the X.25 Service Read the X.25/HDLC Configuration Guide. You must con-

figure the X.25 before you can verify the installation. 

You can also choose to verify the Freeway installation and configuration by running the

x25_svc test program and making sure that Freeway actually performs X.25 switched vir-

tual circuit (SVC) operations. 

1.2 Configuring the TSI and DLI

The CS API provides applications with the ability to access Freeway through transport

subsystem interface (TSI) and data link interface (DLI) configuration files. Refer to the

Freeway Transport Subsystem Interface Reference Guide and the Freeway Data Link Inter-

face Reference Guide for configuration requirements.

The CS API requires the following configuration parameters to be defined as listed:

Note
Earlier Freeway terminology used the term “synchronous” for

blocking I/O and “asynchronous” for non-blocking I/O. Some

parameter names reflect the previous terminology.

Protocol = “Raw”
AsyncIO = “Yes” // non-blocking I/O

AlwaysQIO = “Yes”
ReUsetrans = “No”
LocalAck = “Yes”
SessPerConn = 1
Mode = “Mgr” // for a manager session

Mode = “User” // for a user session
18 DC 900-1392E



1: Overview
Note
After initial Freeway installation, the configuration process can

also be accomplished using Protogate’s browser interface which

simplifies the maintenance of the Freeway, DLI, and TSI configu-

rations. Refer to the Freeway User’s Guide for details.

1.3 Service Access Point

Service access point (SAP) refers to a specific protocol service on Freeway. To access the

X.25 protocol service on Freeway, the application uses the cs_bind request to associate

SAP_X25 or SAP_SLP with the client_id previously returned by the cs_attach request. The

cs_bind request creates a logical binding between the client_id and the specified SAP for

the current application session, and is required before the application can access ser-

vices for the specified service access point. 

If the connection is configured as a Manager session, the application must fill in the

optional arguments as specified in the X.25/HDLC Configuration Guide. The buffer

passed to CS API in the cs_write call must be formatted as follows: 

All return packets to a Manager session are of the CS_READ_COMPLETE event type (see

Section 4.1 on page 54 and Section 4.2 on page 59 for CS API event types).

1.4 Permanent Virtual Circuit

A permanent virtual circuit (PVC) provides a non-switched virtual circuit between the

application and the remote DTE. The data transfer state is active immediately after a

successful cs_bind request. The circuit can be reset, but it cannot be disconnected in the

optional arguments

data buffer
DC 900-1392E 19



X.25 Call Service API Guide
normal sense. Instead, the application terminates use of a PVC by issuing a cs_unbind

request.

The circuit can be reset either by the application or by the remote DTE. When initiated

by the remote DTE, a circuit reset is indicated by the status code returned by the various

requests issued by the application to Freeway. 

1.5 Switched Virtual Circuit

A switched virtual circuit (SVC) provides a dynamically set up virtual circuit between

the application and a specified remote DTE. The method of communication requires

that the connection be explicitly established by the application before data transfer

occurs. The circuit can be reset or disconnected either by the application or by the

remote DTE. When initiated by the remote DTE, a circuit reset or disconnect is indi-

cated by the status code returned by the various requests issued by the application to

Freeway.

1.5.1 Outgoing SVC Calls

The CS API provides applications with the ability to initiate a switched virtual circuit

(SVC) connection to a remote DTE. Both blocking and non-blocking connection

requests are supported. 

For blocking connection requests, the application issues a cs_connect request with the

block_time parameter set to non-zero. The function returns a value of zero if the connec-

tion is established. It returns an error code if the request fails or times out.

For non-blocking connection requests, the application issues a cs_connect request with

the block_time parameter set to zero. The function returns immediately to allow the

application to issue additional non-blocking requests or to do other work. The applica-

tion must then issue a cs_connect_nb_remote request to check on the status of the original

cs_connect request. Refer to Chapter 4 for non-blocking system requirements.
20 DC 900-1392E



1: Overview
1.5.2 Incoming SVC Calls

The CS API provides applications with the ability to receive and handle incoming SVC

connection indications (calls) from remote DTEs. This ability is provided by allowing

the application to register itself with the X.25 protocol service as an incoming connec-

tion handler; the application then listens for incoming connection indications from

that X.25 protocol service. 

An application indicates its desire to receive incoming connection indications by using

the cs_register function. This function specifies the application’s bound attachment to

the X.25 protocol service and optional filtering information describing the characteris-

tics of incoming connections to be compared against. The X.25 protocol service inserts

the application’s registration into an internal list of incoming connection handlers.

If the registered filtering information matches the characteristics of an incoming con-

nection indication when the X.25 protocol service receives one, the service sends the call

information back to the associated application.

If no optional filtering information was provided when the application registered an

incoming connection handler, the filter matches all incoming connection indications

and the service sends the call information back to the associated application.

The application issues a cs_listen request to receive incoming call information and exam-

ines the returned information to determine how it wants to handle the incoming con-

nection indication. If the call information indicates that the X.25 protocol has already

accepted the call on behalf of the application, the application may use the virtual circuit

or disconnect it.

If the call information indicates that the X.25 protocol is simply notifying the applica-

tion of an incoming connection indication, the application has the following options

available for handling an incoming connection indication, which it selects based on the

call information returned by the cs_listen request: 
DC 900-1392E 21



X.25 Call Service API Guide
1. Accept the connection. The application has determined that it wants to commu-

nicate with the remote DTE, so it issues the cs_accept request to establish the con-

nection.

2. Refuse the connection. The application has determined that the connection

should not be established and issues the cs_refuse request. 

3. Redirect the connection. The application has determined that it does not want to

accept the connection, but it will allow other applications to accept the connec-

tion if they desire. It issues the cs_redirect request that causes the X.25 protocol ser-

vice to continue scanning the internal connection handler list from the current

location for other applications whose filters match the characteristics of the

incoming connection. 

The application also has the option of passing the incoming connection information to

another application, which can perform one of the three handling functions itself. This

is done using the call token value, which is a unique identifier reported with the incom-

ing connection indication. The token value is used in the cs_accept, cs_refuse, and

cs_redirect functions to identify the call that is being handled; any application that has the

correct token value can perform one of these functions.

The CS API does not apply a timeout to the connection indications. The application

can hold that indication without taking action on it for as long as is desired. It should

be noted, however, that many X.25 networks impose a timeout on connection indica-

tions; when the application finally responds to the connection indication, it should be

prepared to receive an error return indicating that the X.25 network has cancelled the

incoming connection indication already. 

Once the application establishes an actual connection for a specific client_id, that client_id

is marked as busy. No more connection indications for that client_id will be sent to the

application until the application’s connection for that client_id is terminated, at which
22 DC 900-1392E



1: Overview
point the service will again mark that client_id as available to handle incoming connec-

tions. 

While the application is busy with one connection, the X.25 protocol service places any

additional connection indications for that application on hold, unless specifically con-

figured to redirect such calls. This is useful to an application designed to intercept each

incoming connection indication and validate it further before passing its call token value

to another application authorized to handle the call. 

Any application that does not want additional incoming connection indications to be

placed on hold may issue the cs_deregister request to cancel its previous cs_register request

to the X.25 protocol service. Later, after the connection is disconnected, the application

might again issue the cs_register and cs_listen requests to indicate its readiness to handle

another incoming connection indication. However, if the application uses the

HF_ICF_CALLBUSY quality of service parameter to configure the incoming call filter to

redirect calls when busy, then the application need not call cs_deregister to avoid placing

calls on hold.

1.6 Quality of Service

The quality of service (QOS) is a specification of the characteristics of the X.25 connec-

tion. QOS specifications can include X.25 call facilities, virtual circuit local priority,

X.25 cause and diagnostic codes for circuit clear or reset events, or incoming connec-

tion (X.25 call indication) filter specifications. 

The available QOS characteristics allow an application to determine or negotiate the

characteristics of transmission needed to communicate with the remote DTE. The

application can specify a qos parameter in each of the following CS API requests:

cs_accept, cs_connect, cs_disconnect, cs_redirect, cs_refuse, cs_register, and cs_reset. In addition,

the application can supply a ret_qos parameter in each of the following CS API requests

to receive the QOS values proposed or negotiated by Freeway: cs_listen, cs_connect, and

cs_connect_nb_remote. 
DC 900-1392E 23



X.25 Call Service API Guide
For more information on the use of the QOS specification, see individual reference sec-

tions for the specific CS API request functions described in Chapter 5. 
24 DC 900-1392E



Chapter
2 Writing CS API 
User-Client Software
This chapter shows how to use the CS API to establish X.25 permanent or switched vir-

tual circuits, send and receive data, handle error conditions, and terminate PVC or SVC

use. You should be familiar with the material in Chapter 5 to fully understand the pro-

cedures presented in Section 2.1 below. Table 5–1 on page 71 summarizes the available

CS API request functions. 

The CS API also supports the HDLC layer. HDLC applications are discussed in

Section 2.2 on page 41.

For the sake of simplicity, it is assumed that Freeway has already been downloaded and

configured, and that the appropriate data links have been enabled. For more informa-

tion about how to download Freeway, refer to the Freeway User’s Guide. For more

information about how to configure Freeway and enable data links, refer to the

X.25/HDLC Configuration Guide. 

2.1 X.25 Applications

2.1.1 X.25 Connection Establishment

X.25 supports two types of connections: permanent virtual circuits (PVCs) and

switched virtual circuits (SVCs). Before an application can transfer data on either a

PVC or SVC, the application must first establish a connection. 

The method for establishing a PVC connection differs from that for establishing an

SVC connection. Each method is described in the sections that follow. 
DC 900-1392E 25



X.25 Call Service API Guide
2.1.1.1 PVC Connections

An X.25 PVC is permanent in the same sense that a leased phone line is permanent.

Both are by definition point-to-point connections between two fixed pieces of data ter-

minal equipment. In each case, a DTE can connect only to the DTE to which it is per-

manently connected. 

To extend the analogy, although a leased phone line permanently connects two DTEs,

no data transfer can occur until both DTEs are simultaneously online. A CS API appli-

cation wanting to use an X.25 PVC must perform an operation analogous to picking up

the phone before sending data. 

Before data transfer can take place, a CS API application must perform the following

actions in the sequence given to establish a PVC connection. Figure 2–1 illustrates these

actions and their associated application state transitions. 

1. Issue a cs_attach request to attach the application to the desired X.25 PVC. 

2. Issue a cs_bind request to bind the application to the X.25 protocol service, and

thereby connect the PVC.

2.1.1.2 SVC Connections

An X.25 SVC, like a dialed phone connection, is both temporary and switched. In each

case, the point-to-point connection between the two pieces of data terminal equipment

requires one DTE to call and the other to answer to set up the connection; furthermore,

the connection is temporary in that either DTE can hang up (or disconnect) the call at

any time. 

Many phone systems allow the call recipient to answer, refuse, or forward an incoming

call. In a similar manner, the CS API allows the application to answer, refuse, or redirect

an incoming call. 
26 DC 900-1392E



2: Writing CS API User-Client Software
Figure 2–1: X.25 PVC Connection Establishment

PVC immediate
state transition

cs_attach

cs_bind

Client attached

Client detached

Client bound

PVC connected

3014
DC 900-1392E 27



X.25 Call Service API Guide
SVC Call Placement

A CS API application wanting to place an X.25 SVC call must perform the following

actions in the sequence given to establish an SVC connection before data transfer can

take place. Figure 2–2 illustrates these actions and their associated application state

transitions. 

1. Issue a cs_attach request to attach the application to the desired X.25 network. 

2. Issue a cs_bind request to bind the application to the X.25 protocol service. 

3. Issue a blocking or non-blocking cs_connect request to initiate X.25 call placement. 

4. If the block_time parameter in the cs_connect request was set to zero and a user inter-

rupt has been registered with the cs_init call, the application can continue other

processing while Freeway tries to establish the connection; in this case, the appli-

cation issues a cs_connect_nb_remote request to determine whether or not the con-

nection has been established. 

5. Look for the blocking cs_connect request or the cs_connect_nb_remote request to

indicate whether or not the connection has been established. Once the connection

is established, data transfer is allowed. 
28 DC 900-1392E



2: Writing CS API User-Client Software
Figure 2–2: X.25 SVC Call Placement

cs_attach

cs_bind

Client attached

Client detached

Client bound

SVC connected
3015

Outgoing call
in progress

Doing other
work

other errors

Blocking cs_connect or
cs_connect_nb_remote returns 0

Blocking or non-blocking
cs_connectcs_connect_nb_remote

Non-blocking cs_connect returns 0
or cs_connect_nb_remote returns
CS_CALL_TIMEOUT
DC 900-1392E 29



X.25 Call Service API Guide
SVC Call Reception

A CS API application wanting to receive an X.25 SVC call must perform the following

actions in the sequence given to establish an SVC connection before data transfer can

take place. Figure 2–3 illustrates these actions and their associated application state

transitions. 

1. Issue a cs_attach request to attach the application to the desired X.25 network. 

2. Issue a cs_bind request to bind the application to the X.25 protocol service.

3. Issue a cs_register request to register an incoming call handler profile for the

expected incoming call. The profile parameters determine the selectivity with

which incoming calls are screened for a match. 

4. Issue a cs_listen request to check for the expected incoming call. 

5. If cs_listen returns a status of CS_NO_ERROR and the incoming call state is

CS_AUTO_CONNECT, Freeway has completed the incoming connection and data

transfer is immediately allowed. 

6. If cs_listen returns a status of CS_NO_ERROR and the incoming call state is

CS_INC_CALL, the application can take one of three actions. 

• Issue a cs_accept request to complete the incoming call connection and allow

data transfer.

• Issue a cs_redirect request to allow Freeway to present the incoming call to

another application, then issue a cs_listen request to wait for the next incom-

ing call.
30 DC 900-1392E



2: Writing CS API User-Client Software
Figure 2–3: X.25 SVC Call Reception

cs_attach

cs_bind

Client attached

Client detached

Client bound

SVC connected
3016

Incoming call
handler registered

cs_register

Listening for 
incoming call

Incoming call
indication

cs_accept

cs_listen

Status is
CS_AUTO_CONNECT

Status is
CS_INC_CALL

cs_refuse or
cs_redirect
DC 900-1392E 31



X.25 Call Service API Guide
• Issue a cs_refuse request to clear the call and prevent Freeway from present-

ing the incoming call to another application, then issue a cs_listen request to

wait for the next incoming call. 

After a CS API application accepts an incoming call, Freeway places all additional

incoming calls for that client_id on hold until the current call is cleared or until the net-

work DCE cancels the incoming call. Calls can be placed on hold even if they match the

registered incoming call handler profile of other CS API applications. After the cur-

rently active virtual circuit is disconnected, the CS API application simply issues a

cs_listen request to get the next incoming call. 

If the CS API application does not want additional calls to be placed on hold after

accepting an incoming call, the application may issue a cs_deregister request to delete its

incoming call handler profile from the X.25 protocol. When the currently active virtual

circuit is disconnected, the application would then issue a cs_register request before issu-

ing a cs_listen request. However, if the application uses the HF_ICF_CALLBUSY quality of

service parameter to configure the incoming call filter to redirect calls when busy, then

the application need not call cs_deregister to avoid placing calls on hold.

Fast Select Call Transactions

Transaction processing applications for which the data transfer requirement is very

small (128 bytes or less) can decrease the total X.25 overhead by using X.25 SVC fast-

select facilities. Use of these facilities allows the X.25 call request to include up to 128

bytes of user data, such as a data base query request. The call recipient also returns up

to 128 bytes of user data in an X.25 clear request. 

The value of the fast-select operation is that the transfer of the 128 byte query and

response data does not require the acceptance of the call. Contrast this with the over-

head required to establish an SVC call, exchange the query and response data after the

call is accepted, then terminate the SVC connection. The result is that fast-select proce-
32 DC 900-1392E



2: Writing CS API User-Client Software
dures can be used to reduce a simple query and response exchange from six X.25 pack-

ets to only two X.25 packets. 

The procedures for using X.25 fast select are the same as those for handling normal SVC

calls, except that the call recipient usually issues a cs_refuse request rather than a

cs_accept request. The qos parameter in the cs_connect request must specify both the X.25

fast-select facility and the user query data. The qos parameter in the cs_refuse request

specifies the user response data. 

2.1.2 X.25 Connection Operation

After the application’s PVC or SVC is connected, the CS API allows the application

considerable freedom in the actual operation of the virtual circuit. Various CS API

functions are used in combination to achieve the operations listed below. Figure 2–4

illustrates these operational choices of action. 

• Initiate any of the following write operations: 

• Write normal data with full control over the X.25 D-bit, M-bit, and Q-bit

using a cs_write request

• Write an X.25 interrupt with 1 to 32 bytes of data using a cs_write request,

and read subsequent acknowledgment 

• Write an X.25 reset with qos data using a cs_reset request, and read subse-

quent acknowledgment 

• Write an X.25 clear request with qos data using a cs_disconnect request

• Initiate any of the following read operations: 

• Read normal data with full access to the X.25 D-bit, M-bit, and Q-bit using

a cs_read request 
DC 900-1392E 33



X.25 Call Service API Guide
Figure 2–4: X.25 Connection Operation

Write
Interrupt Data
and Read ACK

Write Reset Data
and Read ACK

Write
Disconnect

Data

Disconnected
(PPA Bound)

Read
Disconnect

Data

Read Reset Data
and Write ACK

Read
Interrupt Data
and Write ACK

Read
Normal Data

Write
Normal Data

Idle

DRWG-2300
34 DC 900-1392E



2: Writing CS API User-Client Software
• Read an X.25 interrupt with 1 to 32 bytes of data using a cs_read request, and

write acknowledgment 

• Read an X.25 reset with qos data using a cs_read request, and write acknowl-

edgment 

• Read an X.25 clear request with qos data using a cs_read request

2.1.2.1 X.25 Normal Data Transfer

Most applications need to read and write normal data. The CS API supports these oper-

ations using cs_read and cs_write requests, respectively. 

X.25 D-bit, M-bit, and Q-bit

When writing normal data, the application has full control of the D-bit, M-bit, and Q-

bit supported by the X.25 protocol. The application controls these bits for each cs_write

request by appropriately specifying a proto_flag parameter value. The symbolically

named values CS_DF_X25D, CS_DF_X25MORE, or CS_DF_X25Q, respectively, can be used in

combinations consistent with the X.25 protocol rules. 

When reading normal data, the application has full access to the D-bit, M-bit, and Q-

bit supported by the X.25 protocol. The application detects these bits by checking the

returned value of the ret_flags parameter. The symbolically named values CS_DF_X25D,

CS_DF_X25MORE, and CS_DF_X25Q, respectively, can appear in combinations consistent

with the X.25 protocol rules. 

The M-bit (CS_DF_X25MORE) specifies that the data is part of a larger message or com-

plete packet sequence.1 X.25 protocol rules allow the M-bit only in full data packets, or

partial data packets that also contain the D-bit. If the application sets the M-bit (with-

1. A complete packet sequence consists of a set of data packets for which all data packets (except pos-
sibly the last one) are filled and have the M-bit set to one; the last data packet might or might not be full,
and has the M-bit reset to zero or has the D-bit set to one.
DC 900-1392E 35



X.25 Call Service API Guide
out setting the D-bit) when writing data, the buf_length parameter must equal Freeway’s

segmentation buffer size; since the application cannot dynamically determine Freeway’s

segmentation buffer size, it is the programmer’s responsibility to specify this value cor-

rectly for the current Freeway configuration. 

The D-bit (CS_DF_X25D) specifies that confirmation of data delivery is required from

the DTE that receives the data; such confirmation provides an end-to-end confirmation

of delivery, rather than the normal X.25 acknowledgment that the data has merely

entered the network. The D-bit also ends the current complete packet sequence,

whether or not the M-bit is cleared. 

Note
An SVC can use the D-bit only if the qos parameter

HF_D_BIT_SUPPORT facility was successfully negotiated during call

establishment. A PVC can use the D-bit only if the X.25 network is

configured to support D-bit use on that PVC.

The Q-bit (CS_DF_X25Q) specifies that the data is qualified and is not part of the normal

data stream. The Q-bit is used to distinguish between two logically separated categories

of information (such as control information and actual data), and is often used to exert

control operations (such as X.25 PAD functions) outside the normal data stream. The

Q-bit must be the same for all packets within a complete packet sequence. 

Writing Normal Data

When issuing a cs_write request, the application uses the block_time parameter to select

whether the function blocks until the transmission is acknowledged, blocks only until

the transmit window is open, or returns immediately. To write normal data, the

proto_flag parameter must be zero, or it must specify a combination of the X.25 D-bit, M-

bit, and Q-bit. 
36 DC 900-1392E



2: Writing CS API User-Client Software
Although the application can issue a blocking cs_write request, it must check the return

status to determine whether or not normal data was actually written. An error status

might indicate a need for the application to take other action (such as reading interrupt

data, reading reset data, reading disconnect data, or issuing a cs_reset request) before

again attempting to write normal data. 

Reading Normal Data 

When issuing a cs_read request, the application uses the block_time parameter to select

whether the function blocks until data is available or returns immediately. To read nor-

mal data, the event parameter value must be CS_READ_COMPLETE. 

Although the application can issue a blocking cs_read request, it must check the return

status to determine whether or not normal data was actually read. An error status might

indicate a need for the application to take other action (such as reading interrupt data,

reading reset data, reading disconnect data, or issuing a cs_reset request) before again

attempting to read normal data. 

2.1.2.2 X.25 Interrupt Data Transfer

Some applications require access to X.25 interrupt procedures, which allow the transfer

of up to 32 bytes of data through an X.25 interrupt packet. Since the X.25 interrupt

packet is not subject to normal flow control procedures, this feature can be used when

the transmit window is closed to determine if the application in the remote DTE is still

alive. 

Writing Interrupt Data

To write interrupt data, the application issues a cs_write request with the proto_flag

parameter set to CS_DF_X25OOB. The block_time parameter value is used to select whether

the function blocks until the interrupt is acknowledged or returns immediately. In the

latter case, the CS API might later inform the application when interrupt has been
DC 900-1392E 37



X.25 Call Service API Guide
acknowledged by returning CS_INDX25OOB_ACK (CS_INTERRUPT_ACK) as an indication

status within the ind_array specified in a cs_select request or as a non-blocking I/O event. 

Although the application can issue a blocking cs_write request, it must check the return

status to determine if interrupt data was actually written. An error status might indicate

a need for the application to take other action (such as reading interrupt data, reading

reset data, reading disconnect data, or issuing a cs_reset request) before again attempt-

ing to write interrupt data. 

Note
The X.25 protocol rules require that one interrupt be acknowl-

edged before another interrupt is sent. It is the application’s

responsibility to check for interrupt acknowledgment before send-

ing a second interrupt.

Reading and Acknowledging Interrupt Data

The CS API can inform the application that interrupt data is present by returning

CS_INDX25OOB (CS_INTERRUPT) as an error status for cs_read or cs_write requests, as an

indication status within the ind_array specified in a cs_select request, or as a non-blocking

I/O event. 

To read interrupt data, the application issues a cs_read request with the event parameter

value set to CS_DF_X25OOB (CS_INTERRUPT). When the application reads interrupt data,

the CS API automatically acknowledges receipt of the X.25 interrupt. 

The application must check the return status to determine if interrupt data was actually

read. An error status might indicate a need for the application to take other action (such

as reading reset data, reading disconnect data, or issuing a cs_reset request). 
38 DC 900-1392E



2: Writing CS API User-Client Software
2.1.2.3 X.25 Circuit Reset 

The application or the network DCE can reset an active X.25 PVC or SVC at any time.

Resetting a virtual circuit cancels all operations in progress. Any data written (whether

normal data or interrupt data) that is not yet acknowledged remains unacknowledged.

Only the reset itself and the qos data associated with the reset are acknowledged.

Issuing a Reset Request

The application resets a virtual circuit by issuing a cs_reset request. The qos parameter

can be used to specify qos data to be sent in the actual X.25 reset request or to adjust the

virtual circuit’s local priority on Freeway. 

The application uses the block_time parameter to specify a time limit for the cs_reset

request to complete. If the cs_reset function returns the error status CS_CALL_TIMEOUT,

the application cannot use the virtual circuit for data transfer until a

CS_INDX25RSET_ACK (CS_RESET_SUCCESS) is returned as an indication status within the

ind_array specified in a cs_select request or as a non-blocking I/O event. 

Although the application can issue a blocking cs_reset request by specifying a non-zero

block_time parameter value, the application must check the return status to determine

whether or not the reset was successfully completed. An error status might indicate a

need for the application to take other action (such as reading reset data, reading discon-

nect data, or issuing another cs_reset request) before resuming data transfer. 

Detecting and Acknowledging a Reset Indication 

The CS API informs the application when the network DCE has reset the virtual circuit

by returning CS_RESET as an error status for cs_read or cs_write requests, as an indication

status within the ind_array specified in a cs_select request, or as a non-blocking I/O event. 

After receiving notification of a CS_RESET status, the application issues a cs_read request

specifying an event parameter value of CS_RESET to read the qos data associated with the

DCE reset indication. The CS API automatically acknowledges the reset. 
DC 900-1392E 39



X.25 Call Service API Guide
2.1.2.4 X.25 Procedure Errors — CS_STA_ERROR

When Freeway detects a violation of the X.25 protocol on any virtual circuit, it can reset

the virtual circuit. When this occurs, Freeway reports the error status CS_STA_ERROR to

the application. The CS_STA_ERROR status serves to notify the application that any data

written (whether normal data or interrupt data) and not yet acknowledged remains

unacknowledged. The application should issue a cs_reset request to resynchronize its

own virtual circuit operations with those of Freeway. 

2.1.3 X.25 Connection Termination

The application or the network DCE can disconnect an active X.25 SVC at any time.

Also, the application or the network DCE can cease to support PVC operation at any

time. 

2.1.3.1 PVC Connection Termination 

The network DCE cannot disconnect a PVC, but can report the PVC failed using a

HF_CAUSE facility code value of 1 in a reset indication. The network DCE can also report

the PVC operational using a HF_CAUSE facility code value of 9 in a subsequent reset

indication. 

The application also cannot disconnect a PVC, but can terminate its use of a PVC con-

nection by issuing a cs_unbind request. A PVC that is not bound to an application does

not acknowledge receipt of data from the DCE, but can hold up to a full packet win-

dow’s worth of received data for delivery to the next application that binds to the PVC. 

2.1.3.2 SVC Connection Termination

The CS API informs the application when the network DCE has terminated an SVC by

returning CS_LOST_CONN as an error status for cs_read or cs_write requests, as an indica-

tion status within the ind_array specified in a cs_select request, or as a non-blocking I/O

event. 
40 DC 900-1392E



2: Writing CS API User-Client Software
After receiving notification of a CS_LOST_CONN status, the application issues a cs_read

request specifying an event parameter value of CS_LOST_CONN to read the qos data asso-

ciated with the DCE clear indication. No further use of the SVC is possible without re-

establishing the connection. 

The application terminates an active SVC by issuing a cs_disconnect request. The appli-

cation can specify optional qos data for transfer in the associated X.25 DTE clear

request. 

2.2 HDLC Applications

2.2.1 HDLC Connection Establishment

Before data transfer can take place, a CS API application must perform the following

actions in the sequence given to establish an HDLC connection. Figure 2–5 illustrates

these actions and their associated application state transitions. 

1. Issue a cs_attach request to attach the application to the desired HDLC data link. 

2. Issue a cs_bind request to bind the application to the HDLC protocol service.

3. Issue a blocking or non-blocking cs_connect request to initiate the HDLC

connection. This enables the associated data link.

4. If the block_time parameter in the cs_connect request was zero, the application can

continue other processing while Freeway tries to establish the connection; in this

case, the application must periodically issue a cs_connect_nb_remote request to

determine whether or not the connection has been established.

5. Look for the blocking cs_connect request or the cs_connect_nb_remote request to

indicate whether or not the connection has been established. Once the connection

is established, data transfer is allowed.
DC 900-1392E 41



X.25 Call Service API Guide
2.2.2 HDLC Connection Operation

After the application establishes an HDLC connection, the CS API allows the applica-

tion considerable freedom in the actual operation of the HDLC connection. Various

CS API functions are used in combination to achieve the operations listed below.

Figure 2–6 illustrates these operational choices of action.

• Initiate any of the following write operations:

• Write normal data using a cs_write request

• Write UI-frame data using a cs_write request

Figure 2–5: HDLC Connection Establishment

cs_attach

cs_bind

Client attached

Client detached

Client bound

HDLC connected
3322

Connect request
in progress

Doing other
work

other errors

Blocking cs_connect or
cs_connect_nb_remote returns 0

Blocking or non-blocking
cs_connectcs_connect_nb_remote

Non-blocking cs_connect returns 0
or cs_connect_nb_remote returns
CS_CALL_TIMEOUT
42 DC 900-1392E



2: Writing CS API User-Client Software
Figure 2–6: HDLC Connection Operation

Write
Reset

Write
Disconnect

Data

Disconnected
(PPA Bound)

Read
Disconnect

Data

Read
Reset

Read
Normal Data

Write
Normal Data

Idle

2351
DC 900-1392E 43



X.25 Call Service API Guide
• Write an HDLC reset using a cs_reset request

• Write an HDLC disconnect request using a cs_disconnect request

• Initiate any of the following read operations:

• Read normal data using a cs_read request

• Read UI-frame data using a cs_read request

• Read an HDLC reset event using a cs_select request or as an error status

returned by cs_read or cs_write

• Read an HDLC disconnect event using a cs_select request or as an error sta-

tus returned by cs_read or cs_write

2.2.2.1 HDLC Normal Data Transfer

Most applications need to read and write normal data. The CS API supports these oper-

ations using cs_read and cs_write requests. 

Writing Normal Data

When issuing a cs_write request, the application uses the block_time parameter to select

whether the function blocks until the transmission is acknowledged, blocks only until

the transmit window is open, or returns immediately. To write normal data, the

proto_flag parameter must always be zero (NULL).

Although the application can issue a blocking cs_write request, it must check the return

status to determine whether or not normal data was actually written. An error status

might indicate a need for the application to take other action before again attempting

to write normal data. 
44 DC 900-1392E



2: Writing CS API User-Client Software
An application that needs to detect the completion of the transmission of a message or

file may do so by accounting for the receipt of an event notification (CS_WRITE_FAILED

or CS_WRITE_COMPLETE) for each call made to the cs_write function.

Reading Normal Data

When issuing a cs_read request, the application uses the block_time parameter to select

whether the function blocks until data is available or returns immediately. To read nor-

mal data, the event parameter value must always be zero (NULL). 

Although the application can issue a blocking cs_read request, it must check the return

status to determine whether or not normal data was actually read. An error status might

indicate a need for the application to take other action before again attempting to read

normal data.

2.2.2.2 HDLC UI Frame Data Transfer

UI-frame transfers are supported when the ISO HDLC Option 4 has been selected dur-

ing the configuration of the link. The CS API supports this feature with cs_read and

cs_write requests that contain the CS_DF_UI special qualifier flag. 

Writing UI Frame Data

To provide data for the transmission of a UI frame, the application uses the cs_write

request in the manner described in Section 2.2.2.1 on page 44, with one difference: the

proto_flag parameter of the cs_write request is set to CS_DF_UI instead of zero. 

Reading UI Frame Data

To obtain the data from a received UI frame, the application uses the cs_read request in

the manner described in Section 2.2.2.1 on page 44, with the proviso that UI-frame data

is indicated by a returned ret_flag parameter value of CS_DF_UI.
DC 900-1392E 45



X.25 Call Service API Guide
2.2.2.3 HDLC Reset

The application or the remote DTE can reset an active HDLC connection at any time.

Resetting an HDLC connection cancels all operations in progress. Any data written that

is not yet acknowledged remains unacknowledged.

Issuing a Reset Request

The application resets an HDLC connection by issuing a cs_reset request. The applica-

tion uses the block_time parameter to specify a time limit for the cs_reset request to com-

plete. If the cs_reset function returns the error status CS_CALL_TIMEOUT, the application

cannot use the HDLC connection for data transfer until a CS_RESET_SUCCESS is

returned as an indication status within the ind_array specified in a cs_select request.

Although the application can issue a blocking cs_reset request by specifying a non-zero

block_time parameter value, the application must check the return status to determine

whether or not the reset was successfully completed.

Detecting a Reset Indication

The CS API informs the application when the remote DTE has reset the HDLC connec-

tion by returning CS_RESET as an error status for cs_read or cs_write requests, or as an

indication status within the ind_array specified in a cs_select request.

After receiving notification of a CS_RESET status, the application must perform any

higher-level recovery procedures required by its application.

2.2.3 HDLC Connection Termination

The application or the remote DTE can terminate an active HDLC connection at any

time. The CS API informs the application when the remote DTE has terminated an

HDLC connection by returning CS_LOST_CONN as an error status for cs_read or cs_write

requests, or as an indication status within the ind_array specified in a cs_select request.

The application terminates an HDLC connection by issuing a cs_disconnect request. 
46 DC 900-1392E



2: Writing CS API User-Client Software
2.3 Client Program Environment

This section offers tips for meeting application program requirements whose solutions

might be influenced by the environment in which the program executes.

2.3.1 Handling Unsolicited Input

An application program that performs other work in addition to X.25 communications

functions must be able to efficiently decide what task to do next. For example, a pro-

gram that interacts with both Freeway and a human operator must be able to handle

unsolicited input from either source. In this case, the application program should not

block waiting for input from one source. Instead, the application program must alter-

nately check for input from either source, though it may sleep periodically for a short

interval to avoid monopolizing the client CPU. 

2.3.2 Child Processes 

The CS API implementation does not allow two processes to share the same socket. On

UNIX systems, a forked child process begins execution with an open socket owned by

the parent process. Child processes must call the cs_init function before any other

CS API function to allocate new system resources to the child and avoid affecting par-

ent-process access to the socket.
DC 900-1392E 47



X.25 Call Service API Guide
48 DC 900-1392E



Chapter
3 CS API Run-time File 
Dependencies
The CS API accesses two text files. The first file is the run-time CS API configuration

file. The second file is an optional run-time event log file named Dbugnnnn.X25, where

nnnn is the hex value of the process ID. 

3.1 CS API Configuration File

The CS API reads its configuration file for specific run-time parameters on the initial

attachment request (cs_attach). These parameters give the CS API flexibility to support

different operating requirements. The application specifies the name of the CS API

configuration file as a parameter to the cs_init function.

The CS API uses its configuration file to associate each X.25 circuit name with a DLI

session name. The CS API configuration file is formatted a follows:

• Any line starting with the # character in the first column is treated as a comment

line and is ignored.

• Configuration lines consist of the following fields, separated by a blank, a comma,

or a tab:

<circuit name> <session name> <protocol> <pvc><flow>

where: 

• circuit name is the local name passed in the cs_attach function call

• session name is the name used in the DLI configuration file
DC 900-1392E 49



X.25 Call Service API Guide
• protocol is either X.25, HDLC, or HDLC_RAW and is used as the default

protocol in the cs_bind function if the application passes a NULL for the pro-

tocol parameter

• pvc is the PVC station number previously configured on the ICP

• flow is the flow control for this circuit; if blank, the default from the

“sys_defaults” record is used. Flow control specifies the number of outstand-

ing cs_write requests permitted without a CS_WRITE_COMPLETE notification

Note
A special circuit name, sys_defaults, is used to identify the DLI con-

figuration file and define the maximum number of CS client con-

nections and maximum flow control.

For example:

#This is a comment line
#ckt name DLI_file max_clients default_flow
sys_defaults dli_config 35 8

#ckt name sess name protocol PVC flow
data_link RawSess0 HDLC 0 8
SVC RawSess1 X.25 0 8
PVC_1 RawSess1 X.25 1 8

The configuration lines are not case sensitive.

The CS API software is capable of multiplexing many X.25 circuits over one or more

ports on Freeway. Because the CS API uses the underlying DLI and TSI API software

when talking to Freeway, correct setup of the DLI and TSI configuration files is essential

to proper operation.

When you receive your copy of Protogate X.25 for Freeway, examine the default setup

in these configuration files carefully. Typically, the DLI configuration file should define
50 DC 900-1392E



3: CS API Run-time File Dependencies
a MANAGER raw session and a USER raw session for each physical port on Freeway. The

X.25 circuit configuration file should associate each HDLC or X.25 circuit name with

the DLI USER raw session name for the correct port on Freeway.

For additional information on configuration of CS API, DLI, TSI and the Freeway ICPs

for X.25 operations, see the X.25/HDLC Configuration Guide.

3.2 CS API Log File

The CS API can record run-time events into a log file for monitoring or diagnostic pur-

poses. The log file is a circular file that contains up to 20,000 records of 80 bytes each.

The log file is located in the client’s local directory and is named Dbugnnnn.X25, where

nnnn is the hex value of the process ID. 

Debug logging is activated by placing debuglog function calls throughout the code to be

monitored. For example, on March 17 at 12:34:14, the following line of code:

debuglog (“value returned for %d tries was %d”, 2, 5);

results in the following text line being added to the debug log file:

Mar 17 12:34:14 – value returned for 2 tries was 5
DC 900-1392E 51



X.25 Call Service API Guide
52 DC 900-1392E



Chapter
4 CS API Operational Modes
Protogate’s CS API for Freeway X.25/HDLC provides full support for non-blocking I/O

for all CS API functions that involve LAN or WAN transactions. In these cases, the

function value returned indicates whether the function was called without error. When

the action initiated by the called function later completes, the CS API informs the appli-

cation’s event handler routine of the completion status of the requested action.

Protogate’s CS API also supports blocking I/O to ease programming complexity for

simple applications that do not require support for non-blocking I/O. If the application

does not declare an event handler routine when initializing the CS API, it must wait for

or poll for the function results. If the application declares an event handler routine, it

may use the block_time parameter in any CS API function to control whether the func-

tion uses non-blocking I/O or to specify a time limit on blocking I/O.

Protogate’s CS API uses the data link interface (DLI) raw mode feature to provide an

X.25-specific interface between the DLI and an application. The CS API communicates

with the DLI using non-blocking I/O only.

The sections that follow describe the operational differences between using non-block-

ing I/O and blocking I/O in the CS API functions.
DC 900-1392E 53



X.25 Call Service API Guide

Jay says to 
leave this as 
“events” for 
now (rather 
than events 
and error 
codes) becaus
the distinction
between the 
two has 
becomes 
blurred in 
some cases.
4.1 Non-Blocking I/O Operations

When using non-blocking I/O, CS API function calls return immediately unless block-

ing for that function is specifically requested by the application. To initialize the CS API

for non-blocking I/O operations, the application must provide an event handler rou-

tine and pass a pointer to that routine to the CS API through the cs_init function call. 

Each CS API function that communicates with Freeway or the ICP has a block_time

parameter, in seconds, which determines the timeout for that function. A CS API func-

tion executes using non-blocking I/O if the application has registered an event handler

routine and the call to the function is made with the block_time parameter set to zero. If

the block_time parameter is set to something other than zero, the function will block until

completion or until it times out. If the block_time parameter is set to –1, the function will

block until completion. 

When an application calls a CS API function using non-blocking I/O, the application

must inspect the return value to determine if a CS API error occurred. If the function

returns CS_NO_ERROR, an event will be generated to notify the application of the success

or failure upon completion of the request to Freeway or the ICP. Events are generated

only for functions called using non-blocking I/O with a block_time of zero or those called

with a block_time greater than zero that have timed out.

Table 4–1 lists all of the CS API events and the ICP commands that generate the events.

In some cases, events are generated specific to CS API function calls. 

An important consideration in the design of code using non-blocking I/O is the fact

that the event handler may receive the completion of an event before the call that gen-

erates the event completes.

Take, for example, the case of an attach. The design calls for calling the cs_attach func-

tion and using the returned client ID to initialize some information tables. 

e 
 

54 DC 900-1392E



4: CS API Operational Modes
Table 4–1: Non-blocking I/O Events 

Function Event Class Description or ICP Command

Generic (not directly associated with a CS API function call)

CS_ABORT IABORT
CS_AUTO_CONNECT IAUTO
CS_BADCID Invalid client ID

CS_BUF_OVERFLOW DLI buffer overflow

CS_CALL_TIMEOUT CS API call has timed out

CS_DEAD_SOCKET TCP/IP socket connection lost

CS_DLI_FATAL Fatal DLI error

CS_ERROR IERROR
CS_FILE_NOT_FOUND Configuration file not found

CS_FW_UNBOUND Freeway has disconnected

CS_HANGUP IHANGUP
CS_ICP_READY ICP has completed the protocol download and is ready 

for use (this event always follows a 
CS_ICP_RESETTING event)

CS_ICP_RESETTING ICP has received a reset command and is downloading 
the protocol

CS_INC_CALL ICALL
CS_INTERRUPT IINT
CS_INTERRUPT_ACK IINTC
CS_INVALID_BUFLEN Invalid write buffer length

CS_INVALID_CIRCUIT Invalid circuit name (cs_attach)

CS_INVALID_ICPHDR Manager passed bad icphdr length

CS_INVREQ Invalid request for current state

CS_LOST_CONN ISTAFAIL, ISTAOK (after an IABORT)

CS_MAX_UNACKS Maximum unacknowledged writes; window closed

CS_MEM_EXAUSTED System memory pool is exhausted

CS_NOBIND Not bound

CS_NO_ERROR No error

CS_NO_MEMORY Insufficient memory to process request

CS_NOT_ASYNC DLI must be non-blocking I/O

CS_NOT_INIT cs_init not called yet

CS_QUEUE_OVERFLOW Event queue has filled and data may be lost
DC 900-1392E 55



X.25 Call Service API Guide
CS_READ_COMPLETE There is a read pending; for manager CS API, this 
could be any command not covered by other events

CS_REJECT IREJECT
CS_RESET IRSET
CS_RESET_ACK IRSETC
CS_STA_ERROR IABORT or ISTAFAIL received

CS_SVRERR Severe error — write has timed out

CS_SYS_RESOURCE Unable to allocate resources

CS_UNKNOWN_ERROR Unknown error

CS_WRITE_COMPLETE Write through the ICP to the WAN has completed; the 
application may keep local counts of writes for each 
connection and decrement the count when this event 
is received

CS_WRITE_FAILED IFAILURE
cs_accept

CS_ACCEPT_HANGUP IHANGUP
CS_ACCEPT_REJECT IREJECT
CS_ACCEPT_SUCCESS IACKNOWLEDGE

cs_attach
CS_ATTACH_FAILED dlOpen failure

CS_ATTACH_SUCCESS dlOpen success

cs_bind
CS_BIND_FAILED ICLOSE_SESSION
CS_BIND_REJECT IREJECT (pvc)

CS_BIND_SUCCESS IOPEN_SESSION
cs_connect

CS_CONN_HANGUP IHANGUP
CS_CONN_REJECT IREJECT
CS_CONN_SUCCESS ICONNECT, IENABLE
CS_CONN_TIMEOUT ITIMOUT

cs_deregister
CS_DEREG_REJECT IREJECT
CS_DEREG_SUCCESS IACKNOWLEDGE

Table 4–1: Non-blocking I/O Events  (Cont’d)

Function Event Class Description or ICP Command
56 DC 900-1392E



4: CS API Operational Modes
cs_detach
CS_DETACH_FAILED dlClose failure

CS_DETACH_SUCCESS dlClose success

cs_disconnect
CS_DISCONN_REJECT IREJECT
CS_DISCONN_SUCCESS ITONE, IHANGUP, IDISABLE

cs_redirect
CS_REDIR_HANGUP IHANGUP
CS_REDIR_REJECT IREJECT
CS_REDIR_SUCCESS IACKNOWLEDGE

cs_refuse
CS_REFUSE_HANGUP IHANGUP
CS_REFUSE_REJECT IREJECT
CS_REFUSE_SUCCESS ITONE

cs_register
CS_REG_REJECT IREJECT
CS_REG_SUCCESS IACKNOWLEDGE

cs_reset
CS_RESET_HANGUP IHANGUP
CS_RESET_REJECT IREJECT
CS_RESET_SUCCESS IRSETC

cs_unbind
CS_UNBIND_REJECT IREJECT
CS_UNBIND_SUCCESS ICLOSE_SESSION

Table 4–1: Non-blocking I/O Events  (Cont’d)

Function Event Class Description or ICP Command
DC 900-1392E 57



X.25 Call Service API Guide
The following code segment illustrates this example:

client_id = cs_attach(...);
if (client_id)
{

... initialize tables, e.g., set the Service Access Point (SAP)
}

When the CS_ATTACH_SUCCESS event is received by the event handler, a bind will be

issued using information from the client_id’s information tables, such as the SAP.

The problem with this design is that CS_ATTACH_SUCCESS could be received by the

event handler before the cs_attach function completes or before the client_id tables have

been initialized.

The CS API contains the following two functions that provide event notification con-

trol for the user application:

cs_suspend_events Suspends delivery of generated events

cs_resume_events Resumes delivery of generated events

The previous code segment could be modified as follows:

cs_suspend_events();
client_id = cs_attach(...);
if (client_id)
{

... initialize tables, e.g., set the Service Access Point (SAP)
}
cs_resume_events(1);

The application is now assured that CS_ATTACH_SUCCESS will not be received by the

event handler until after the tables have been initialized.

The CS API does not re-enter the event handler and therefore any function calls exe-

cuted from within the user’s event handler will automatically be protected from the

above scenario.
58 DC 900-1392E



4: CS API Operational Modes
4.2 Blocking I/O Operations 

When using blocking I/O, the application must wait for or poll for return events. To

initialize the CS API for using blocking I/O, the application passes a NULL pointer

instead of declaring an event handler when calling the cs_init function. Even when using

blocking I/O, functions allow the application to request non-blocking execution by

specifying a block_time parameter of zero. 

When an application calls a CS API function using blocking I/O, the application must

inspect the return value to determine if a CS API error occurred. If the function returns

CS_NO_ERROR, the requested action has been completed. Otherwise, the function

return value specifies a timeout, an error, or an event. If an event was indicated (see the

IS_EVENT macro in the cs_dfine.h file), the application must call cs_read and pass the event

code to retrieve the associated data. Table 4–2 shows a list of function return values for

CS API functions called using blocking I/O.

Table 4–2: Blocking I/O Function Return Values 

Function Return Value ICP Command or Event

Generic (for more than one CS API function call)

CS_BADCID Client ID invalid

CS_BUF_OVERFLOW DLI buffer overflow

CS_CALL_TIMEOUT Function block_time limit reached

CS_DEAD_SOCKET TCP/IP socket connection lost

CS_DLI_FATAL Fatal DLI error

CS_ERROR IERROR
CS_FILE_NOT_FOUND Configuration file not found

CS_FW_UNBOUND Freeway has disconnected

CS_ICP_READY ICP has completed the protocol download and is ready 
for use (this event always follows a CS_ICP_RESETTING 
event)

CS_ICP_RESETTING ICP has received a reset command and is downloading the 
protocol
DC 900-1392E 59



X.25 Call Service API Guide
CS_INTERRUPT IINT
CS_INVALID_BUFLEN Invalid write buffer length

CS_INVALID_CIRCUIT Invalid circuit name (cs_attach)

CS_INVALID_ICPHDR Manager passed bad icphdr length

CS_INVREQ Invalid request for current state

CS_LOST_CONN ISTAFAIL, ISTAOK (after an IABORT)

CS_MAX_UNACKS Maximum unacknowledged writes; window closed

CS_MEM_EXAUSTED System memory pool is exhausted

CS_NOBIND Not bound

CS_NO_ERROR No error

CS_NO_MEMORY Insufficient memory to process request

CS_NOT_ASYNC DLI must be non-blocking I/O

CS_NOT_INIT The cs_init function must be called first

CS_REJECT IREJECT
CS_RESET IRSET
CS_STA_ERROR IERROR
CS_SVRERR Severe error — write has timed out

CS_SYS_RESOURCE Unable to allocate resources

CS_UNKNOWN_ERROR Unknown error

CS_WRITE_FAILED IFAILURE
cs_accept

CS_ACCEPT_HANGUP IHANGUP
CS_ACCEPT_REJECT IREJECT
CS_NO_ERROR IACKNOWLEDGE

cs_attach
client ID number dlOpen success

CS_ATTACH_FAILED dlOpen failure

CS_INVALID_CIRCUIT Named circuit not found

Table 4–2: Blocking I/O Function Return Values  (Cont’d)

Function Return Value ICP Command or Event
60 DC 900-1392E



4: CS API Operational Modes
cs_bind
CS_BIND_FAILED ICLOSE_SESSION
CS_BIND_REJECT IREJECT (pvc)

CS_NO_ERROR IOPEN_SESSION
cs_connect or cs_connect_nb_remote

CS_CONN_HANGUP IHANGUP
CS_CONN_REJECT IREJECT
CS_CONN_TIMEOUT ITIMOUT
CS_NO_ERROR ICONNECT, IENABLE

cs_deregister
CS_DEREG_REJECT IREJECT
CS_NO_ERROR IACKNOWLEDGE

cs_detach
CS_DETACH_FAILED dlClose failure

CS_NO_ERROR dlClose success

cs_disconnect
CS_DISCONN_REJECT IREJECT
CS_NO_ERROR ITONE, IHANGUP, IDISABLE

cs_init
CS_INVALID_CIRCUIT Configuration files problem

CS_NO_ERROR Normal initialization complete

CS_NOT_ASYNC TSI configuration must be non-blocking I/O

CS_SYS_RESOURCE Client system resources insufficient

cs_read
≥ 0 Data size

< 0 Error

cs_redirect
CS_NO_ERROR IACKNOWLEDGE
CS_REDIR_HANGUP IHANGUP
CS_REDIR_REJECT IREJECT

Table 4–2: Blocking I/O Function Return Values  (Cont’d)

Function Return Value ICP Command or Event
DC 900-1392E 61



X.25 Call Service API Guide
Since blocking I/O specifically excludes any event handler, the application must call the

cs_select function to detect incoming data or indications of special conditions on the

line, or to receive return events if the called function timed out.

For additional information on the cs_select function, see Section 5.4.3 on page 105.

4.3 Multitasking Operations

Some operating systems are non-preemptive multitasking and therefore the application

must decide when to give up the CPU to allow lower-level functions to process I/O

cs_refuse
CS_NO_ERROR ITONE
CS_REFUSE_HANGUP IHANGUP
CS_REFUSE_REJECT IREJECT

cs_register
CS_NO_ERROR IACKNOWLEDGE
CS_REG_REJECT IREJECT

cs_reset
CS_NO_ERROR IRSETC
CS_RESET_HANGUP IHANGUP
CS_RESET_REJECT IREJECT

cs_select
CS_NO_ERROR N/A

cs_unbind
CS_NO_ERROR ICLOSE_SESSION
CS_UNBIND_REJECT IREJECT

cs_write
CS_MAX_UNACKS Flow control limit reached

CS_WRITE_FAILED IFAILURE

Table 4–2: Blocking I/O Function Return Values  (Cont’d)

Function Return Value ICP Command or Event
62 DC 900-1392E



4: CS API Operational Modes
reads and writes. The Freeway VxWorks system, for instance, may be operated with all

tasks at the same priority level and time slicing disabled. The CS API provides a func-

tion for such operating systems. The cs_sleep function releases the CPU for a specified

amount of time to allow other processes to access the CPU. Chapter 5 describes the

cs_sleep function in more detail. CS API calls using blocking I/O automatically call the

internal api_sleep function to give up the CPU.

4.4 Event-driven Program

An event-driven program is a program that reacts to events rather than loop and poll

for work to perform. It allows the application programmer to concentrate on small

pieces of code and not worry about coordination with other parts of the program. Not

all applications lend themselves to exclusive event handling due to interactions with

outside influences. Even in the worse case, however, some portion of the application

can be placed in an event handler.

What is an event handler? An event handler is a function that is called by a lower-level

subsystem, such as the CS API, to handle events that have taken place in the system. The

most famous example of an event-driven program or system is MicroSoft Windows and

all programs written to run under Windows.

The CS API provides the application programmer with the capability of writing event-

driven code. In the following paragraphs, we will explore some simple code that imple-

ments an event handler for the X.25 CS API.

To set up your code to run using non-blocking I/O, you must provide an event handler

(see Section 4.5 on page 69 for a description of the event handler’s calling parameters):

void event_handler(int client_id, int event, int data_flag)
{
}

DC 900-1392E 63



X.25 Call Service API Guide
and pass the address of that handler to the cs_init function:

main()
{

...
cs_init(”cs_config”, event_handler);
...

}

That is all that is needed to set up an event handler. Now, how do we activate the event

handler and what code should be executed within the event handler?

The application must first call the cs_attach function to attach to Freeway, then the

cs_bind function to bind to the ICP board. We need to place the cs_attach function call in

the main program loop, but the cs_bind function call may be placed in the event handler.

Let’s assume that for this example we are going to attach five different clients. The fol-

lowing main loop code makes five attaches:

#include <cs_api.h>
#define NOT_ATTACHED    0
#define ATTACHED        1
#define BOUND           2
#define CONNECTED       3

int client_status[6] = {0,0,0,0,0,0};   /* client ID 0 is not used */

main()
{

char *circuit[] = {"test1","test2","test3","test4","test5"};
int client_id;
...
cs_init("cs_config", event_handler);
...
for (i = 0; i < 5; i++)
{

client_id = cs_attach(circuit[i], 0);
if (client_id <= 0)
{

printf("Unable to attach, error = %d\n", client_id);
...

}
}
...

}

64 DC 900-1392E



4: CS API Operational Modes
When an attach completes, we will want to update the client_id status and call the cs_bind

function. The following code provides for handling successful and unsuccessful

attaches:

void event_handler(int client_id, int event, int data_flag)
{

switch(event)
{

case CS_ATTACH_SUCCESS:
client_status[client_id] = ATTACHED;
cs_bind(client_id, 0, 0);
break;

case CS_ATTACH_FAILED:
printf("Attach failed for client %d\n",client_id);
break;

}
}

The application programmer need only concern him or herself with what action to take

if the attach succeeded or failed. In this case, a successful attach is followed by a bind

and a failed attach results in a message to the screen.

The next step is to handle the case of a successful or failed bind. Again we will only dis-

play a message for a failure. For a successful bind we will register an incoming call filter.

Our modified event handler code appears as shown below:

void event_handler(int client_id, int event, int data_flag)
{

int ret_flag;
char buf[80];
struct cs_qos_st qos;

switch(event)
{

case CS_ATTACH_SUCCESS:
client_status[client_id] = ATTACHED;
cs_bind(client_id, 0, 0);
break;

case CS_ATTACH_FAILED:
printf("Attach failed for client %d\n",client_id);
break;

case CS_BIND_SUCCESS:
client_status[client_id] = BOUND;
...   /* set up call filter qos parameters here*/
cs_register(client_id, &qos, 0);
DC 900-1392E 65



X.25 Call Service API Guide
break;

case CS_BIND_FAILED:
printf("Bind failure on client %d\n", client_id);
break;

case CS_BIND_REJECT:
printf("Bind rejected on client %d\n", client_id);
if (data_flag)
{

cs_read(client_id, buf, sizeof(buf), &ret_flag, 0);
printf("%s\n",buf);

}
break;

}
}

Note that in the above event handler, we recovered the bind reject message and dis-

played it on the screen. The CS API event handler contains a data_flag parameter to

inform the handler function if there is data associated with the event.

The next step is to handle an incoming call. The modified code below handles an

incoming call by calling the cs_listen function, then the cs_accept function to accept the

call:

void event_handler(int client_id, int event, int data_flag)
{

int ret_flag;
char buf[80];
struct cs_listen_st ret_ind;
struct cs_qos_st qos;

switch(event)
{

case CS_ATTACH_SUCCESS:
client_status[client_id] = ATTACHED;
cs_bind(client_id, 0, 0);
break;

case CS_ATTACH_FAILED:
printf("Attach failed for client %d\n",client_id);
break;

case CS_BIND_SUCCESS:
client_status[client_id] = BOUND;
...   /* set up call filter qos parameters here*/
cs_register(client_id, &qos, 0);
break;

case CS_BIND_FAILED:
66 DC 900-1392E



4: CS API Operational Modes
printf("Bind failure on client %d\n", client_id);
break;

case CS_BIND_REJECT:
printf("Bind rejected on client %d\n", client_id);
if (data_flag)
{

cs_read(client_id, buf, sizeof(buf), &ret_flag, 0);
printf("%s\n",buf);

}
break;

case CS_INC_CALL:
cs_listen(&client_id, 1, &ret_ind, &qos, 0);
cs_accept(client_id, ret_ind.token, NULL, 0);
cs_deregister(client_id, 0);
break;

}
}

In this case we are accepting the call. We could have refused or redirected the incoming

call. We are also deregistering our call filter to avoid having additional incoming calls

placed on hold while the initial call is active.

The next step is to handle the accept and deregister return events:

void event_handler(int client_id, int event, int data_flag)
{

int ret_flag;
char buf[80];
struct cs_listen_st ret_ind;
struct cs_qos_st qos;

switch(event)
{

case CS_ATTACH_SUCCESS:
client_status[client_id] = ATTACHED;
cs_bind(client_id, 0, 0);
break;

case CS_ATTACH_FAILED:
printf("Attach failed for client %d\n",client_id);
break;

case CS_BIND_SUCCESS:
client_status[client_id] = BOUND;
...   /* set up call filter qos parameters here*/
cs_register(client_id, &qos, 0);
break;
DC 900-1392E 67



X.25 Call Service API Guide
case CS_BIND_FAILED:
printf("Bind failure on client %d\n", client_id);
break;

case CS_BIND_REJECT:
printf("Bind rejected on client %d\n", client_id);
if (data_flag)
{

cs_read(client_id, buf, sizeof(buf), &ret_flag, 0);
printf("%s\n",buf);

}
break;

case CS_INC_CALL:
cs_listen(&client_id, 1, &ret_ind, &qos, 0);
cs_accept(client_id, ret_ind.token, NULL, 0);
cs_deregister(client_id, 0);
break;

case CS_ACCEPT_SUCCESS:
client_status[client_id] = CONNECTED;
break;

case CS_ACCEPT_REJECT:
case CS_ACCEPT_HANGUP:

printf("Accept failed on client %d\n", client_id);
if (data_flag)
{

cs_read(client_id, buf, sizeof(buf), &ret_flag, 0);
printf("%s\n",buf);

}
break;

case CS_DEREG_SUCCESS:
break;

case CS_DEREG_REJECT:
printf("Deregister failed on client %d\n", client_id);
if (data_flag)
{

cs_read(client_id, buf, sizeof(buf), &ret_flag, 0);
printf("%s\n",buf);

}
break;

}
}

As can be seen, each event is handled with a few simple lines of code. For more compli-

cated situations, the handler could call another function to process the event.
68 DC 900-1392E



4: CS API Operational Modes
4.5 Event Handler

The CS API user-defined event handler is called to notify the application program of a

non-blocking I/O event. The function’s calling parameters are:

event_handler(int client_id, int event, int data_flag)

where:

• client_id is the ID number returned by cs_attach()

• event is the non-blocking I/O event (see cs_dfine.h)

• data_flag is the number of data bytes associated with the event

If the data_flag is other than zero, the application must call cs_read and pass the event

parameter to get the event’s data buffer. The cs_listen or cs_connect_nb_remote function

can also be used for CS_INC_CALL or connection-related events.

Caution
Failure to read queued data could eventually exhaust the available

memory pool.
DC 900-1392E 69



X.25 Call Service API Guide
70 DC 900-1392E



Chapter
5 CS API Reference
This chapter provides a detailed reference for the call service application program inter-

face (CS API) described in general terms in Chapter 1, and in more detail in Chapter 2,

Chapter 3, and Chapter 4. Table 5–1 shows the supported CS API requests grouped

functionally. Beginning with Section 5.1.1 on page 75, each CS API function is

described in detail. The definitions of the symbolically named values in this chapter are

defined in include files shown in Appendix A. 

The CS API itself is provided as a C library to be linked with the application programs.

An include file (cs_api.h) provides the compile-time definitions needed by those pro-

grams. Section A.1 on page 144 gives the source file for the cs_api.h include file.

Most library functions return an integer value to the calling application. This integer

value can be compared to the symbolic values for CS API errors shown in Table 5–2,

which are defined in the cserrno.h include file (see Section A.4 on page 151). Refer back

Table 5–1: CS API Function Groups

Group Functions

Connection preparation cs_init, cs_attach, cs_bind
Active connection cs_connect, cs_connect_nb_remote
Passive connection cs_register, cs_listen, cs_accept, cs_redirect, cs_refuse
Data transfer cs_read, cs_reset, cs_select, cs_write
Connection shutdown cs_deregister, cs_disconnect, cs_unbind, cs_detach, cs_terminate
Miscellaneous cs_sperror, cs_sleep, cs_config, cs_getpid, debuglog, cs_suicide, 

cs_suspend_events, cs_resume_events, cs_gen_event
DC 900-1392E 71



X.25 Call Service API Guide
to Table 4–2 on page 59 for a list of function return values for CS API functions called

using blocking I/O (Table 4–1 on page 55 lists the non-blocking I/O events).

In some instances, the CS API functions can return an error code from the TSI or DLI.

Refer to the Freeway Transport Subsystem Interface Reference Guide and the Freeway

Data Link Interface Reference Guide for the TSI and DLI error codes. Applications can

use the cs_sperror function for error reporting, which returns a pointer to the error text

string. See Section 5.6.1 on page 119. 

Table 5–2: CS API Errors Defined in cserrno.h Include File

CS API Error Description

CS_BADCID The client ID is invalid.

CS_CALL_TIMEOUT The CS API call has timed out. In a non-blocking I/O application, the 
requested action may still complete later and be reported as a non-
blocking I/O event. The application should increase its block_time.

CS_FILE_NOT_FOUND Configuration file not found

CS_INVALID_BUFLEN The cs_write function cannot write a buffer larger than that allowed by 
the DLI.

CS_INVALID_CIRCUIT Invalid circuit name. The cs_init function could not access one or more 
of the run-time configuration files or the cs_attach function did not find 
the circuit name in the CS API configuration file previously specified in 
the cs_init function.

CS_INVALID_ICPHDR The MANAGER_API application passed an invalid ICP header length.

CS_INVREQ Invalid request for current state.

CS_MAX_UNACKS The maximum number of unacknowledged writes has been reached; 
window closed. Look for a CS_WRITE_COMPLETE event and try again 
later.

CS_NOBIND Not bound; call the cs_bind function.

CS_NO_ERROR No error (guaranteed to be 0).

CS_NO_MEMORY Cannot allocate memory. System memory allocation for reads, writes, 
or storage of completed reads has been exhausted.

CS_NOT_ASYNC The DLI is not configured for non-blocking I/O. The cs_init function 
found that the DLI configuration is for blocking I/O only, while CS API 
requires non-blocking I/O.
72 DC 900-1392E



5: CS API Reference
Each of the following subsections contains a functional description of the routine,

including descriptions of its operations using non-blocking I/O, an arguments section

which provides a brief description of the calling parameters, error return values, and

packet exchanges between the CS API (on the host computer) and the ICP (on

Freeway).

You do not need to understand the packet exchanges with the ICP to use the CS API

effectively. The information is provided to document how the CS API handles the

Freeway X.25 low-level interface.

Packet exchange sections are formatted as follows:

<command mnemonic>
-----------------> (is an outgoing packet)

<command mnemonic>
<----------------- (is an incoming packet)

Incoming packets are annotated with two fields:

<command mnemonic>
<----------------- <error return>   <event class>

The following commands may be received at any time and are not included in the

description for each CS API function:

CS_NOT_INIT The cs_init function has not been called yet. It must be called before any 
other CS API function.

CS_STA_ERROR The CS API has received an IABORT and has not yet received a corre-
sponding ISTAOK, or has received ISTAFAIL.

CS_SVRERR Severe error — write has timed out

CS_SYS_RESOURCE The cs_init or cs_terminate function has encountered a system error in 
allocating or releasing system resources (signal, semaphore, and so on).

CS_UNKNOWN_ERROR Unknown error

Table 5–2: CS API Errors Defined in cserrno.h Include File (Cont’d)

CS API Error Description
DC 900-1392E 73



X.25 Call Service API Guide
Command Error Return Event

IABORT |
<----------------- CS_NO_ERROR CS_ABORT | packet
ISTAOK | pairs
<----------------- CS_LOST_CONN CS_LOST_CONN |

ISTAFAIL (PVC only)
<----------------- CS_LOST_CONN CS_LOST_CONN
IERROR
<----------------- CS_ERROR CS_ERROR

(The X.25 cause code is contained in the cs_read return buffer for the CS_ERROR event.

The cause/diagnostic codes are described in Appendix C.)

The following events are not associated with any X.25 command and can occur at any

time:

CS_DEAD_SOCKET The TCP/IP socket connection has been lost. 

CS_ICP_RESETTING The ICP is in a reset mode (someone issued a dlControl() com-

mand). 

CS_ICP_READY The ICP is now ready and the application must close the con-

nection by calling cs_detach(). 

When the ICP has been reset, there is no need for the application to disconnect or

unbind, only to call cs_detach().

Since blocking I/O applications do not have event handlers, some of the special events,

such as the ones above, can be detected by calling the cs_select function and examining

the indication array. For additional information on the cs_select function, see

Section 5.4.3 on page 105.
74 DC 900-1392E



5: CS API Reference

Jay explained
to me that 
although the 
asyncIO 
parameter 
must be set to
non-blocking
the 
application 
can still use 
blocking I/O 
(or a 
combination 
of blocking 
and non-
blocking). 
Maybe this 
should be 
explicitly 
stated 
somewhere 
(when Jay 
does his 
thorough 
review 
later)...Leslie
5.1 Connection Preparation

The following CS API functions are called for Freeway preparation services. 

5.1.1 cs_init 

The cs_init function initializes the CS API and lower-level support systems. It must be

called only once per application, and must be called before any other CS API function.

It calls the DLI subsystem to get configuration data, allocates system resources, and reg-

isters the user’s event handler.

Synopsis

int cs_init(config_file, int_func)
char *config_file;
void (*int_func)(int,int,int);

Arguments

config_file CS API configuration file name

int_func User event handler or NULL if using blocking I/O

Return Value

On success, this function returns zero. If the DLI is configured for blocking I/O, the

CS_NOT_ASYNC error is returned. On failure, this function returns a number less than

zero. (The error code is returned by the DLI.)

 

 
, 
DC 900-1392E 75



X.25 Call Service API Guide
5.1.2 cs_attach

The cs_attach function attaches the application to the specified ICP. It reads the CS API

configuration file to retrieve the service access point, PVC address, and DLI connection

name, then opens a connection to Freeway.

When using non-blocking I/O, the cs_attach function returns the client ID or a negative

error code. If the open was successful, the CS_ATTACH_SUCCESS event is queued. If an

error occurred, the CS_ATTACH_FAILED event is queued. 

If the function returns CS_CALL_TIMEOUT when using blocking I/O, the application

must call cs_select to detect return event types mentioned above.

Synopsis

int cs_attach(circuit_id, block_time)
char *circuit_id;
int block_time;

Arguments

circuit_id Circuit ID name as listed in the CS API configuration file

block_time Routine block time in seconds; if not 0, this routine will block

until completion or timeout

Return Value

On success, this function returns the connection identification value (client_id) that is

used to identify this attachment to all future CS API requests. 

On failure, this function returns a number less than or equal to zero.
76 DC 900-1392E



5: CS API Reference
5.1.3 cs_bind 

The cs_bind function binds an application to an X.25 protocol service. When using non-

blocking I/O and the bind call completes:

• the CS_BIND_SUCCESS event is queued if the call was successful

• the CS_BIND_FAILED event is queued if the call was unsuccessful

• the CS_BIND_REJECT event is queued if a PVC IREJECT command was received

If the function returns CS_CALL_TIMEOUT when using blocking I/O, the application

must call cs_select to detect return event types mentioned above.

Synopsis

int cs_bind(client_id, sap, block_time)
int client_id;
int sap;
int block_time;

Arguments

client_id Connection ID from the cs_attach function

sap Service access point (if 0, the default from the CS API configu-

ration file is used)

block_time Routine block time in seconds; if not 0, this routine will block

until completion or timeout

Return Value

On success, this function returns zero. On failure, this function returns a number less

than zero. 
DC 900-1392E 77



X.25 Call Service API Guide
Packet Exchanges, Error Returns, and Events Generated

For HDLC and X.25 SVC: 

Command Error Return Event

HOPEN_SESSION
----------------->
IOPEN_SESSION
<----------------- CS_NO_ERROR CS_BIND_SUCCESS

or

ICLOSE_SESSION
<----------------- CS_NOBIND CS_BIND_FAILED

For X.25 PVC, when IOPEN_SESSION is received:

Command Error Return Event

HOPEN_PVC
----------------->
IOPEN_PVC
<----------------- CS_NO_ERROR CS_BIND_SUCCESS

or

IREJECT
<----------------- CS_SVRERR CS_BIND_REJECT
78 DC 900-1392E



5: CS API Reference
5.2 Active Connection Handling 

The following CS API functions support applications that actively establish outgoing

calls. For information on waiting passively for incoming calls, see Section 5.3 on

page 86.

5.2.1 cs_connect 

The cs_connect function requests an X.25 connection. When using non-blocking I/O

and the connection completes:

• the CS_CONN_SUCCESS event is queued if the connection was successful

• the CS_CONN_REJECT event is queued if an IREJECT command was received

• the CS_CONN_HANGUP event is queued if an IHANGUP command was received

• the CS_CONN_TIME event is queued if an ITIMOUT command was received

When using blocking I/O, this function returns CS_NO_ERROR if the connection is

established before the specified block_time expires. If this function returns

CS_CALL_TIMEOUT, the application must call cs_connect_nb_remote to check for comple-

tion of the connection request.

Synopsis

int cs_connect(client_id, dest, dest_length, qos, ret_qos, 
block_time)

int client_id;
char *dest;
int dest_length;
struct cs_qos_st *qos;
struct cs_qos_st *ret_qos;
int block_time;

Arguments

client_id Connection ID from the cs_attach function
DC 900-1392E 79



X.25 Call Service API Guide
dest X.25 address (called DTE address for X.25) expressed as an

ASCII string of decimal digits 0–9

dest_length Length of dest in bytes

qos Quality of service functions (NULL = none)

ret_qos Returned call service functions (NULL = none)

block_time Routine block time in seconds; if not 0, this routine will block

until completion or timeout

Return Value

On success, this function returns zero. On failure, this function returns a number less

than zero.

Note

The qos parameter is optional. The structure cs_qos_st (defined in the cs_struc.h include

file) is used to specify quality of service. The item_list field must either be zero, or must

point to a byte array containing call service specifications selected from the list below. 

HF_BLCLUS Bilateral closed user group selection facility

HF_CLLED Called DTE address; can be specified in qos only if the dest and

dest_length parameters are NULL

HF_CLLNG Calling DTE address

HF_CLUSG Closed user group selection facility

HF_CLUSGOAS Closed user group with outgoing access selection facility

HF_D_BIT_SUPPORT D-bit support request/indication

HF_FASNR Fast select facility (unrestricted)
80 DC 900-1392E



5: CS API Reference
HF_FASR Fast select facility with restrictions

HF_NONSTD Non-standard user facilities

HF_NWUSID Network user identification facility

HF_PDSIZE Packet data size facility

HF_PRIORITY Virtual circuit local priority on Freeway

HF_PWSIZE Packet window size facility

HF_RPOA RPOA selection facility

HF_RQCRGIN Request charging information facility

HF_RVFC Reverse charging facility

HF_THRUCLASS Throughput class facility

HF_TRDLYSEL Transit delay selection and indication facility

HF_USER User data facility

Each item_list specification contains from one to three sub-fields: a function code byte,

an item size indicator byte, and a variable-length item data field. You must specify the

sub-fields contiguously in the order given, and you must omit sub-fields not listed for a

given item from the specification. Refer to Section 5.7 for a complete description of

these specifications, including the sub-fields.

The ret_qos parameter is also optional. The structure cs_qos_st (defined in the cs_struc.h

include file) is used to receive the actual negotiated quality of service. The item_list field

must point to a byte array allocated by the application to receive call service specifica-

tions from the list given above for the qos parameter. The application uses the max_length

field to specify the size of the item_list buffer. The CS API uses the tot_length field to return

the length of the portion of the item_list buffer actually used. 
DC 900-1392E 81



X.25 Call Service API Guide
Under special circumstances, the DTE to which the call was presented might not be the

DTE originally specified as the called DTE. In this case, the called line address modified

notification facility (HF_CLDADMOD) ret_qos parameter might be present.

The block_time parameter specifies the number of seconds the function may wait for the

connection request to be granted (or rejected). If a block_time of zero is specified, or if a

non-zero block time is specified and the request times out, the application must issue

the cs_connect_nb_remote function to complete the connection request. When using non-

blocking I/O, the application may wait for a CS_CONN_SUCCESS event before invoking

cs_connect_nb_remote.

Packet Exchanges, Error Returns, and Events Generated

For X.25:

Command Error Return Event

HCALL
----------------->
ICONNECT |
<----------------- CS_NO_ERROR CS_CONN_SUCCESS | packet
HFLOW_ADJUST | pairs
-----------------> |

or

IREJECT
<----------------- CS_SVRERR CS_CONN_REJECT

or

IHANGUP
<----------------- CS_LOST_CONN CS_CONN_HANGUP

For HDLC:

Command Error Return Event

HENABLE
----------------->
IENABLE
82 DC 900-1392E



5: CS API Reference
<----------------- CS_NO_ERROR CS_CONN_SUCCESS

or

IREJECT
<----------------- CS_SVRERR CS_CONN_REJECT

or

Command Error Return Event

ITIMOUT
<-----------------
HDISABLE | 
-----------------> | packet
IDISABLE | pairs
<----------------- CS_SVRERR CS_CONN_TIMEOUT |
DC 900-1392E 83



X.25 Call Service API Guide
5.2.2 cs_connect_nb_remote 

The cs_connect_nb_remote function completes the non-blocking X.25 connection request.

This function returns the connection data for a previous cs_connect request that did not

complete within the specified block_time.

Synopsis

int cs_connect_nb_remote(client_id, ret_qos, block_time)
int client_id;
struct cs_qos_st *ret_qos;
int block_time;

Arguments

client_id Connection ID from the cs_attach function

ret_qos Returned call service functions (NULL = none)

block_time Routine block time in seconds; if not 0, this routine will block

until completion or timeout

Return Value

On success, this function returns zero. On failure, this function returns a number less

than zero.

Note

The ret_qos parameter is optional. The structure cs_qos_st (defined in the cs_struc.h

include file) is used to receive the actual negotiated quality of service. The item_list field

must point to a byte array allocated by the application to receive call service specifica-

tions from the list given below. The application uses the max_length field to specify the

size of the item_list buffer, and the CS API uses the tot_length field to return the length of

the portion of the item_list buffer actually used. 

HF_CLLED Called DTE address
84 DC 900-1392E



5: CS API Reference
HF_CLLNG Calling DTE address

HF_D_BIT_SUPPORT D-bit support request/indication

HF_NONSTD Non-standard user facilities

HF_PDSIZE Packet data size facility

HF_PRIORITY Virtual circuit local priority on Freeway

HF_PWSIZE Packet window size facility

HF_THRUCLASS Throughput class facility

HF_USER User data facility

Each item_list specification contains from one to three sub-fields: a function code byte,

an item size indicator byte, and a variable-length item data field. Refer to Section 5.7 for

a complete description of these specifications, including the sub-fields.

Under special circumstances, the DTE to which the call was presented might not be the

DTE originally specified as the called DTE. In this case, the called line address modified

notification facility (HF_CLDADMOD) ret_qos parameter might be present.
DC 900-1392E 85



X.25 Call Service API Guide
5.3 Passive Connection Handling 

The following CS API functions support applications that wait passively for incoming

call indications. For information on the active establishment of outgoing calls, see

Section 5.2 on page 79.

5.3.1 cs_register 

The cs_register function registers the application as an incoming connection handler.

When using non-blocking I/O, and the register call completes:

• the CS_REG_SUCCESS event is queued if the call was successful

• the CS_REG_REJECT event is queued if an IREJECT command was received

If the function returns CS_CALL_TIMEOUT when using blocking I/O, the application

must call cs_select to detect return event types mentioned above.

Synopsis

int cs_register(client_id, qos, block_time)
int client_id;
struct cs_qos_st *qos;
int block_time;

Arguments

client_id Connection ID from the cs_attach function

qos Quality of service functions for incoming call filter (NULL =

none)

block_time Routine block time in seconds; if not 0, this routine will block

until completion or timeout
86 DC 900-1392E



5: CS API Reference
Return Value

On success, this function returns zero. On failure, this function returns a number less

than zero.

Note

The X.25 protocol service adds an entry into its connection handler list describing this

client ID and the incoming call filter; thereafter, if the application has issued the cs_listen

request, the X.25 protocol service sends the application an indication of any incoming

connection indication that matches the client ID’s filter.

Note
The application cannot register more than one incoming connec-

tion handler for each bound client_id; to alter the filter in an incom-

ing connection handler currently registered for a given client_id, the

application must first issue a cs_deregister request for that client_id
before issuing another cs_register request for that client_id.

The qos parameter is optional. The structure cs_qos_st (defined in the cs_struc.h include

file) is used to specify a filter giving the characteristics of incoming connection indica-

tions in which the application is interested. The item_list field must point to a byte array

containing filter specifications selected from the list given below. 

HF_DTE_REMOTE ICF remote (calling) DTE address

HF_DTE_SA_HIGH ICF local (called) DTE subaddress (high)

HF_DTE_SA_LOW ICF local (called) DTE subaddress (low)

HF_ICF_CALLBUSY An incoming call filter configuration parameter internal to

Freeway.

HF_ICF_PRIORITY An incoming call filter priority level internal to Freeway
DC 900-1392E 87



X.25 Call Service API Guide
HF_USER User data match facility

HF_USER_MASK User data mask for the incoming call filter

Each item_list specification contains from one to three sub-fields: a function code byte,

an item size indicator byte, and a variable-length item data field. You must specify the

sub-fields contiguously in the order given, and you must omit sub-fields not listed for a

given item from the specification. Refer to Section 5.7 for a complete description of

these specifications, including the sub-fields.

When an incoming connection request is received by the X.25 protocol service, it com-

pares the characteristics of that connection indication to the filter specifications of this

function; if all characteristics match and the application is currently listening, the ser-

vice sends the connection indication to that application, allowing the application to

accept, reject, or redirect the connection indication as desired. 

After a CS API application accepts an incoming call, and if the HF_ICF_CALLBUSY

parameter was not used to configure call redirection, Freeway places all additional

incoming calls for that client ID on hold until one of the following events occurs:

• The current call is cleared

• The network DCE cancels the incoming call

• The CS API application issues a cs_deregister request

Calls can be placed on hold even if they match the registered incoming call handler pro-

file for other CS API client IDs. After the currently active virtual circuit is disconnected,

the application simply issues a cs_listen request to get the next incoming call.

If the CS API application does not want additional calls for a client ID to be placed on

hold after accepting an incoming call, the application may issue a cs_deregister request to

delete its incoming call handler profile from the X.25 protocol. After the currently

active virtual circuit is disconnected, the application would then issue a cs_register
request before issuing a cs_listen request. However, if the application uses the
88 DC 900-1392E



5: CS API Reference
HF_ICF_CALLBUSY quality of service parameter to configure the incoming call filter to

redirect calls when busy, then the application need not call cs_deregister to avoid placing

calls on hold.

For more information on handling incoming connection indications, see Section 1.5.2

on page 21.

Packet Exchanges, Error Returns, and Events Generated

Command Error Return Event

HREG_ICF
----------------->
IACKNOWLEDGE
<----------------- CS_NO_ERROR CS_REG_SUCCESS

or

IREJECT
<----------------- CS_SVRERR CS_REG_REJECT
DC 900-1392E 89



X.25 Call Service API Guide
5.3.2 cs_listen 

The cs_listen function waits for an incoming connection indication. When using non-

blocking I/O, this function returns the connection data if called after notification of a

CS_INC_CALL or CS_AUTO_CONNECT event for a specified client_id. When using blocking

I/O, this function is used to check for (or wait for) an incoming call.

Synopsis

int cs_listen(client_array, client_length, ret_ind, ret_qos, 
block_time)

int *client_array;
int client_length;
struct cs_listen_st *ret_ind;
struct cs_qos_st *ret_qos;
int block_time;

Arguments

client_array Array of connection IDs from the cs_attach function

client_length Number of client IDs in client_array

ret_ind Returned call indication parameters containing client ID,

return token, and connection event

ret_qos Returned call service functions (NULL = none)

block_time Routine block time in seconds; if not 0, this routine will block

until completion or timeout

Return Value

On success, this function returns zero. On failure, this function returns a number less

than zero.
90 DC 900-1392E



5: CS API Reference
Note

When the X.25 protocol service receives an incoming connection indication that is

matched to one of this application’s entries in the connection handling list, the service

completes the connection and notifies the application by returning a function value of

zero.

The ret_ind parameter contains information on the client ID from the client_array param-

eter that completed. The ret_ind structure (defined in the cs_struct.h include file) contains

the following fields:

client client ID number

token token value to be returned in any cs_accept, cs_redirect, or

cs_refuse call

state type of event, CS_INC_CALL or CS_AUTO_CONNECT

The ret_qos parameter is optional. The structure cs_qos_st (defined in the cs_struc.h

include file) is used to receive the quality of service proposed by the remote DTE. The

item_list field must point to a byte array allocated by the application to receive call service

specifications from the list given below. The application uses the max_length field to spec-

ify the size of the item_list buffer. The CS API uses the tot_length field to return the length

of the portion of the item_list buffer actually used. 

HF_BLCLUS Bilateral closed user group selection facility

HF_CLLED Called DTE address

HF_CLLNG Calling DTE address

HF_CLREDR Call redirection or deflection notification facility

HF_CLUSG Closed user group selection facility

HF_CLUSGOAS Closed user group with outgoing access selection facility
DC 900-1392E 91



X.25 Call Service API Guide
HF_D_BIT_SUPPORT D-bit support request/indication

HF_FASNR Fast select facility (unrestricted)

HF_FASR Fast select facility with restrictions

HF_NONSTD Non-standard user facilities

HF_PDSIZE Packet data size facility

HF_PRIORITY Virtual circuit local priority on Freeway

HF_PWSIZE Packet window size facility

HF_RVFC Reverse charging facility

HF_THRUCLASS Throughput class facility

HF_TRDLYSEL Transit delay selection and indication facility

HF_USER User data facility

Each item_list specification contains from one to three sub-fields: a function code byte,

an item size indicator byte, and a variable-length item data field. Refer to Section 5.7 for

a complete description of these specifications, including the sub-fields.

The application uses the block_time parameter to specify the maximum time for the

function to wait for the connection indication. If the wait time expires with no connec-

tion indication, the CS_CALL_TIMEOUT error is returned. The application can issue the

cs_listen request again after each return of the CS_CALL_TIMEOUT error.

For more information on handling incoming connection indications, see Section 1.5.2

on page 21.
92 DC 900-1392E



5: CS API Reference
5.3.3 cs_accept 

The cs_accept function accepts an incoming X.25 connection request. When using non-

blocking I/O, and the connection completes:

• the CS_ACCEPT_SUCCESS event is queued if the connection was successful

• the CS_ACCEPT_REJECT event is queued if an IREJECT command was received

• the CS_ACCEPT_HANGUP event is queued if an IHANGUP command was received

If the function returns CS_CALL_TIMEOUT when using blocking I/O, the application

must call cs_select to detect return event types mentioned above.

Synopsis

int cs_accept(client_id, token, qos, block_time)
int client_id;
int token;
struct cs_qos_st *qos;
int block_time;

Arguments

client_id Connection ID from the cs_attach function

token Connection token from the cs_listen function

qos Quality of service functions (NULL = none)

block_time Routine block time in seconds; if not 0, this routine will block

until completion or timeout

Return Value

On success, this function returns zero. On failure, this function returns a number is less

than zero.
DC 900-1392E 93



X.25 Call Service API Guide
Note

The value passed for the token parameter was originally obtained from the cs_listen func-

tion and serves to uniquely identify the incoming connection indication. Upon comple-

tion of this function, the application can begin transferring data over the established

connection with the remote DTE.

The qos parameter is optional. The structure cs_qos_st (defined in the cs_struc.h include

file) is used to specify quality of service. The item_list field must either be zero, or must

point to a byte array containing call service facilities selected from the list given below. 

HF_CLLED Called DTE address

HF_CLLNG Calling DTE address

HF_D_BIT_SUPPORT D-bit support request/indication

HF_NONSTD Non-standard user facilities

HF_NWUSID Network user identification facility

HF_PDSIZE Packet data size facility

HF_PRIORITY Virtual circuit local priority on Freeway

HF_PWSIZE Packet window size facility

HF_RQCRGIN Request charging information facility

HF_THRUCLASS Throughput class facility

HF_USER User data facility

Each item_list specification contains from one to three sub-fields: a function code byte,

an item size indicator byte, and a variable-length item data field. You must specify the

sub-fields contiguously in the order given, and you must omit sub-fields not listed for a
94 DC 900-1392E



5: CS API Reference
given item from the specification. Refer to Section 5.7 for a complete description of

these specifications, including the sub-fields.

Under special circumstances, the DTE to which the call was presented might not be the

DTE originally specified as the called DTE. In this case, the called line address modified

notification facility (HF_CLDADMOD) qos parameter can be used in addition to those

listed above.

Packet Exchanges, Error Returns, and Events Generated

Command Error Return Event

HCONNECT
----------------->
IACKNOWLEDGE |
<----------------- CS_NO_ERROR CS_ACCEPT_SUCCESS| packet
HFLOW_ADJUST | pairs
-----------------> |

or

IREJECT
<----------------- CS_SVRERR CS_ACCEPT_REJECT

or

IHANGUP
<----------------- CS_LOST_CONN CS_ACCEPT_HANGUP
DC 900-1392E 95



X.25 Call Service API Guide
5.3.4 cs_redirect 

The cs_redirect function redirects an incoming X.25 connection request to another con-

nection. When using non-blocking I/O, and the redirect call completes:

• the CS_REDIR_SUCCESS event is queued if the call was successful

• the CS_REDIR_REJECT event is queued if an IREJECT command was received

• the CS_REDIR_HANGUP event is queued if an IHANGUP command was received

If the function returns CS_CALL_TIMEOUT when using blocking I/O, the application

must call cs_select to detect return event types mentioned above.

Synopsis

int cs_redirect(client_id, token, qos, block_time)
int client_id;
int token;
struct cs_qos_st *qos;
int block_time;

Arguments

client_id Connection ID from the cs_attach function

token Connection token from the cs_listen function

qos Quality of service functions (NULL = none)

block_time Routine block time in seconds; if not 0, this routine will block

until completion or timeout

Return Value

On success, this function returns zero. On failure, this function returns a number less

than zero.
96 DC 900-1392E



5: CS API Reference
Note

The application issuing the cs_redirect request was presumably informed of the incoming

connection indication when it issued the cs_listen request, but has since determined that

it does not want to handle the connection. The token parameter (originally obtained

from the cs_listen response) identifies the incoming connection indication to be re-

routed; the X.25 protocol service scans its connection handler list in an attempt to find

another application to inform of this connection.

It is possible for this application to receive an indication of this same incoming connec-

tion in the future, although it might not have the same token value at that time. This is

because the X.25 protocol service holds the connection indication internally if no appli-

cation accepted or rejected the connection indication previously; changes to the regis-

tered connection handler list might cause the service to re-scan the list, at which point

it might again inform the current application of the incoming connection indication.

The reserved qos parameter is provided for future expansion of cs_redirect request capa-

bilities. Currently, the qos parameter must be NULL.

Packet Exchanges, Error Returns, and Events Generated

Command Error Return Event

HREDIRECT
----------------->
IACKNOWLEDGE
<----------------- CS_NO_ERROR CS_REDIR_SUCCESS

or

IREJECT
<----------------- CS_SVRERR CS_REDIR_REJECT

or

IHANGUP
<----------------- CS_LOST_CONN CS_REDIR_HANGUP
DC 900-1392E 97



X.25 Call Service API Guide
5.3.5 cs_refuse 

The cs_refuse function refuses an incoming X.25 connection request. When using non-

blocking I/O, and the refuse call completes:

• the CS_REFUSE_SUCCESS event is queued if the call was successful

• the CS_REFUSE_REJECT event is queued if an IREJECT command was received

• the CS_REFUSE_HANGUP event is queued if an IHANGUP command was received

If the function returns CS_CALL_TIMEOUT when using blocking I/O, the application

must call cs_select to detect return event types mentioned above.

Synopsis

int cs_refuse(client_id, token, qos, block_time)
int client_id;
int token;
struct cs_qos_st *qos;
int block_time;

Arguments

client_id Connection ID from the cs_attach function

token Connection token from the cs_listen function

qos Quality of service functions (NULL = none)

block_time Routine block time in seconds; if not 0, this routine will block

until completion or timeout

Return Value

On success, this function returns zero. On failure, this function returns a number less

than zero.
98 DC 900-1392E



5: CS API Reference
Note

The token parameter identifies that connection where the token value was returned by the

cs_listen function. 

The qos parameter is optional. The structure cs_qos_st (defined in the cs_struc.h include

file) is used to convey the reason (cause and diagnostic codes) for refusing this connec-

tion and optional user data in the resulting X.25 clear request. The item_list field must

point to a byte array containing the cause code and diagnostic code facilities and

optional user data facility selected from the list given below. 

HF_CAUSE Cause code facility

HF_CLDEFLECT Call deflection selection facility

HF_CLLED Called DTE address

HF_CLLNG Calling DTE address

HF_DIAG Diagnostic code

HF_NONSTD Non-standard user facilities

HF_USER User data facility

Each item_list specification contains from one to three sub-fields: a function code byte,

an item size indicator byte, and a variable-length item data field. You must specify the

sub-fields contiguously in the order given, and you must omit sub-fields not listed for a

given item from the specification. Refer to Section 5.7 for a complete description of

these specifications, including the sub-fields.

Under special circumstances, the DTE to which the call was presented might not be the

DTE originally specified as the called DTE. In this case, the called line address modified

notification facility (HF_CLDADMOD) qos parameter can be used in addition to those

listed above.
DC 900-1392E 99



X.25 Call Service API Guide
Packet Exchanges, Error Returns, and Events Generated

Command Error Return Event

HHANGUP
----------------->
ITONE
<----------------- CS_NO_ERROR CS_REFUSE_SUCCESS

or

IREJECT
<----------------- CS_SVRERR CS_REFUSE_REJECT

or

IHANGUP
<----------------- CS_LOST_CONN CS_REFUSE_HANGUP
100 DC 900-1392E



5: CS API Reference
5.4 Data Transfer

The following CS API functions are called for data transfer. 

5.4.1 cs_read 

The cs_read function reads data from the ICP.

Synopsis

int cs_read(client_id, buf, buf_length, event, ret_flags, 
block_time)

int client_id;
char *buf;
int buf_length;
int event;
int *ret_flags;
int block_time;

Arguments

client_id Connection ID from the cs_attach function

buf Data read from the ICP

buf_length Length of receive buffer in bytes

event Event flag received in the event handler, an error code returned

by another function call, or indication returned by cs_select

ret_flags Returned special qualifier flag

block_time Routine block time in seconds; if not 0, this routine will block

until completion or timeout

Return Value

On success, this function returns the number of bytes received in buf. On failure, this

function returns a number less than zero.
DC 900-1392E 101



X.25 Call Service API Guide
5.4.2 cs_reset 

The cs_reset function resets an X.25 connection. When using non-blocking I/O, and the

reset call completes:

• the CS_RESET_SUCCESS event is queued if the call was successful

• the CS_RESET_REJECT event is queued if an IREJECT command was received

• the CS_RESET_HANGUP event is queued if an IHANGUP command was received

When using blocking I/O, this function returns CS_NO_ERROR if the reset occurs before

the specified block_time expires. If this function returns CS_CALL_TIMEOUT, the applica-

tion must call cs_select to detect when a CS_INDX25RSET_ACK or CS_INDX25RSET indica-

tion completes the reset.

Synopsis

int cs_reset(client_id, qos, block_time)
int client_id;
struct cs_qos_st *qos;
int block_time;

Arguments

client_id Connection ID from the cs_attach function

qos Quality of service functions (NULL = none)

block_time Routine block time in seconds; if not 0, this routine will block

until completion or timeout

Return Value

On success, this function returns zero. On failure, this function returns a number less

than zero.
102 DC 900-1392E



5: CS API Reference
Note

If this function times out and no event handler routine exists, the application must use

the cs_select function to re-check for the reset confirmation.

The qos parameter is optional. The structure cs_qos_st (defined in the cs_struc.h include

file) is used to convey the reason (cause and diagnostic codes) for resetting this connec-

tion and the new virtual circuit priority following reset completion. The item_list field

must point to a byte array containing cause code, diagnostic code and circuit priority

specifications selected from the list given below. 

HF_CAUSE Cause code facility

HF_DIAG Diagnostic code

HF_PRIORITY Virtual circuit local priority on Freeway

Each item_list specification contains from one to three sub-fields: a function code byte,

an item size indicator byte, and a variable-length item data field. You must specify the

sub-fields contiguously in the order given, and you must omit sub-fields not listed for a

given item from the specification. Refer to Section 5.7 for a complete description of

these specifications, including the sub-fields.

Packet Exchanges, Error Returns, and Events Generated

For X.25:

Command Error Return Event

HRSET
----------------->
IRSETC
<----------------- CS_NO_ERROR CS_RESET_SUCCESS

or

IREJECT
<----------------- CS_SVRERR CS_RESET_REJECT
DC 900-1392E 103



X.25 Call Service API Guide
or

IHANGUP
<----------------- CS_LOST_CONN CS_RESET_HANGUP

or

Command Error Return Event

IRESET
<----------------- reset collision CS_RESET

(completes cs_reset)

For HDLC:

Command Error Return Event

HINIT_SLP
----------------->
IGLITCH
<----------------- CS_NO_ERROR CS_RESET_SUCCESS
104 DC 900-1392E



5: CS API Reference
5.4.3 cs_select

This function is used only with blocking I/O. The cs_select function reports the avail-

ability of data or one of the following indications:

• CS_INDNOCONN (or CS_LOST_CONN)

• CS_INDX25OOB (or CS_INTERRUPT)

• CS_INDX2500B_ACK (or CS_INTERRUPT_ACK)

• CS_INDX25RSET (or CS_RESET)

• CS_INDX25RSET_ACK (or CS_RESET_ACK)

Synopsis

int cs_select(client_array, client_length, read_array, ind_array,
block_time)

int *client_array;
int client_length;
int *read_array;
int *ind_array;
int block_time;

Arguments

client_array Array of client IDs to search

client_length Length of the client array

read_array Return array of read completion flags

ind_array Return array of indication flags

block_time Routine block time in seconds; if not 0, this routine will block

until completion or timeout
DC 900-1392E 105



X.25 Call Service API Guide
Return Value

On success, this function returns zero. On failure, this function returns a number less

than zero.

Note

The returned read_array contains the number of read completions for each client_id. The

returned ind_array contains zero or an indication type. There may be more than one

indication type in the read completion queue, but only one is reported.

The cs_select function is similar to the UNIX, VMS, and Windows NT select function

calls.

Example of cs_select Usage

Prior to calling cs_select as follows:

cs_select(client_array, 3, read_array, ind_array, 0);

The arrays look like the following (it is assumed that the user has filled in the client_array

with the ID numbers returned by the cs_attach calls.

+--------+--------+--------+
client_array |    1 |   2 |   3 |

+--------+--------+--------+

+--------+--------+--------+
read_array  |    0 |   0 |   0 |

+--------+--------+--------+

+--------+--------+--------+
ind_array  |    0 |   0 |   0 |

+--------+--------+--------+
106 DC 900-1392E



5: CS API Reference
If client ID 1 has two CS_READ_COMPLETE events and client ID 3 has a CS_HANGUP

(–29046) and a CS_LOST_CONN (–29006) event, then the return arrays would look like

the following:

+--------+--------+--------+
client_array |    1 |   2 |   3 |

+--------+--------+--------+

+--------+--------+--------+
read_array |    2 |   0 |   0 |

+--------+--------+--------+

+--------+--------+--------+
ind_array  |    0 |   0 | -29046 | <== returns top event only

+--------+--------+--------+

The application would call cs_read twice with the event parameter set to

CS_READ_COMPLETE for client ID 1 and once with the event parameter set to –29046 for

client ID 3. The next cs_select call would return the –29006 event for client ID 3.
DC 900-1392E 107



X.25 Call Service API Guide
5.4.4 cs_write 

The cs_write function writes data to the ICP.

Synopsis

int cs_write(client_id, buf, buf_length, proto_flag, block_time)
int client_id;
char *buf;
int buf_length;
int proto_flag;
int block_time;

Arguments

client_id Connection ID from the cs_attach function

buf Data to be written to the ICP

buf_length Number of bytes in buf to write

proto_flag Special qualifier flag:

CS_DF_X25OOB Interrupt data

CS_DF_X25Q Qualified data

CS_DF_X25D Delivery confirmation

CS_DF_X25MORE More data flag

CS_DF_UI UI frame data flag

block_time Routine block time in seconds; if not 0, this routine will block

until completion or timeout

Return Value

On success, this function returns zero. On failure, this function returns a number less

than zero.
108 DC 900-1392E



5: CS API Reference
Packet Exchanges, Error Returns, and Events Generated

For USER:

HDATA
-----------------> for normal (I-frame) data

or

HUNDATA
-----------------> for UI-frame data

or

HINT
-----------------> CS_DF_X25OOB

For MANAGER:

Manager applications provide all ICPHDR data except the session number which

is provided by the CS API.
DC 900-1392E 109



X.25 Call Service API Guide
5.5 Connection Shutdown

The following CS API functions are called for shutting down a connection or Freeway

access. 

5.5.1 cs_deregister 

The cs_deregister function removes the application as an incoming connection handler.

When using non-blocking I/O, and the cs_deregister call completes:

• the CS_DEREG_SUCCESS event is queued if the call was successful

• the CS_DEREG_REJECT event is queued if an IREJECT command was received

If the function returns CS_CALL_TIMEOUT when using blocking I/O, the application

must call cs_select to detect return event types mentioned above.

Synopsis

int cs_deregister(client_id, block_time)
int client_id;
int block_time;

Arguments

client_id Connection ID from the cs_attach function

block_time Routine block time in seconds; if not 0, this routine will block

until completion or timeout

Return Value

On success, this function returns zero. On failure, this function returns a number less

than zero.
110 DC 900-1392E



5: CS API Reference
Packet Exchanges, Error Returns, and Events Generated

Command Error Return Event

HDEL_ICF
----------------->
IACKNOWLEDGE
<----------------- CS_NO_ERROR CS_DEREG_SUCCESS

or

IREJECT
<----------------- CS_SVRERR CS_DEREG_REJECT
DC 900-1392E 111



X.25 Call Service API Guide
5.5.2 cs_disconnect 

The cs_disconnect function terminates an X.25 connection to a remote DTE. When using

non-blocking I/O, and the disconnect call completes:

• the CS_DISCONN_SUCCESS event is queued if the call was successful

• the CS_DISCONN_REJECT event is queued if an IREJECT command was received

If the function returns CS_CALL_TIMEOUT when using blocking I/O, the application

must call cs_select to detect return event types mentioned above.

Synopsis

int cs_disconnect(client_id, qos, block_time)
int client_id;
struct cs_qos_st *qos;
int block_time;

Arguments

client_id Connection ID from the cs_attach function

qos Quality of service functions (NULL = none)

block_time Routine block time in seconds; if not 0, this routine will block

until completion or timeout

Return Value

On success, this function returns zero. On failure, this function returns a number less

than zero.

Note

The qos parameter is optional. The structure cs_qos_st (defined in the cs_struc.h include

file) is used to convey the reason (cause and diagnostic codes) for disconnecting this

connection and optional user data in the resulting X.25 clear request. The item_list field
112 DC 900-1392E



5: CS API Reference
must point to a byte array containing the cause code and diagnostic code facilities and

optional user data facility selected from the list given below. 

HF_CAUSE Cause code facility

HF_CLLED Called DTE address

HF_CLLNG Calling DTE address

HF_DIAG Diagnostic code

HF_NONSTD Non-standard user facilities

HF_USER User data facility

Each item_list specification contains from one to three sub-fields: a function code byte,

an item size indicator byte, and a variable-length item data field. You must specify the

sub-fields contiguously in the order given, and you must omit sub-fields not listed for a

given item from the specification. Refer to Section 5.7 for a complete description of

these specifications, including the sub-fields.

Under special circumstances, the DTE to which the call was presented might not be the

DTE originally specified as the called DTE. In this case, the called line address modified

notification facility (HF_CLDADMOD) qos parameter can be used in addition to those

listed above.

Packet Exchanges, Error Returns, and Events Generated

For X.25:

Command Error Return Event

HHANGUP
----------------->
ITONE
<----------------- CS_NO_ERROR CS_DISCONN_SUCCESS

or
DC 900-1392E 113



X.25 Call Service API Guide
Command Error Return Event

IREJECT
<----------------- CS_SVRERR CS_DISCONN_REJECT

or

IHANGUP
<----------------- CS_LOST_CONN CS_DISCONN_HANGUP

For HDLC:

Command Error Return Event

HDISABLE
----------------->
IDISABLE
<----------------- CS_NO_ERROR CS_DISCONN_SUCCESS
114 DC 900-1392E



5: CS API Reference
5.5.3 cs_unbind 

The cs_unbind function removes an application binding to a protocol service. When

using non-blocking I/O, and the unbind call completes:

• the CS_UNBIND_SUCCESS event is queued if the call was successful

• the CS_UNBIND_REJECT event is queued if an IREJECT command was received

If the function returns CS_CALL_TIMEOUT when using blocking I/O, the application

must call cs_select to detect return event types mentioned above.

Synopsis

int cs_unbind(client_id, block_time)
int client_id;
int block_time;

Arguments

client_id Connection ID from the cs_attach function

block_time Routine block time in seconds; if not 0, this routine will block

until completion or timeout

Return Value

On success, this function returns zero. On failure, this function returns a number less

than zero.
DC 900-1392E 115



X.25 Call Service API Guide
Packet Exchanges, Error Returns, and Events Generated

For HDLC and X.25 SVC:

Command Error Return Event

HCLOSE_SESSION
----------------->
ICLOSE_SESSION
<----------------- CS_NO_ERROR CS_UNBIND_SUCCESS

or

IREJECT
<----------------- CS_SVRERR CS_UNBIND_REJECT

For X.25 PVC:

Command Error Return Event

HCLOSE_PVC
----------------->
ICLOSE_PVC
<-----------------
HCLOSE_SESSION
----------------->
ICLOSE_SESSION
<----------------- CS_NO_ERROR CS_UNBIND_SUCCESS

or

IREJECT
<----------------- CS_SVRERR CS_UNBIND_REJECT
116 DC 900-1392E



5: CS API Reference
5.5.4 cs_detach

The cs_detach function detaches the application from an ICP. When using non-blocking

I/O, and the detach call completes:

• the CS_DETACH_SUCCESS event is queued if the call was successful

• the CS_DETACH_FAILED event is queued if the call was unsuccessful

If the function returns CS_CALL_TIMEOUT when using blocking I/O, the application

must call cs_select to detect return event types mentioned above.

Synopsis

int cs_detach(client_id, block_time)
int client_id;
int block_time;

Arguments

client_id Connection ID from the cs_attach function

block_time Routine block time in seconds; if not 0, this routine will block

until completion or timeout

Return Value

On success, this function returns zero. On failure, this function returns a number less

than zero.
DC 900-1392E 117



X.25 Call Service API Guide
5.5.5 cs_terminate

The cs_terminate function disconnects the application from the DLI and releases the sys-

tem resources.

Synopsis

int cs_terminate()

Arguments

None

Return Value

None
118 DC 900-1392E



5: CS API Reference
5.6 Miscellaneous

The following functions provide miscellaneous services and debug logging.

5.6.1 cs_sperror 

The cs_sperror function returns a string containing an error message for the specified

CS API error number.

Synopsis

char *cs_sperror(errornum)
int errornum;

Arguments

errornum Error number returned by other CS API calls

Return Value

This function always returns a pointer to an error text string.
DC 900-1392E 119



X.25 Call Service API Guide
5.6.2 cs_sleep

The cs_sleep function places the application in a sleep mode and releases the CPU.

Synopsis

void cs_sleep(duration)
int duration;

Arguments

duration Number of seconds to sleep

Return Value

None
120 DC 900-1392E



5: CS API Reference
5.6.3 cs_config

The cs_config function returns the application’s ppa_struct data describing the physical

point of attachment to the WAN.

Synopsis

int cs_config(client_id, ppa)
int client_id;
struct ppa_struct *ppa;

where the following structure is provided by the calling routine to receive the configu-

ration data:

struct ppa_struct
{

int protocol; /* SAP_X25 or SAP_SLP (HDLC)*/
int level; /* USER_API or MANAGER_API*/
int port; /* Port on ICP board */
int pvc; /* PVC (station ID) */
int board; /* ICP board ID */

}ppa;

Arguments

client_id Connection ID from the cs_attach function

ppa Returned ppa structure

Return Value

On success, this function returns zero. On failure, this function returns a number less

than zero.
DC 900-1392E 121



X.25 Call Service API Guide
5.6.4 cs_getpid

The cs_getpid function returns the process id (pid).

Synopsis

int cs_getpid()

Arguments

None

Return Value

The return value is the process ID number.
122 DC 900-1392E



5: CS API Reference
5.6.5 debuglog

The debuglog function provides a debug message logging facility for applications.

Synopsis

int debuglog(format, ...)
char *format;
...

Arguments

format Message format (same as in a printf call)

... Parameters for the format (same as in a printf call)

Return Value

On success, this function returns zero. On failure, this function returns a number less

than zero.

Note

The debug file is a circular file containing up to 20000 records of 80 bytes each. The

debug file is named Dbugnnnn.X25, where nnnn is the hex value of the process ID.

For example, on March 17 at 12:34:14, the following call:

debuglog (“value returned for %d tries was %d”, 2, 5);

 results in the following text line being added to the debug log file:

Mar 17 12:34:14 – value returned for 2 tries was 5
DC 900-1392E 123



X.25 Call Service API Guide
5.6.6 cs_suicide

The cs_suicide function calls the DLI function DlPoll to write the trace file to disk and ter-

minates the program without cleaning up system resources or X.25 connections. This

function is provided solely for customer service support in diagnosing application

problems with LAN access to Freeway.

Synopsis

int cs_suicide()

Arguments

None

Return Value

This routine does not return to the caller. The application program is terminated.
124 DC 900-1392E



5: CS API Reference
5.6.7 cs_suspend_events

The cs_suspend_events function suspends the delivery of generated events. Events are not

dequeued until the application calls cs_resume_events. The suspend and resume calls are

nestable; this call increments a counter and cs_resume_events decrements the counter.

Synopsis

int cs_suspend_events()

Arguments

None

Return Value

The return value is the suspend nesting level.
DC 900-1392E 125



X.25 Call Service API Guide
5.6.8 cs_resume_events

The cs_resume_events function resumes the deliver of generated events when the suspend

counter goes to zero. The suspend and resume calls are nestable; this call decrements a

counter and cs_suspend_events increments the counter.

Synopsis

int cs_resume_events(num)
int num;

Arguments

num Amount to decrement the suspend count. If num is set to –1, the

suspend count will be reset to zero and event dequeuing will be

enabled.

Return Value

The return value is the suspend nesting level.
126 DC 900-1392E



5: CS API Reference
5.6.9 cs_gen_event

The cs_gen_event function allows the application to generate its own event.

Synopsis

int cs_gen_event(client_id, event, data, len)
int client_id;
int event;
char *data;
int len;

Arguments

client_id Connection ID from the cs_attach function

event Event ID (may be a CS API event or an application-defined

event)

data Event data buffer (may be NULL)

len Length, in bytes, of data

Return Value

On success, this function returns zero. On failure, this function returns a number less

than zero.

Note

The generated event is placed at the end of the event queue and read completed queue.

The function works for both blocking and non-blocking applications.
DC 900-1392E 127



X.25 Call Service API Guide
5.6.10 cs_bufsize

The cs_bufsize function returns the maximum data buffer size allowed for the connec-

tion. This is the negotiated size between the client and an ICP.

Synopsis

int cs_bufsize(client_id)
int client_id;

Arguments

client_id Connection ID from the cs_attach function

Return Value

On success, this function returns the maximum number of bytes allowed in a data

packet for the passed client_id.
128 DC 900-1392E



5: CS API Reference
5.7 QOS Item Formats 

This section describes the format of the qos items. Most of the items have three sub-

fields: an identification code, a size (which might be variable), and data; however, some

items have two sub-fields, and a few have only one. Table 5–3 shows the qos items listed

by code showing their qos symbol and a brief description of their purpose. Table 5–4

shows the qos items listed alphabetically showing the accessed CS API requests and

whether the requests use the qos or ret_qos parameters. The following list describes each

qos item and its applicable sub-fields. 

HF_BLCLUS This is the bilateral closed user group selection facility. It

requires network support for closed user group facilities.

Code: HF_BLCLUS (32)

Size: Field length in bytes (4)

Data: Four-digit group number (string of decimal digits 0

 through 9)

HF_CAUSE This is the cause code facility. It identifies the reason for the

associated event or action. 

Code: HF_CAUSE (14)

Data: Cause code byte (must be zero, or 128 through 255

when specified by the application)

HF_CLDADMOD This is the called line address modified notification facility. It

reports that the HF_CLLED facility value differs from that speci-

fied in the original cs_connect request issued by the calling DTE

identified by the HF_CLLNG facility.

Code: HF_CLDADMOD (39)

Data: Reason code byte
DC 900-1392E 129



X.25 Call Service API Guide
Table 5–3: CS API QOS Options Listed

 qos Symbol Code Description

HF_CLLNG 1 Calling DTE

HF_CLLED 2 Called DTE

HF_FASNR 4 Fast select facility -- no restriction

HF_FASR 5 Fast select facility -- restriction on response

HF_RVFC 7 Reverse charging facility

HF_USER 10 User data

HF_CAUSE 14 Cause

HF_DIAG 15 Diagnostic

HF_NONSTD 24 Non-standard user facilities

HF_THRUCLASS 26 Throughput class

HF_PRIORITY 27 Virtual circuit priority on Freeway

HF_PWSIZE 28 Packet window size facility

HF_PDSIZE 29 Packet data size facility

HF_CLUSG 30 Closed user group selection facility

HF_CLUSGOAS 31 CUG with outgoing access selection facility

HF_BLCLUS 32 Bilateral closed user group facility

HF_NWUSID 33 Network user identification facility

HF_RQCRGIN 34 Request charging information facility

HF_RCVMONY 35 Receive charging monetary unit facility

HF_RCVSGCNT 36 Receive charging segment count facility

HF_RCVCLDR 37 Receive charging call duration facility

HF_RPOA 38 RPOA selection facility

HF_CLDADMOD 39 Called line address modified notification facility

HF_CLREDR 40 Call redirection or deflection notification facility

HF_TRDLYSEL 41 Transit delay selection and indication facility

HF_D_BIT_SUPPORT 46 D-bit support request and indication

HF_CLDEFLECT 48 Call deflection selection facility

HF_ICF_PRIORITY 64 ICF priority

HF_DTE_REMOTE 65 ICF remote (calling) DTE address

HF_DTE_SA_LOW 66 ICF local (called) DTE subaddress (low)

HF_DTE_SA_HIGH 67 ICF local (called) DTE subaddress (high

HF_USER_MASK 68 ICF user data mask

HF_ICF_CALLBUSY 69 ICF call busy configuration
130 DC 900-1392E



5: CS API Reference
Table 5–4: CS API Functions QOS Support 

qos Symbol Code cs
_a

cc
ep

t

cs
_c

on
n

ec
t

cs
_c

on
n

ec
t_

n
b_

re
m

ot
e

cs
_d

is
co

n
n

ec
t

cs
_r

ef
u

se

cs
_l

is
te

n

cs
_r

ed
ir

ec
t

cs
_r

eg
is

te
r

cs
_r

es
et

cs
_r

ea
d

HF_BLCLUS 32 Q R

HF_CAUSE 14 Q Q Q X

HF_CLDADMOD 39 Q R R Q Q N

HF_CLDEFLECT 48 Q

HF_CLLED 2 Q QR R Q Q R

HF_CLLNG 1 Q QR R Q Q R

HF_CLREDR 40 R

HF_CLUSG 30 Q R

HF_CLUSGOAS 31 Q R

HF_DIAG 15 Q Q Q X

HF_DTE_REMOTE 65 Q

HF_DTE_SA_HIGH 67 Q

HF_DTE_SA_LOW 66 Q

HF_D_BIT_SUPPORT 46 Q Q R R

HF_FASNR 4 Q R

HF_FASR 5 Q R

HF_ICF_CALLBUSY 69 Q

HF_ICF_PRIORITY 64 Q

HF_NONSTD 24 Q QR R Q Q R

HF_NWUSID 33 Q Q

HF_PDSIZE 29 Q QR R R

HF_PRIORITY 27 Q Q R R Q X
DC 900-1392E 131



X.25 Call Service API Guide
HF_CLDEFLECT This is the call deflection selection facility. It is used when

refusing an incoming call to specify an alternate DTE address to

which the call is to be deflected. The DTE must also include any

CCITT-specified DTE facilities and user data to be sent to the

alternate DTE.

Code: HF_CLDEFLECT (48)

Size: Field length in bytes

Data: Reason code byte (192 through 255) followed by 

alternate called DTE address (string of ASCII digits 0

through 9)

HF_CLLED This is the called DTE address. It is the network address of the

destination DTE to which the SVC connection is directed.

Code: HF_CLLED (2)

Size: Called DTE address length in bytes (0 through 15, or

3 through 17 for TOA/NPI)

Data: Called DTE address (string of ASCII digits 0 through

9); if TOA/NPI format is used, the TOA and NPI 

digits must precede the DTE address

HF_CLLNG This is the calling DTE address. It is the network address of the

DTE requesting the SVC connection. 

Code: HF_CLLNG (1)

Size: Calling DTE address length in bytes (0 through 15, or

3 through 17 for TOA/NPI)
132 DC 900-1392E



5: CS API Reference
Data: Calling DTE address (string of ASCII digits 0 through

 9); if TOA/NPI format is used, the TOA and NPI 

digits must precede the DTE address

HF_CLREDR This is the call redirection or call deflection notification facility.

It informs the application that the call has been redirected by

the network (or deflected by the called DTE), the reason for the

redirection (or deflection), and the address of the originally

called DTE.

Code: HF_CLREDR (40)

Size: Field length in bytes

Data: Reason code byte (1 = busy, 7 = call distribution

within a hunt group, 9 = out-of-order, 

15 = systematic, 192 through 255 = deflection by 

originally called DTE) followed by originally called

DTE address (string of ASCII digits 0 through 9)

HF_CLUSG This is the closed user group selection facility. It requires net-

work support for closed user group facilities. The HF_CLUSG

and HF_CLUSGOAS facilities cannot both appear in the same

item_list.

Code: HF_CLUSG (30)

Size: Field length in bytes (2 or 4)

Data: Two-digit or four-digit group number (string of 

decimal digits 0 through 9)

HF_CLUSGOAS This is the closed user group with outgoing access selection

facility. It requires network support for closed user group facil-
DC 900-1392E 133



X.25 Call Service API Guide
ities. The HF_CLUSG and HF_CLUSGOAS facilities cannot both

appear in the same item_list.

Code: HF_CLUSGOAS (31)

Size: Field length in bytes (2 or 4)

Data: Two-digit or four-digit group number (string of 

decimal digits 0 through 9)

HF_DIAG This is the diagnostic code facility. It provides an additional

diagnosis of the reason for the associated event or action. A list

of diagnostic codes appears in Appendix C.

Code: HF_DIAG (15)

Data: Diagnostic code byte

HF_DTE_REMOTE This is the remote DTE address—the portion of the main DTE

address that must match the actual calling DTE address in

incoming calls. If the DTE address length for the X.25 network

has not previously been configured on Freeway, this parameter

can be rejected.

Code: HF_DTE_REMOTE (65)

Size: Field length in bytes (1 through 15, or 3 through 17

for TOA/NPI)

Data: Remote DTE address (string of ASCII digits 0 through

9); if TOA/NPI format is used, the TOA and NPI 

digits must precede the DTE address

HF_DTE_SA_HIGH This is the highest local DTE subaddress—the highest accept-

able called DTE subaddress in incoming calls. The DTE subad-
134 DC 900-1392E



5: CS API Reference
dress immediately follows the main DTE address, whose length

(DTE_address_length1) has previously been configured.

Code: HF_DTE_SA_HIGH (67)

Size: Field length in bytes (1 through 15 (17 for TOA/NPI)

minus the configured DTE_address_length)

Data: Highest local DTE subaddress (string of ASCII digits 0

through 9)

HF_DTE_SA_LOW This is the lowest local DTE subaddress—the lowest acceptable

called DTE subaddress in incoming calls. The DTE subaddress

immediately follows the main DTE address, whose length

(DTE_address_length) has previously been configured.

Code: HF_DTE_SA_LOW (66)

Size: Field length in bytes (1 through 15 (17 for TOA/NPI)

minus the configured DTE_address_length)

Data: Lowest local DTE subaddress (string of ASCII digits 0

through 9)

HF_D_BIT_SUPPORT This is the D-bit support request/indication.

Code: HF_D_BIT_SUPPORT (46)

Data: Single byte value (0 = D-bit not supported; 1 = D-bit

supported)

1. The DTE_address_length must be set by the x25_manager utility when configuring Freeway X.25 call ser-
vice parameters for data links.
DC 900-1392E 135



X.25 Call Service API Guide
HF_FASNR This is the fast select facility (unrestricted). It allows the called

DTE to accept the call. 

Code: HF_FASNR (4)

HF_FASR This is the fast select facility with restrictions. It prevents the

called DTE from accepting the call.

Code: HF_FASR (5)

HF_ICF_CALLBUSY This is an incoming call filter configuration parameter internal

to Freeway. The default configuration is to hold additional calls

when an existing call is already associated with the incoming

call filter. This parameter may be used to request call redirec-

tion rather than call holding.

Code: HF_ICF_CALLBUSY (69)

Size: Field size in bytes (1)

Data: 0 = hold additional calls when call busy

1 = redirect additional calls when call busy

HF_ICF_PRIORITY This is an incoming call filter priority level internal to Freeway.

The ICF priority is independent of the virtual-circuit local pri-

ority HF_PRIORITY that can be set when the application accepts

a call or resets a virtual circuit.

Code: HF_ICF_PRIORITY (64)

Size: Field size in bytes (1)

Data: Value zero through 255, where zero is the lowest ICF

priority
136 DC 900-1392E



5: CS API Reference
HF_NONSTD This is the non-standard user facility. 

Code: HF_NONSTD (24)

Size: Field size in bytes

Data: Non-standard facilities marker code byte 0, followed

by parameter byte (–1, 0, or 15), and actual

non-standard facilities (binary)

HF_NWUSID This is the network user identification facility. Not all networks

support the use of this facility.

Code: HF_NWUSID (33)

Size: Field size in bytes

Data: Network user identification

HF_PDSIZE This is the packet data size facility. It is used to negotiate the

allowed size of the data field within X.25 data packets

exchanged between the local and remote DTE. It does not

apply to the size of data transfers requested by the application

using cs_read and cs_write requests.

Code: HF_PDSIZE (29)

Data: Two packet data size selection bytes (for local and

remote DTE); selection codes 4 through 12 indicate

the power-of-two data sizes 16 through 4096

HF_PRIORITY This is the virtual circuit local priority facility on Freeway. It

selects the degree to which Freeway is to favor transmitting data

sent using this virtual circuit. When Freeway has data ready to

send on more than one virtual circuit, it sends data first on the
DC 900-1392E 137



X.25 Call Service API Guide
virtual circuit with the higher local priority. This facility does

not affect the handling of received data, which is always on a

first-come, first-served basis. 

Code: HF_PRIORITY (27)

Data: Priority code byte (0 = low; 1 = normal; 2 = high)

HF_PWSIZE This is the packet window size facility. It is used to negotiate the

allowed size of the packet transmit window for the local and

remote DTE. It does not apply to the transmit window applied

by the CS API to application cs_write requests. 

Code: HF_PWSIZE (28)

Data: Two packet window size selection bytes (for local and

remote DTE). Packet windows are 1 through 7, or

extended, 1 through 127. The extended packet 

window is allowed only if Freeway is configured to

support extended packet sequence numbers.

HF_RCVCLDR This is the receiving charging call duration facility. It can be

reported by the network DCE to the DTE for accounting pur-

poses. 

Code: HF_RCVCLDR (37)

Size: Field size in bytes (multiple of 4)

Data: List of tariff periods (string of ASCII digits 0 through

9), each expressed as a four-digit code giving the

number of days, hours, minutes, and seconds for the

period
138 DC 900-1392E



5: CS API Reference
HF_RCVMONY This is the receiving charging monetary unit facility. It can be

reported by the network DCE to the DTE for accounting pur-

poses. 

Code: HF_RCVMONY (35)

Size: Field size in bytes

Data: List of monetary unit octets (binary)

HF_RCVSGCNT This is the receiving charging segment count facility. It can be

reported by the network DCE to the DTE for accounting pur-

poses. 

Code: HF_RCVSGCNT (36)

Size: Field size in bytes (multiple of 8)

Data: List of segment count information sets. Each 

information set contains a DCE segment count binary

longword and a DTE segment count binary longword

for a specific tariff period. Information for multiple

tariff periods is sequentially listed.

HF_RPOA This is the RPOA selection facility.

Code: HF_RPOA (38)

Size: Field size in bytes (multiple of 4)

Data: List of four-digit RPOA transit points (string of 

decimal digits 0 through 9) 
DC 900-1392E 139



X.25 Call Service API Guide
HF_RQCRGIN This is the request charging information facility. It requests the

network DCE to provide charging information facilities

(HF_RCVCLDR, HF_RCVMONY, or HF_RCVSGCNT) when the vir-

tual circuit is terminated.

Code: HF_RQCRGIN (34)

HF_RVFC This is the reverse charging facility. It requests the network to

reverse the charges for the call by charging the called DTE.

Code: HF_RVFC (7)

HF_THRUCLASS This is the throughput class facility. It is used to negotiate the

throughput class for data transferred using this virtual circuit

through the network. The throughput class negotiated for the

local DTE can differ from that negotiated for the remote DTE.

The throughput class does not apply to the actual data rate at

the interface between the network DTE and the attached local

or remote DTE. Instead, the throughput class applies to the

propagation rate through the network.

Code: HF_THRUCLASS (26)

Data: Two throughput class selection bytes (for local and

remote DTE). Selection codes 3 through 12 indicate

throughput classes 75, 150, 300, 600, 1200, 2400,

4800, 9600, 19200, and 48000, respectively. For

CCITT 1988, a selection code of 13 indicates 

throughput class 64000.

HF_TRDLYSEL This is the transit delay selection and indication facility. It gives

the nominal maximum network transit delay applicable to data

transferred through the network. 
140 DC 900-1392E



5: CS API Reference
Code: HF_TRDLYSEL (41)

Size: Field size in bytes (2)

Data: Transit delay in seconds (16-bit binary)

HF_USER This is the user data facility. It is used to pass user data associ-

ated with SVC connection and termination.

Code: HF_USER (10)

Size: Field size in bytes (1 through 16 normally, or fast

select, 1 through 128)

Data: User data (binary)

HF_USER_MASK This is the user data mask for the incoming call filter. It speci-

fies a binary mask of bits to be logically ANDed with the actual

HF_USER facility data in the incoming call and the HF_USER

facility data in a registered incoming call filter before compar-

ing the HF_USER facilities data fields.

Code: HF_USER_MASK (68)

Size: Field size in bytes (1 through 16)

Data: User data mask (binary)
DC 900-1392E 141



X.25 Call Service API Guide
142 DC 900-1392E



Appendix
A CS API Include Files
This appendix shows the text of source files normally required by application programs

for inclusion of the definitions of symbolically named values and data structures refer-

enced in this document.

The cs_api.h file includes all files required by application programs using the CS API.

See Section A.1.

The cs_dfine.h file contains system definitions. See Section A.2.

The cs_struc.h file contains system data structures. See Section A.3.

The cs_errno.h file provides symbol definitions for error or indication status codes

required by the API. See Section A.4.

The cs_proto.h file contains ANSI C function prototypes. See Section A.4.

The cs_x25.h file contains X.25 packet and configuration definitions. See Section A.6.
DC 900-1392E 143



X.25 Call Service API Guide
A.1 cs_api.h

/****************************************************************************
*               CONFIDENTIAL & PROPRIETARY INFORMATION
*              Distribution to Authorized Personnel Only
*           Unpublished/Copyright 1992 - 1996 Simpact, Inc.
*                       All Rights Reserved
*
* This document contains confidential and proprietary information of Simpact,
* Inc, ("Simpact") and is protected by copyright, trade secret and other state
* and federal laws. The possession or receipt of this information does not
* convey any right to disclose its contents, reproduce it, or use, or license
* the use, for manufacture or sale, the information or anything described
* therein. Any use, disclosure, or reproduction without Simpact's prior
* written permission is strictly prohibited.
*
* Software and Technical Data Rights
*
* Simpact software products and related documentation will be furnished
* hereunder with "Restricted Rights" in accordance with:
*
*      A. Subparagraph (c)(1)(ii) of the clause entitled Rights in Technical
*      Data and Computer Software (OCT 1988) located at DFARS 252.227-7013; or
*
*      B. Subparagraph (c)(2) of the clause entitled Commercial Computer
*      Software - Restricted Rights (JUN 1987) located at FAR 52.227.19.
*****************************************************************************/

/****************************************************************************
*    MODULE: cs_api.h
*               
*        Include header file.
*        Contains api header files required by application programs
*
*    MODIFICATIONS:
*        Original 04/94
*
*****************************************************************************/
#ifndef CS_API_H
#define CS_API_H

#ifdef WINNT
#include <fwywinnt.h>
#endif

#include <cs_dfine.h>    /* definitions required by application */
#include <cs_struc.h>    /* api structure definitions           */
#include <cs_proto.h>    /* api function prototypes             */
#include <cs_errno.h>    /* errors returned to application      */
#include <cs_x25.h>      /* x25 low-level header file           */

#endif  /* ifndef CS_API_H */
144 DC 900-1392E



A: CS API Include Files
A.2 cs_dfine.h

/****************************************************************************
*               CONFIDENTIAL & PROPRIETARY INFORMATION
*              Distribution to Authorized Personnel Only
*           Unpublished/Copyright 1992 - 1996 Simpact, Inc.
*                       All Rights Reserved
*
* This document contains confidential and proprietary information of Simpact,
* Inc, ("Simpact") and is protected by copyright, trade secret and other state
* and federal laws. The possession or receipt of this information does not
* convey any right to disclose its contents, reproduce it, or use, or license
* the use, for manufacture or sale, the information or anything described
* therein. Any use, disclosure, or reproduction without Simpact's prior
* written permission is strictly prohibited.
*
* Software and Technical Data Rights
*
* Simpact software products and related documentation will be furnished
* hereunder with "Restricted Rights" in accordance with:
*
*      A. Subparagraph (c)(1)(ii) of the clause entitled Rights in Technical
*      Data and Computer Software (OCT 1988) located at DFARS 252.227-7013; or
*
*      B. Subparagraph (c)(2) of the clause entitled Commercial Computer
*      Software - Restricted Rights (JUN 1987) located at FAR 52.227.19.
*****************************************************************************/

/****************************************************************************
*    MODULE: cs_dfine.h
*               
*        Include header file.
*        Contains definitions required by application programs
*
*    MODIFICATIONS:
*        Original 04/94
*        war   12/15/95   add dead socket detection (add CS_DEAD_SOCKET)
*
*****************************************************************************/

/*
** Generic integer definitions 
*/
typedef unsigned short  unsigned16;

/*
** event types 
*/
#define EVBASE             -29000

#define CS_REJECT          EVBASE- 1
#define CS_RESET           EVBASE- 2
 /* empty slot */
#define CS_INTERRUPT       EVBASE- 4
#define CS_INTERRUPT_ACK   EVBASE- 5
#define CS_LOST_CONN       EVBASE- 6
#define CS_ABORT           EVBASE- 7
#define CS_INC_CALL        EVBASE- 8
#define CS_AUTO_CONNECT    EVBASE- 9
#define CS_QUEUE_OVERFLOW  EVBASE-10
#define CS_WRITE_COMPLETE  EVBASE-11
#define CS_READ_COMPLETE   EVBASE-12
#define CS_ATTACH_SUCCESS  EVBASE-13
#define CS_ATTACH_FAILED   EVBASE-14
#define CS_DETACH_SUCCESS  EVBASE-15
#define CS_DETACH_FAILED   EVBASE-16
#define CS_BIND_SUCCESS    EVBASE-17
DC 900-1392E 145



X.25 Call Service API Guide
#define CS_BIND_FAILED     EVBASE-18
#define CS_BIND_REJECT     EVBASE-19
#define CS_UNBIND_SUCCESS  EVBASE-20
#define CS_UNBIND_REJECT   EVBASE-21
#define CS_REG_SUCCESS     EVBASE-22
#define CS_REG_REJECT      EVBASE-23
#define CS_DEREG_SUCCESS   EVBASE-24
#define CS_DEREG_REJECT    EVBASE-25
#define CS_CONN_SUCCESS    EVBASE-26
#define CS_CONN_REJECT     EVBASE-27
#define CS_CONN_HANGUP     EVBASE-28
#define CS_DISCONN_SUCCESS EVBASE-29
#define CS_DISCONN_REJECT  EVBASE-30
#define CS_ACCEPT_SUCCESS  EVBASE-31
#define CS_ACCEPT_REJECT   EVBASE-32
#define CS_ACCEPT_HANGUP   EVBASE-33
#define CS_REDIR_SUCCESS   EVBASE-34
#define CS_REDIR_REJECT    EVBASE-35
#define CS_REDIR_HANGUP    EVBASE-36
#define CS_REFUSE_SUCCESS  EVBASE-37
#define CS_REFUSE_REJECT   EVBASE-38
#define CS_REFUSE_HANGUP   EVBASE-39
#define CS_RESET_SUCCESS   EVBASE-40
#define CS_RESET_REJECT    EVBASE-41
#define CS_RESET_HANGUP    EVBASE-42
#define CS_WRITE_TIMEOUT   EVBASE-43
#define CS_MEM_EXAUSTED    EVBASE-44
#define CS_DLI_FATAL       EVBASE-45
#define CS_HANGUP          EVBASE-46
#define CS_ERROR           EVBASE-47
#define CS_CONN_TIMEOUT    EVBASE-48
#define CS_WRITE_FAILED    EVBASE-49
#define CS_ICP_RESETTING   EVBASE-50
#define CS_ICP_READY       EVBASE-51
#define CS_DEAD_SOCKET     EVBASE-52
#define CS_BUF_OVERFLOW    EVBASE-53
#define CS_FW_UNBOUND      EVBASE-54

#define EVEND              EVBASE-55

/*
** macro to determine if a returned value is an event, returns 
** 1 (TRUE) if it is an event, else returns 0 (FALSE)          
*/
#define IS_EVENT(n) (n < EVBASE && n > EVEND)

/*
** icp x.25 service access points 
*/
#define SAP_X25  11    /* X.25 access point (over MLP or SLP) */
#define SAP_DIAG 12    /* X.25 diagnostic access point        */
#define SAP_MLP  13    /* Non-X.25 MLP access point           */
#define SAP_SLP  14    /* Non-X.25 HDLC LAPB access point     */

/*
** ICP X.25 API Data Flag definitions 
*/
#define CS_DF_X25Q     0x01         /* Data flag: Qualified data        */
#define CS_DF_X25MORE  0x02         /* Data flag: More data             */
#define CS_DF_X25D     0x04         /* Data flag: Delivery confirmation */
#define CS_DF_UI       0x08         /* Data flag: Data for UI frame     */

#define CS_DF_X25OOB   CS_INTERRUPT /* Data flag: OOB (interrupt)  */
#define CS_DF_X25RSET  CS_RESET     /* Data flag: Reset data       */
#define CS_DF_NOCONN   CS_LOST_CONN /* Read flag: disconnect data  */

/*
146 DC 900-1392E



A: CS API Include Files
** indication types (for compatability) 
*/
#define CS_INDNOCONN      CS_LOST_CONN
#define CS_INDX25OOB      CS_INTERRUPT
#define CS_INDX25OOB_ACK  CS_INTERRUPT_ACK
#define CS_INDX25RSET     CS_RESET
#define CS_INDX25RSET_ACK CS_RESET_SUCCESS

/*
** ICP X.25 Host Facility code definitions used in the qos item list 
*/
#define HF_CLLNG          1   /* Calling DTE                          */
#define HF_CLLED          2   /* Called DTE                           */
#define HF_FASCN          3   /* Fast Select Configuration            */
#define HF_FASNR          4   /* Fast Select Facility - no restriction 
                                 on response */
#define HF_FASR           5   /* Fast Select Facility - restriction on 
                                 response    */
#define HF_RVCN           6   /* Reverse Charging Configuration       */
#define HF_RVFC           7   /* Reverse Charging Facility            */
#define HF_INCM           8   /* Incoming Call Configuration          */
#define HF_STDSV          9   /* DDN standard or basic services       */
#define HF_USER          10   /* User Data                            */
#define HF_T2XCN         11   /* T2X Timer Configuration              */
#define HF_R2XCN         12   /* R2X Retry Configuration              */
#define HF_TLX           13   /* Timer configuration                  */
#define HF_CAUSE         14   /* Cause                                */
#define HF_DIAG          15   /* Diagnostic                           */
#define HF_PREC          16   /* Packet precedence                    */
#define HF_LCN           17   /* LCN bounds (LIC, HIC, LTC, HTC, LOC, HOC)*/
#define HF_CERT          18   /* Certification mode                   */
#define HF_FLOW          19   /* Negotiate flow control parameters    */
#define HF_CLR           20   /* Automatic clear confirmation         */
#define HF_PASSPKT       21   /* Pass packet to network w/o processing*/
#define HF_CLM           22   /* Control line monitoring (CTS/DCD)    */
#define HF_CLTMR         23   /* Control line timer reset values      */
#define HF_NONSTD        24   /* Non standard facility data           */
#define HF_RESTART       25   /* Auto-restart on SABM/UA              */
#define HF_THRUCLASS     26   /* Throughput class                     */
#define HF_PRIORITY      27   /* Virtual circuit priority             */
#define HF_PWSIZE        28   /* Packet window size facility          */
#define HF_PDSIZE        29   /* Packet data size facility            */
#define HF_CLUSG         30   /* Closed user group selection facility */
#define HF_CLUSGOAS      31   /* Closed user group with outgoing access 
                                 selection facility                   */
#define HF_BLCLUS        32   /* Bilateral closed user group facility */
#define HF_NWUSID        33   /* Network user identification facility */
#define HF_RQCRGIN       34   /* Request charging information facility*/
#define HF_RCVMONY       35   /* Recv charging monitary unit facility */
#define HF_RCVSGCNT      36   /* Recv charging segment count facility */
#define HF_RCVCLDR       37   /* Recv charging call duration facility */
#define HF_RPOA          38   /* RPOA selection facility              */
#define HF_CLDADMOD      39   /* Called line address modified 
                                 notification facility                */
#define HF_CLREDR        40   /* Call redirection notification facility */
#define HF_TRDLYSEL      41   /* Transit delay selection and indication 
                                 facility             */
#define HF_REJ           42   /* Packet level REJ support             */
#define HF_MOD128        43   /* Packet level MOD 128 support         */
#define HF_X25_PROFILE   44   /* X.25 profile selection               */
#define    UNRESTRICTED   0   /*    Default         */              
#define    CCITT_1976     1   /*    not implemented */   
#define    CCITT_1980     2                    
#define    CCITT_1984     3            
#define    ISO_8208       4    
#define    CCITT_1988     5 

#define HF_ADDR_LEN      45   /* Call service: Local DTE address length */
DC 900-1392E 147



X.25 Call Service API Guide
#define HF_D_BIT_SUPPORT 46   /* API_USER client use only             */
#define HF_TOANPI        47   /* Call service: DTE address format     */
#define HF_CLDEFLECT     48   /* Call deflection selection facility   */

#define HF_ICF_PRIORITY  64   /* ICF: Priority                        */
#define HF_DTE_REMOTE    65   /* ICF: Remote (calling) DTE address    */
#define HF_DTE_SA_LOW    66   /* ICF: Local (called) DTE subaddress (low) */
#define HF_DTE_SA_HIGH   67   /* ICF: Local (called) DTE subaddress (high)*/
#define HF_USER_MASK     68   /* ICF: User data mask                  */
#define HF_ICF_CALLBUSY  69   /* ICF: Call-busy (0=Hold (default), 1=Redirect) */

#define HF_NEGP1        128   /* Registration facilities negotiable in p1 */
#define HF_NEGANY       129   /* Registration facilities negotiable in any
                                 state  */
#define HF_AVAIL        130   /* Availability of facilities           */
#define HF_NON_NEG      131   /* Non-negotiable facilities            */
#define HF_DFTHRU       132   /* Default throughput class assignment  */
#define HF_NSPACK       133   /* Non-standard default packet sizes    */
#define HF_NSWIN        134   /* Non-standard default window sizes    */
#define HF_LOGCHAN      135   /* Logical channel types ranges         */
148 DC 900-1392E



A: CS API Include Files
A.3 cs_struc.h 

/****************************************************************************
*               CONFIDENTIAL & PROPRIETARY INFORMATION
*              Distribution to Authorized Personnel Only
*           Unpublished/Copyright 1992 - 1996 Simpact, Inc.
*                       All Rights Reserved
*
* This document contains confidential and proprietary information of Simpact,
* Inc, ("Simpact") and is protected by copyright, trade secret and other state
* and federal laws. The possession or receipt of this information does not
* convey any right to disclose its contents, reproduce it, or use, or license
* the use, for manufacture or sale, the information or anything described
* therein. Any use, disclosure, or reproduction without Simpact's prior
* written permission is strictly prohibited.
*
* Software and Technical Data Rights
*
* Simpact software products and related documentation will be furnished
* hereunder with "Restricted Rights" in accordance with:
*
*      A. Subparagraph (c)(1)(ii) of the clause entitled Rights in Technical
*      Data and Computer Software (OCT 1988) located at DFARS 252.227-7013; or
*
*      B. Subparagraph (c)(2) of the clause entitled Commercial Computer
*      Software - Restricted Rights (JUN 1987) located at FAR 52.227.19.
*****************************************************************************/

/****************************************************************************
*    MODULE: cs_struc.h
*               
*       Include header file.
*       Contains api structures required by application programs
*
*    MODIFICATIONS:
*        Original 04/94
*
*****************************************************************************/
/*
** ICP SAP Header structure - only used for CS_MANAGER level 
*/
typedef struct icphdr       /* service access point sub-header */
{        
    unsigned16  command;     /* SAP command          */
    unsigned16  modifier;    /* SAP command modifier */
    unsigned16  link;        /* SAP data link ID     */
    unsigned16  circuit;     /* SAP station ID       */
    unsigned16  session;     /* SAP session ID       */
    unsigned16  sequence;    /* SAP not used         */
    unsigned16  reserved[2];                                         
} ICPHDR;                                                               

struct cs_listen_st 
{
    int client;      /* cid with incomming connection indication */
    int token;       
    int state;       /* incomming connection state               */
};

struct cs_qos_st 
{
    int  max_length;   /* Maximum length of item_list          */
    int  tot_length;   /* Current total length of item_list    */
    char *item_list;   /* item list of quality of service list */
};  
DC 900-1392E 149



X.25 Call Service API Guide
struct ppa_struct      /* PPA fields parsed       */
{     
    int protocol;      /* Protocol (X25 or HDLC)  */
    int level;         /* USER_API or MANAGER_API */
    int port;          /* Port on ICP board       */
    int pvc;           /* PVC (specific field)    */
    int board;         /* ICP board               */
};
150 DC 900-1392E



A: CS API Include Files
A.4 cs_errno.h

/****************************************************************************
*               CONFIDENTIAL & PROPRIETARY INFORMATION
*              Distribution to Authorized Personnel Only
*           Unpublished/Copyright 1992 - 1996 Simpact, Inc.
*                       All Rights Reserved
*
* This document contains confidential and proprietary information of Simpact,
* Inc, ("Simpact") and is protected by copyright, trade secret and other state
* and federal laws. The possession or receipt of this information does not
* convey any right to disclose its contents, reproduce it, or use, or license
* the use, for manufacture or sale, the information or anything described
* therein. Any use, disclosure, or reproduction without Simpact's prior
* written permission is strictly prohibited.
*
* Software and Technical Data Rights
*
* Simpact software products and related documentation will be furnished
* hereunder with "Restricted Rights" in accordance with:
*
*      A. Subparagraph (c)(1)(ii) of the clause entitled Rights in Technical
*      Data and Computer Software (OCT 1988) located at DFARS 252.227-7013; or
*
*      B. Subparagraph (c)(2) of the clause entitled Commercial Computer
*      Software - Restricted Rights (JUN 1987) located at FAR 52.227.19.
*****************************************************************************/

/****************************************************************************
*    MODULE: cs_errno.h
*               
*       Include header file for Application Programmer's Interface of 
*       Simpact's Communication Server products.
*
*       Error symbolic definitions.
*
*
*    MODIFICATIONS:
*        Original 04/94
*
*****************************************************************************/
/*
** error return values --- WARNING, changes here must also be made to 
** cs_sperror routine in cs_erlog.c, AND CS_UNKNOWN_ERROR must be the 
** last error number                                                  
*/
#define ERBASE                -20000

#define CS_NO_ERROR                 0
#define CS_INVALID_CIRCUIT  ERBASE- 1  /* invalid circuit name - cs_attach */
#define CS_CALL_TIMEOUT     ERBASE- 2  /* CS API call has timed out        */
#define CS_NO_MEMORY        ERBASE- 3  /* can not allocate memory          */
#define CS_NOT_ASYNC        ERBASE- 4  /* DL API is not ASYNC              */
#define CS_NOT_INIT         ERBASE- 5  /* cs_init not called yet           */
#define CS_MAX_UNACKS       ERBASE- 6  /* max unack writes, window closed  */
#define CS_BADCID           ERBASE- 7  /* invalid client ID                */
#define CS_INVREQ           ERBASE- 8  /* invalid request for current state*/
#define CS_SVRERR           ERBASE- 9  /* server error                     */
#define CS_NOBIND           ERBASE-10  /* not bound                        */
#define CS_INVALID_ICPHDR   ERBASE-11  /* manager passed bad icphdr length */
#define CS_STA_ERROR        ERBASE-12  /* IABORT or ISTAFAIL received      */
#define CS_SYS_RESOURCE     ERBASE-13  /* unable to allocate resources     */
#define CS_INVALID_BUFLEN   ERBASE-14  /* invalid write buffer length      */
#define CS_FILE_NOT_FOUND   ERBASE-15  /* config file not found            */
#define CS_UNKNOWN_ERROR    ERBASE-16  /* Unknown error                    */
DC 900-1392E 151



X.25 Call Service API Guide
A.5 cs_proto.h

/****************************************************************************
*               CONFIDENTIAL & PROPRIETARY INFORMATION
*              Distribution to Authorized Personnel Only
*           Unpublished/Copyright 1992 - 1996 Simpact, Inc.
*                       All Rights Reserved
*
* This document contains confidential and proprietary information of Simpact,
* Inc, ("Simpact") and is protected by copyright, trade secret and other state
* and federal laws. The possession or receipt of this information does not
* convey any right to disclose its contents, reproduce it, or use, or license
* the use, for manufacture or sale, the information or anything described
* therein. Any use, disclosure, or reproduction without Simpact's prior
* written permission is strictly prohibited.
*
* Software and Technical Data Rights
*
* Simpact software products and related documentation will be furnished
* hereunder with "Restricted Rights" in accordance with:
*
*      A. Subparagraph (c)(1)(ii) of the clause entitled Rights in Technical
*      Data and Computer Software (OCT 1988) located at DFARS 252.227-7013; or
*
*      B. Subparagraph (c)(2) of the clause entitled Commercial Computer
*      Software - Restricted Rights (JUN 1987) located at FAR 52.227.19.
*****************************************************************************/

/****************************************************************************
*    MODULE: cs_proto.h
*               
*       Include header file.
*       Contains api function prototypes required by application programs
*
*    MODIFICATIONS:
*        Original 04/94
*
*****************************************************************************/

#ifdef  __cplusplus 
extern "C" {
#endif 

#ifdef __STDC__

int cs_accept(int client_id, int token, struct cs_qos_st *qos,
    int block_time);
int cs_connect(int client_id, char *dest, int dest_length,
    struct cs_qos_st *qos, struct cs_qos_st *ret_qos, int block_time);
int cs_connect_nb_remote(int client_id, struct cs_qos_st *ret_qos,int 
block_time);
int cs_deregister(int client_id, int block_time);
int cs_disconnect(int client_id, struct cs_qos_st *qos, int block_time);
int cs_listen(int *client_id_array, int client_id_length,
    struct cs_listen_st *ret_ind, struct cs_qos_st *qos, int block_time);
int cs_redirect(int client_id, int token, struct cs_qos_st *qos,
    int block_time);
int cs_refuse(int client_id, int token, struct cs_qos_st *qos,
    int block_time);
int cs_register(int client_id, struct cs_qos_st *filter, int block_time);
int cs_init(char *config_file, void (*int_func)(int,int,int));
int cs_attach(char *circuit_id, int block_time);
int cs_bind(int client_id, int sap, int block_time);
int cs_detach(int client_id, int block_time);
int cs_unbind(int client_id, int block_time);
void cs_sleep(int duration);
int cs_read(int client_id, char *buf, int buf_length, int proto_flag,
152 DC 900-1392E



A: CS API Include Files
    int *ret_flags, int block_time);
int cs_reset(int client_id, struct cs_qos_st *rst, int block_time);
int cs_select(int *client_id_array, int client_id_length, int *read_array,
    int *ind_array, int block_time);
int cs_write(int client_id, char * buf, int buf_length, int proto_flag,
    int block_time);
void cs_terminate(void);
int cs_bufsize(int cid);
#ifdef WINNT
DWORD cs_getpid(void);
#else
int cs_getpid(void);
#endif
int cs_config(int client_id, struct ppa_struct *rec);
int cs_suspend_events(void);
int cs_resume_events(int num);
void cs_suicide(void);
int cs_gen_event(int client, int event, char *buf, int len);
char *cs_sperror(int errnum);
#if defined(VXWORKS) | defined(__MSDOS__) | defined(WINNT)
int debuglog(const char *format,...);
#endif

#else
int cs_accept();
int cs_connect();
int cs_connect_nb_remote();
int cs_deregister();
int cs_disconnect();
int cs_listen();
int cs_redirect();
int cs_refuse();
int cs_register();
int cs_init();
int cs_attach();
int cs_bind();
int cs_detach();
int cs_unbind();
void cs_sleep();
int cs_read();
int cs_reset();
int cs_select();
int cs_write();
void cs_terminate();
int cs_bufsize();
#ifdef WINNT
DWORD cs_getpid();
#else
int cs_getpid();
#endif
int cs_config();
int cs_suspend_events();
int cs_resume_events();
void cs_suicide();
int cs_gen_event();
char *cs_sperror();
int debuglog();

#endif

#ifdef  __cplusplus 
}
#endif 
DC 900-1392E 153



X.25 Call Service API Guide
A.6 cs_x25.h

/****************************************************************************
*               CONFIDENTIAL & PROPRIETARY INFORMATION
*              Distribution to Authorized Personnel Only
*              Unpublished/Copyright 1997 Simpact, Inc.
*                       All Rights Reserved
*
* This document contains confidential and proprietary information of Simpact,
* Inc, ("Simpact") and is protected by copyright, trade secret and other state
* and federal laws. The possession or receipt of this information does not
* convey any right to disclose its contents, reproduce it, or use, or license
* the use, for manufacture or sale, the information or anything described
* therein. Any use, disclosure, or reproduction without Simpact's prior
* written permission is strictly prohibited.
*
* Software and Technical Data Rights
*
* Simpact software products and related documentation will be furnished
* hereunder with "Restricted Rights" in accordance with:
*
*      A. Subparagraph (c)(1)(ii) of the clause entitled Rights in Technical
*      Data and Computer Software (OCT 1988) located at DFARS 252.227-7013; or
*
*      B. Subparagraph (c)(2) of the clause entitled Commercial Computer
*      Software - Restricted Rights (JUN 1987) located at FAR 52.227.19.
*****************************************************************************/

/****************************************************************************
*    MODULE: cs_x25.h
*               
*        Include header file.
*        Contains low-level X.25 header file required by CS_API 
*        and selected applications.
*
*    MODIFICATIONS:
*        Replaces control.h include file.
*
*****************************************************************************/
/*
*       THE FOLLOWING PACKET COMMAND TYPES SUPPORT 
*       CLIENT SERVICE ACCESS POINT (SAP) SESSION MANAGEMENT.
*/
#define HOPEN_SESSION   -1          /* Client Open Session Request  */
#define IOPEN_SESSION   -2          /* Server Session Opened        */
#define HCLOSE_SESSION  -3          /* Client Close Session Request */
#define ICLOSE_SESSION  -4          /* Server Session Closed        */

/*
*       THE FOLLOWING PACKET TYPES ARE VALID FOR X.25 1984
*       AND ITS ASSOCIATED SUB-PROTOCOLS (MLP and HDLC LAPB).
*/
#define HCALL           1           /* HOST Call Request            */
#define ICALL           2           /* ICP Incoming Call            */
#define HCONNECT        3           /* HOST Call Accepted           */
#define ICONNECT        4           /* ICP Call Connected           */
#define HHANGUP         5           /* HOST Clear Request           */
#define IHANGUP         6           /* ICP Clear Indication         */
#define HTONE           7           /* HOST Clear Confirmation      */
#define ITONE           8           /* ICP Clear Confirmation       */
#define HRSET           9           /* HOST Reset Request           */
#define IRSET           10          /* ICP Reset Indication         */
#define HRSETC          11          /* HOST Reset Confirmation      */
#define IRSETC          12          /* ICP Reset Confirmation       */
#define HINIT_MLP       13          /* HOST Reset MLP               */
#define HINIT_SLP       HINIT_MLP   /* HOST Reset SLP               */
#define HUNDATA 14  /* HOST Unnumbered Data */
154 DC 900-1392E



A: CS API Include Files
#define HSTATS_32BIT_SAMPLE 15      /* HOST Sample 32-Bit Statistics 
(NO CLEAR) */

#define ISTATS_32BIT    16          /* ICP 32-Bit Statistics */
#define HDATA           17          /* HOST Data Packet             */
#define IDATA           18          /* ICP Data Packet              */
#define HINT            19          /* HOST Interrupt               */
#define IINT            20          /* ICP Interrupt                */
#define HINTC           21          /* HOST Interrupt Confirmation  */
#define IINTC           22          /* ICP Interrupt Confirmation   */
#define HENABLE         23          /* HOST Enable Comm-Link        */
#define IENABLE         24          /* ICP Link Active              */
#define HDISABLE        25          /* HOST Disable Comm-Link       */
#define IDISABLE        26          /* ICP Link Inactive            */
#define HCONFIG         27          /* HOST Configure Comm-Link     */
#define IROTATE         28          /* ICP Rotate Transmit Window   */

#define HREG_ICF        29          /* Client Register Incoming Call Filter */ 
#define IGLITCH         30          /* MLP/SLP Reset                */
#define HDEL_ICF        31          /* Client Delete Incoming Call Filter   */ 
#define IERROR          32          /* ICP Station Procedure Error  */
#define HSTATS          33          /* HOST Read 16-Bit Statistics (AND CLEAR) */
#define ISTATS          34          /* ICP 16-Bit Statistics        */
#define HREJECT         35          /* HOST Configure IREJECT Format */     
#define IREJECT         36          /* ICP Command Reject           */
#define HBUFI           37          /* HOST Configure Buffer        */
#define IBUFIC          38          /* ICP Buffer Confirmation      */
/*                      39             HOST Reserved (Unused)       */      
#define IABORT          40          /* ICP Abort                    */
#define HABORT          41          /* HOST Abort                   */
#define ISTAOK          42          /* ICP Station Ok               */
#define HCSCON          43          /* HOST Configure Call Service  */
#define ISTAFAIL        44          /* ICP Station Failure          */
#define HCONMLP         45          /* HOST Configure MLP           */
#define IAUTO           46          /* ICP Autoconnect              */
#define HREDIRECT       47          /* Client Redirect Incoming Call */     
#define ITIMOUT         48          /* ICP Timeout on command from  */
#define HSTATES         49          /* HOST State Request           */
#define IDIAG           50          /* ICP Diagnostic               */
#define HSTATS_32BIT    51          /* HOST Read 32-Bit Statistics 

(AND CLEAR) */
#define ISTATES         52          /* ICP Station/Link States      */
#define HMONITOR        53          /* HOST Monitor Control Request */      
#define IMONITOR        54          /* ICP Monitor Data Report      */      
#define HVERSION        55          /* HOST Version Request         */
#define IVERSION        56          /* ICP Version                  */
#define HSTATS_CLEAR    57          /* HOST Clear 16-Bit/32-Bit Statistics

(NO READ) */
/*                      58             ICP Reserved (Unused)        */      
#define HSTATS_SAMPLE   59          /* HOST Sample 16-Bit Statistics 

(NO CLEAR) */
#define INOSTA          60          /* ICP No Stations On Link      */
#define HADJUST_FLOW    61          /* HOST Adjust Control          */
#define IACKNOWLEDGE    62          /* ICP acknowledges API request */      
#define HOPEN_PVC       63          /* Client Open PVC Request      */      
#define IOPEN_PVC       64          /* Server PVC Opened            */      
#define HCLOSE_PVC      65          /* Client Close PVC Request     */      
#define ICLOSE_PVC      66          /* Server PVC Closed            */      
/*                      67             HOST Reserved (Unused)       */      
/*                      68             ICP Reserved (Unused)        */      
#define HCLSTATE        69          /* HOST read control line state */
#define ICLSTATE        70          /* ICP control line state (CTS/DCD) */
#define HREGRQ          71          /* Host registration request    */
#define IREGCON         72          /* ICP registration confirmation */
#define ISUCCESS        74          /* SLP transmission successful  */
#define IFAILURE        76          /* SLP transmission failed      */
#define HTEST 77          /* HOST TEST Frame Data */      
#define ITEST 78  /* ICP TEST Frame Data */      
#define HROTATE         79          /* HOST safe store ack          */      
DC 900-1392E 155



X.25 Call Service API Guide
#define IUNDATA 80 /* ICP Unnumbered Data */      
#define HBUFCLEAR       81          /* HOST buffer clearing option  */      

/*
* Baud rate selection values
*/
#define BAUD_MASK       0x0F        /* Baud rate mask (Bits 0-3)    */

                                    /* LOW SPEED SELECTIONS (Bit7 = 0) */
                                    /* Selections 0-4 invalid       */
#define BAUD_300        5           /* Baud rate selection (300)    */
#define BAUD_600        6           /* Baud rate selection (600)    */
#define BAUD_1200       7           /* Baud rate selection (1200)   */
#define BAUD_2400       8           /* Baud rate selection (2400)   */
#define BAUD_4800       9           /* Baud rate selection (4800)   */
#define BAUD_9600       10          /* Baud rate selection (9600)   */
#define BAUD_19200      11          /* Baud rate selection (19200)  */
#define BAUD_38400      12          /* Baud rate selection (38400)  */
#define BAUD_56000      13          /* Baud rate selection (56000)  */
#define BAUD_57600      14          /* Baud rate selection (57600)  */
#define BAUD_64000      15          /* Baud rate selection (64000)  */

                                    /* HIGH SPEED SELECTIONS (Bit7 = 1) */
#define BAUD_73728      0           /* Baud rate selection (73728)  */
#define BAUD_76800      1           /* Baud rate selection (76800)  */
#define BAUD_92160      2           /* Baud rate selection (92160)  */
#define BAUD_115200     3           /* Baud rate selection (115200) */
#define BAUD_122800     4           /* Baud rate selection (122800) */
#define BAUD_153600     5           /* Baud rate selection (153600) */
#define BAUD_184320     6           /* Baud rate selection (184320) */
#define BAUD_230400     7           /* Baud rate selection (230400) */
#define BAUD_307200     8           /* Baud rate selection (307200) */
/*
* Miscellaneous HCONFIG flag definitions
*/
#define DCE_ADDRESS     BIT4        /* HCONFIG link 1st data word   */
#define DCE_SABM        BIT5        /* HCONFIG link 1st data word   */
#define EXT_CLOCK       BIT6        /* HCONFIG link 1st data word   */
#define HIGH_SPEED      BIT7        /* HCONFIG link 1st data word   */

#define PVC_STATION     BIT12       /* HCONFIG station 1st data word */
/*
* Link configuration function codes 
*/
#define SFWSIZE         1           /* Set frame window size        */
#define SDATSIZE        2           /* Set maximum frame size for link */
#define ST1TIME         3           /* Set T1 timer value           */
#define SN2             4           /* Set N2 (retry) value         */
#define ENCODING        5           /* Set bit encoding format      */
#define DATARATE        6           /* Select custom data rate      */
#define ST2TIME         7           /* Set T2 timer value           */
#define LAPB_MODULUS    8           /* Set HDLC LAPB modulus        */
#define CUSTOM_ADDRESS  9           /* Set HDLC custom addressing   */
#define INTEGRITY_TIMER 10          /* Set T4 integrity check timer */      
#define IDLE_TIMER      11          /* Set T3 idle link timer       */      
#define XMIT_CLOCK      12          /* Select ext. clock source (TC, RC) */ 
#define OPTION_SREJ     13          /* Enable SREJ frame support    */      
#define OPTION_RAW      14          /* Enable RAW SDLC (no protocol) */     

/*
* Station configuration function codes
*/
#define SPWSIZE         1           /* Set packet window size       */
#define SROTATE         2           /* Set flag to control IROTATEs */
#define SFLOW_CONTROL   3           /* Set flag to control IDATAs   */
#define SHOST_SAFE_STOR 4           /* Set flag to control IDATA acks */    
                                    /* over the line until host has stored*/
156 DC 900-1392E



Appendix
B Sample Programs
This appendix contains a pair of sample programs that connect and transfer 10 mes-

sages back and forth.

The pasv.c program shown in Section B.1 listens for a connection call and counts the

number of messages transferred. It disconnects the connection after it has returned 10

messages.

The actv.c program shown in Section B.2 initiates the connection and message transfers.

It remains active until it receives a disconnect command from the pasv.c program.
DC 900-1392E 157



X.25 Call Service API Guide
B.1 pasv.c

/**************************************************************************
*  Passive connection program. It receives and sends 10 messages then     *
*  disconnects.                                                           *
**************************************************************************/
#include <cs_api.h>
#include <stdio.h>

#define INACTIVE 0
#define BOUND    1

int active = 10;
int status = INACTIVE;

/*------------------------------------*/
/* event handler for non-blocking I/O */
/*------------------------------------*/
void event_handler(int client_id, int event, int data_flag)
{
    int ret;
    char buf[80];
    struct cs_listen_st ret_ind;

    /*--------------------------------*/
    /* log the event to the debug log */
    /*--------------------------------*/
    debuglog("event_handler called for client_id(%d), event(%d), data(%d)",
        client_id, event, data_flag);

    switch (event)
    {
        case CS_ATTACH_SUCCESS:
            /*---------------------------*/
            /* attach complete, now bind */
            /*---------------------------*/

    cs_bind(client_id,0,0);
            break;
158 DC 900-1392E



B: Sample Programs
        case CS_BIND_SUCCESS:
            /*-------------------------------------------------*/
            /* bind complete, now register for incommng calls  */
            /*-------------------------------------------------*/
            cs_register(client_id,NULL,0);
            status = BOUND;

    break;

        case CS_REG_SUCCESS:
        case CS_ACCEPT_SUCCESS:
            break;

        case CS_INC_CALL:
            /*---------------------------------------------------------*/
            /* got an incoming call, accept it (since no requirements  */
            /* were registered with cs_register, we will get an        */
            /* automatic connect                                       */
            /*---------------------------------------------------------*/
            cs_listen(&client_id,1,&ret_ind,NULL,0);
            cs_accept(client_id,ret_ind.token,NULL,0);
            break;
        

case CS_AUTO_CONNECT:
    break;

        case CS_READ_COMPLETE:
            /*---------------------------------------*/
            /* got a read, go get it and write again */
            /*---------------------------------------*/
            cs_read(client_id, buf, 80, event, &ret, 0);
            cs_write(client_id,"Hello",5,0,0);

            /*-------------------------------------------------*/
            /* decrement the active count and maybe disconnect */
            /*-------------------------------------------------*/
            active--;
            if (active <= 1)
                cs_disconnect(client_id, NULL, 0);
            break;

case CS_WRITE_COMPLETE:
            break;

        case CS_HANGUP:
DC 900-1392E 159



X.25 Call Service API Guide
        case CS_DISCONN_SUCCESS:
            /*-------------------------------*/
            /* lost the connection, shutdown */
            /*-------------------------------*/
            active = 0;
            break;

        default:
            /*--------------------------------------------*/
            /* some kind of unknown event, print the data */
            /*--------------------------------------------*/
            if (data_flag)
            {
                cs_read(client_id, buf, 80, event, &ret, 0);
                debuglog("Command(%d) failed, event(%d), data:",ret,event);
                debuglog("%s",buf);
            }
            active = 0;
            break;

    }   /* switch */
}

/*---------------------*/
/* main system routine */
/*---------------------*/
main()
{
    int client_id;

    /*-----------------------*/
    /* initialize the system */
    /*-----------------------*/
    if (!cs_init("cs_config",event_handler))
    {
        /*-----------------------*/
        /* attach to the Freeway */
        /*-----------------------*/
        cs_suspend_events();
        client_id = cs_attach("test1",0);
        if (client_id > 0)
            active = 10;
        cs_resume_events(1);

        while (active > 0);

        if (status == BOUND)
    cs_unbind(client_id,2000);

        if (client_id >= 0)
    cs_detach(client_id,2000);

        cs_terminate();
    }
160 DC 900-1392E



B: Sample Programs
    return(0);
}

DC 900-1392E 161



X.25 Call Service API Guide
B.2 actv.c

/**************************************************************************
*  Active connection program. It sends and receives messages until the    *
*  passive program disconnects.                                           *
**************************************************************************/
#include <cs_api.h>
#include <stdio.h>

#define INACTIVE 0
#define BOUND    1

int active = 0;
int status = INACTIVE;

/*------------------------------------*/
/* event handler for non-blocking I/O */
/*------------------------------------*/
void event_handler(int client_id, int event, int data_flag)
{
    int ret;
    char buf[80];
    struct cs_listen_st ret_ind;

    /*--------------------------------*/
    /* log the event to the debug log */
    /*--------------------------------*/
    debuglog("event_handler called for client_id(%d), event(%d), data(%d)",
        client_id, event, data_flag);

    switch (event)
    {
        case CS_ATTACH_SUCCESS:
            /*---------------------------*/
            /* attach complete, now bind */
            /*---------------------------*/
            cs_bind(client_id,0,0);
            break;

        case CS_BIND_SUCCESS:
            /*-----------------------------------*/
            /* bind complete, now try to connect */
            /*-----------------------------------*/
            cs_connect(client_id,"0",1,NULL,NULL,0);

    status = BOUND;
            break;

        case CS_CONN_SUCCESS:
            /*-----------------------------------*/
            /* connect complete, write a message */
            /*-----------------------------------*/
            cs_connect_nb_remote(client_id,NULL,0);
            cs_write(client_id,"Hello",5,0,0);
            break;
162 DC 900-1392E



B: Sample Programs
        
case CS_WRITE_COMPLETE:
    break;

        case CS_READ_COMPLETE:
            /*---------------------------------------*/
            /* got a read, go get it and write again */
            /*---------------------------------------*/
            cs_read(client_id, buf, 80, event, &ret, 0);
            cs_write(client_id,"Hello",5,0,0);
            break;

        case CS_HANGUP:
            /*--------------------------------------*/
            /* clear active flag so we can shutdown */
            /*--------------------------------------*/
            active = 0;
            break;

        default:
            /*--------------------------------------------*/
            /* some kind of unknown event, print the data */
            /*--------------------------------------------*/
            if (data_flag)
            {
                cs_read(client_id, buf, 80, event, &ret, 0);
                debuglog("Command(%d) failed, event(%d), data:",ret,event);
                debuglog("%s",buf);
            }
            active = 0;
            break;

    }   /* switch */
}

/*---------------------*/
/* main system routine */
/*---------------------*/
main()
{
    int client_id;

    /*-----------------------*/
    /* initialize the system */
    /*-----------------------*/
    if (!cs_init("cs_config",event_handler))
    {
        /*-----------------------*/
        /* attach to the Freeway */
        /*-----------------------*/
        cs_suspend_events();
        client_id = cs_attach("test2",0);
        if (client_id > 0)
            active = 1;
       cs_resume_events(1);
DC 900-1392E 163



X.25 Call Service API Guide
        /*-----------------------------*/
        /* loop until time to shutdown */
        /*-----------------------------*/
        while (active);

        if (status == BOUND)
    cs_unbind(client_id,2000);

        if (client_id >= 0)
    cs_detach(client_id,2000);

        cs_terminate();
    }    

    return(0);
}

164 DC 900-1392E



Appendix
C X.25 Diagnostic Codes
Table C–1 shows the meaning of various X.25 diagnostic codes associated with the

quality of service item HF_DIAG. Not all diagnostic codes need apply to a specific net-

work, but those used are as coded in the table. A given diagnostic need not apply to all

packet types (that is, reset indication, clear indication, restart indication, registration

confirmation, and diagnostics packets).

The first diagnostic in each group is a generic diagnostic and can be used in place of the

more specific diagnostics within the grouping. The decimal 0 diagnostic code can be

used in situations where no additional information is available. 
DC 900-1392E 165



X.25 Call Service API Guide
Table C–1: X.25 Diagnostic Codes for qos Item HF_DIAG 

Diagnostic Description
Decimal 

Value
Hexadecimal 

Value

No additional information 0 0

Invalid P(S) 1 1

Invalid P(R) 2 2

Not defined 3–15 3–F

Packet type invalid 16 10

For state r1 17 11

For state r2 18 12

For state r3 19 13

For state p1 20 14

For state p2 21 15

For state p3 22 16

For state p4 23 17

For state p5 24 18

For state p6 25 19

For state p7 26 1A

For state d1 27 1B

For state d2 28 1C

For state d3 29 1D

Not defined 30–31 1E–1F

Packet not allowed 32 20

Unidentifiable packet 33 21

Call on one-way logical channel 34 22

Invalid packet type on a permanent virtual circuit 35 23

Packet on assigned logical channel 36 24

Reject not subscribed to 37 25

Packet too short 38 26

Packet too long 39 27

Invalid general format identifier 40 28
166 DC 900-1392E



C: X.25 Diagnostic Codes
Restart or registration packet with nonzero in bits 1 to 4 
of octet 1, or bits 1 to 8 of octet 2

41 29

Packet type not compatible with facility 42 2A

Unauthorized interrupt confirmation 43 2B

Unauthorized interrupt 44 2C

Unauthorized reject 45 2D

Not defined 46–47 2E–2F

Time expired 48 30

For incoming call 49 31

For clear indication 50 32

For reset indication 51 33

For restart indication 52 34

Not defined 53–63 35–3F

Call set up, call clearing, or registration problem 64 40

Facility/registration code not allowed 65 41

Facility parameter not allowed 66 42

Invalid called address 67 43

Invalid calling address 68 44

Invalid facility/registration length 69 45

Incoming calls barred 70 46

No logical channel available 71 47

Call collision 72 48

Duplicate facility requested 73 49

Nonzero address length 74 4A

Nonzero facility length 75 4B

Facility not provided when expected 76 4C

Invalid CCITT-specified DTE facility 77 4D

Not defined 78–79 4E–4F

Table C–1: X.25 Diagnostic Codes for qos Item HF_DIAG  (Cont’d)

Diagnostic Description
Decimal 

Value
Hexadecimal 

Value
DC 900-1392E 167



X.25 Call Service API Guide
Miscellaneous 80 50

Improper cause code from DTE 81 51

Not aligned octet 82 52

Inconsistent Q-bit setting 83 53

Not defined 84–95 54–5F

Not assigned 96–111 60–6F

International problem 112 70

Remote network problem 113 71

International protocol problem 114 72

International link out of order 115 73

International link busy 116 74

Transit network facility problem 117 75

Remote network facility problem 118 76

International routing problem 119 77

Temporary routing problem 120 78

Unknown called DNIC 121 79

Maintenance actiona 122 7A

Not defined 123–127 7B–7F

Reserved for network-specific diagnostic information 128–255 80–FF

a This diagnostic may also apply to a maintenance action within a national network.

Table C–1: X.25 Diagnostic Codes for qos Item HF_DIAG  (Cont’d)

Diagnostic Description
Decimal 

Value
Hexadecimal 

Value
168 DC 900-1392E



Appendix
D X.25 Packet Types 
Cross Reference
Table D–1 shows the cross reference between the short packet names in the cs_x25.h file

and the DLI names used in the X.25 Low-Level Interface document.

Table D–1: X.25 Packet vs. DLI Packet Cross Reference

X.25 Packet Value DLI Packet

HOPEN_SESSION -1 DLI_X25_HOST_OPEN_SESSION_REQ
IOPEN_SESSION -2 DLI_X25_ICP_SESSION_OPENED
HCLOSE_SESSION -3 DLI_X25_HOST_CLOSE_SESSION_REQ
ICLOSE_SESSION -4 DLI_X25_ICP_SESSION_CLOSED
HCALL 1 DLI_X25_HOST_CALL_REQ
ICALL 2 DLI_X25_ICP_INCOMING_CALL
HCONNECT 3 DLI_X25_HOST_CALL_ACCEPTED
ICONNECT 4 DLI_X25_ICP_CALL_ACCEPTED
HHANGUP 5 DLI_X25_HOST_CLR_REQ
IHANGUP 6 DLI_X25_ICP_CLR_INDICATION
HTONE 7 DLI_X25_HOST_CLR_CONFIRMED
ITONE 8 DLI_X25_ICP_CLR_CONFIRMED
HRSET 9 DLI_X25_HOST_RESET_REQ
IRSET 10 DLI_X25_ICP_RESET_INDICATION
HRSETC 11 DLI_X25_HOST_RESET_CONFIRMED
IRSETC 12 DLI_X25_ICP_RESET_CONFIRMED
HINIT_MLP 13 DLI_X25_HOST_INIT_MLP
HINIT_SLP HINIT_MLP DLI_X25_HOST_INIT_SLP
DC 900-1392E 169



X.25 Call Service API Guide
HUNDATA 14 DLI_X25_HOST_UNNUMBERED_DATA
HSTATS_32BIT_SAMPLE 15 DLI_X25_HOST_32BIT_SAMPLE_STATISTICS
ISTATS_32BIT 16 DLI_X25_ICP_32BIT_STATISTICS
HDATA 17 DLI_X25_HOST_DATA
IDATA 18 DLI_X25_ICP_DATA
HINT 19 DLI_X25_HOST_INTERRUPT
IINT 20 DLI_X25_ICP_INTERRUPT
HINTC 21 DLI_X25_HOST_INT_CONFIRMED
IINTC 22 DLI_X25_ICP_INT_CONFIRMED
HENABLE 23 DLI_X25_HOST_ENABLE_LINK
IENABLE 24 DLI_X25_ICP_LINK_ENABLED
HDISABLE 25 DLI_X25_HOST_DISABLE_LINK
IDISABLE 26 DLI_X25_ICP_LINK_DISABLED
HCONFIG 27 DLI_X25_HOST_CFG_LINK

27 DLI_X25_HOST_CFG_STATION
IROTATE 28 DLI_X25_ICP_ROTATE_XMIT_WINDOW
HREG_ICF 29 DLI_X25_HOST_ADD_INCALL_FILTER
IGLITCH 30 DLI_X25_ICP_MLP_SLP_RESET
HDEL_ICF 31 DLI_X25_HOST_DEL_INCALL_FILTER
IERROR 32 DLI_X25_ICP_ERROR
HSTATS 33 DLI_X25_HOST_GET_STATISTICS
ISTATS 34 DLI_X25_ICP_STATISTICS
HREJECT 35 DLI_X25_HOST_CFG_IREJECT_FORMAT
IREJECT 36 DLI_X25_ICP_CMD_REJECTED
HBUFI 37 DLI_X25_HOST_CFG_BUF
IBUFIC 38 DLI_X25_ICP_CFG_BUF_CONFIRMED

39
IABORT 40 DLI_X25_ICP_ABORT
HABORT 41 DLI_X25_HOST_ABORT
ISTAOK 42 DLI_X25_ICP_STATION_OK
HCSCON 43 DLI_X25_HOST_CFG_CALL_SERVICE

Table D–1: X.25 Packet vs. DLI Packet Cross Reference (Cont’d)

X.25 Packet Value DLI Packet
170 DC 900-1392E



D: X.25 Packet Types Cross Reference
ISTAFAIL 44 DLI_X25_ICP_STATION_FAILED
HCONMLP 45 DLI_X25_HOST_CFG_MLP
IAUTO 46 DLI_X25_ICP_AUTO_CONNECT
HREDIRECT 47 DLI_X25_HOST_REDIRECT
ITIMOUT 48 DLI_X25_ICP_CMD_TIMEOUT
HSTATES 49 DLI_X25_HOST_GET_STATE
IDIAG 50 DLI_X25_ICP_DIAGNOSTICS
HSTATS_32BIT 51 DLI_X25_HOST_32BIT_GET_STATISTICS
ISTATES 52 DLI_X25_ICP_STATION_LINK_STATES
HMONITOR 53 DLI_X25_HOST_MONITOR_REQ
IMONITOR 54 DLI_X25_ICP_MONITOR_RSP
HVERSION 55 DLI_X25_HOST_GET_VERSION
IVERSION 56 DLI_X25_ICP_VERSION
HSTATS_CLEAR 57 DLI_X25_HOST_CLR_STATISTICS

58
HSTATS_SAMPLE 59 DLI_X25_HOST_SAMPLE_STATISTICS
INOSTA 60 DLI_X25_ICP_NO_STATIONS_ON_LINK
HADJUST_FLOW 61 DLI_X25_HOST_ADJUST_FLOW_CTRL
IACKNOWLEDGE 62 DLI_X25_ICP_ACK
HOPEN_PVC 63 DLI_X25_HOST_OPEN_PVC
IOPEN_PVC 64 DLI_X25_ICP_PVC_OPENED
HCLOSE_PVC 65 DLI_X25_HOST_CLOSE_PVC
ICLOSE_PVC 66 DLI_X25_ICP_PVC_CLOSED

67
68

HCLSTATE 69 DLI_X25_HOST_CTL_LINE_STATE_REQ
ICLSTATE 70 DLI_X25_ICP_CTL_LINE_STATE_RSP
HREGRQ 71 DLI_X25_HOST_REGISTER
IREGCON 72 DLI_X25_ICP_REGISTERED

73
ISUCCESS 74 DLI_X25_ICP_SLP_XMIT_OK

Table D–1: X.25 Packet vs. DLI Packet Cross Reference (Cont’d)

X.25 Packet Value DLI Packet
DC 900-1392E 171



X.25 Call Service API Guide
75
IFAILURE 76 DLI_X25_ICP_SLP_XMIT_ERROR
HTEST 77 DLI_X25_HOST_TEST_FRAME
ITEST 78 DLI_X25_ICP_TEST_FRAME
HROTATE 79 DLI_X25_HOST_ROTATE
IUNDATA 80 DLI_X25_ICP_UNNUMBERED_DATA
HBUFCLEAR 81 DLI_X25_HOST_BUF_CLR

Table D–1: X.25 Packet vs. DLI Packet Cross Reference (Cont’d)

X.25 Packet Value DLI Packet
172 DC 900-1392E



Glossary
boot server A client computer that downloads software onto Freeway (that

is, “boots” Freeway). During this operation, Freeway becomes

a client of the boot server.

CCITT Consultative Committee of International Telephone and Tele-

graph

client An entity on the LAN that uses the services offered by Freeway.

To conform with the industry use of this term, a client refers to

an application program which is running on a host computer

somewhere on the network and communicates with Freeway

through a LAN connection. Freeway supports clients on a

number of different types of host computers. See also “pro-

cess.”

CPU Central processing unit

CS API A call service application program interface provides a pro-

gramming library of routines to facilitate data transfer to and

from Freeway using a standard interface across protocols. 

CTS Clear to send

CUG Closed user group

D-bit Delivery confirmation bit, used in X.25 data packets
DC 900-1392E 173



X.25 Call Service API Guide
DCD Data carrier detect

DCE Data circuit-terminating equipment

DDN Defense data network

DNIC Data network identification code

DTE Data terminal equipment

Freeway Freeway refers to the entire Freeway product in terms of hard-

ware and software. The hardware includes items such as the

server processor board and/or the ICPs. The software includes

functions such as the APIs, Freeway management services, pro-

tocol services, and protocol software executing on the ICPs.

HDLC High-level data link control

HIC Highest incoming channel

HOC Highest outgoing channel

HTC Highest two-way channel

ICF Incoming call filter

ICP Protogate’s intelligent communications processor (ICP) board

that supports serial protocols. Freeway currently supports Pro-

togate’s ICP2432 and ICP2432B PCI-bus processors. An ICP is

also referred to as a “WAN interface processor.”

ICP-resident 

software

Protogate-supplied communication protocol software or user-

customized software that runs on the ICP to process the data

stream between the ICP and the WAN devices. Refer to the
174 DC 900-1392E



Glossary
Freeway Protocol Software Toolkit Programmer’s Guide for cus-

tomized software.

IP Internet protocol, described by RFC-791

ISO International Standards Organization

LAN Local area network

LAN protocol The hardware and software which comprise the LAN and form

the basis of communications between Freeway servers and cli-

ents. An example LAN protocol is TCP/IP running over Ether-

net.

LAPB Link access procedure balanced

LCN Logical channel number

LIC Lowest incoming channel

LOC Lowest outgoing channel

LTC Lowest two-way channel

M-bit More data bit, used in X.25 data packets

MLP Multilink procedure; uses multiple SLPs

MOD 8 Modulo 8 sequence numbers range from 0 through 7

MOD 128 Modulo 128 sequence numbers range from 0 through 127

operating system Code that provides the necessary scheduling and management

functions for tasks and services. The VxWorks operating sys-

tem runs on the server processor board, and Protogate’s

OS/Impact real-time executive runs on the ICPs.
DC 900-1392E 175



X.25 Call Service API Guide
PPA Physical point of attachment

process Code executing on a LAN-based host computer and equivalent

to the “client” term.

PVC Permanent virtual circuit

P(R) Packet receive sequence number field, ranges from 0 through 7

for MOD 8 operation or 0 through 127 for MOD 128 operation

P(S) Packet send sequence number field, ranges from 0 through 7

for MOD 8 operation or 0 through 127 for MOD 128 operation

Q-bit Qualifier bit, used in X.25 packets

QOS Quality of service

REJ Reject, an HDLC frame or X.25 packet type used to request re-

transmission of data

resource A resource available in the Freeway product. Typically,

resource refers to an ICP board within Freeway, a port on a

board, or a WAN protocol running on an ICP.

RPOA Recognized private operating agency

SABM Set asynchronous balanced mode, an HDLC frame type used to

start or reset the data link

SAP Service access point

server processor The Freeway server processor board, which is capable of exe-

cuting the server’s operating system and functions such as

server management. 
176 DC 900-1392E



Glossary
server-resident 

software

Software that runs on the server processor board and processes

the data stream between the LAN and WAN connections.

Server-resident software can be either supplied by Protogate or

customized by the user.

service A more generalized view of resource where a grouping is made

on a per-protocol basis. For example, the X.25 protocol has a

number of resources: the ICP, the ports available on the ICP,

and the protocol running on the ICP. Collectively, these

resources describe the service.

SLP Single-link procedure, a LAPB data link

SVC Switched virtual circuit

task “Task” is used to differentiate between code executing on a

Freeway server processor board or on the ICP, and code exe-

cuting on a client computer, which is referred to as a “process”.

TCP/IP Transmission-control protocol/internet protocol

TOA/NPI Type of address/number plan identification

UA Unnumbered acknowledgment, an HDLC frame type used to

acknowledge start or reset of the data link

UNIX An industry-standard operating system commonly used on cli-

ent workstations

WAN Wide area network

WAN interface 

processor

A board containing hardware, and possibly software, used to

offer a particular communication protocol service. For

instance, Protogate’s ICP2432B is a WAN interface processor
DC 900-1392E 177



X.25 Call Service API Guide
board that supports serial communication protocols such as

X.25.

X.25 A packet-switching communications protocol
178 DC 900-1392E



Index
A

Active connection program 162
actv.c 162
Application program interface 173
Arguments, optional 19
Asynchronous operations

see Non-blocking I/O 54

B

Blocking I/O 53
api_sleep function 63
function return values 59
operations 59

Boot server 173
Browser interface 19

C

Caution
exhausting memory pool 69

CCITT 173
Child processes 47
Circuit reset 39
Client 173
Client program environment 47
Complete packet sequence 35
Configuration

browser interface 19
Configuration file 49
Connection establishment 25, 41
Connection handling, active 79

cs_connect 79
cs_connect_nb_remote 84

Connection handling, passive 86
cs_accept 93
cs_listen 90
DC 900-1392E
cs_redirect 96
cs_refuse 98
cs_register 86

Connection operation 33, 42
Connection program, active 162
Connection program, passive 158
Connection termination 40, 46

permanent virtual circuit 40
switched virtual circuit 40

CPU 173
CS API configuration file 49
CS API function groups 71
CS API include files 143
CS API log file 51
CS API reference 71
CS API run-time file dependencies 49
cs_accept 93
cs_api.h 143, 144
cs_attach 76
CS_BADCID 72
cs_bind 77
cs_bufsize 128
CS_CALL_TIMEOUT 72
cs_config 121
cs_connect 79
cs_connect_nb_remote 84
cs_deregister 110
cs_detach 117
CS_DF_X25D 36
CS_DF_X25MORE 35
CS_DF_X25Q 36
cs_dfine.h 143, 145
cs_disconnect 112
cs_errno.h 143, 151
CS_FILE_NOT_FOUND 72
179



X.25 Call Service API Guide
cs_gen_event 127
cs_getpid 122
cs_init 75
CS_INVALID_CIRCUIT 72
CS_INVALID_ICPHDR 72
CS_INVREQ 72
cs_listen 90
CS_MAX_UNACKS 72
CS_NO_ERROR 72
CS_NO_MEMORY 72
CS_NOBIND 72
CS_NOT_ASYNC 72
CS_NOT_INIT 73
cs_proto.h 143, 152
cs_read 101
cs_redirect 96
cs_refuse 98
cs_register 86
cs_reset 102
cs_resume_events 126
cs_select 105

example usage 106
cs_sleep 120
cs_sperror 119
CS_STA_ERROR 73
cs_struc.h 143, 149
cs_struct.h file 91
cs_suicide 124
cs_suspend_events 125
CS_SVRERR 73
CS_SYS_RESOURCE 73
cs_terminate 118
cs_unbind 115
CS_UNKNOWN_ERROR 73
cs_write 108
CS_X25ERROR 40
cs_x25.h 143, 154
CTS 173
CUG 173
Customer support 16

D

Data
acknowledging interrupt data 38
reading interrupt data 37, 38
180
reading normal data 37, 45
writing normal data 36, 44, 45

Data transfer
cs_read 101
cs_reset 102
cs_select 105
cs_write 108
HDLC normal 44, 45
X.25 interrupt 37
X.25 normal 35

Data transfer functions 101
D-bit 35, 173
DCD 174
DCE 174
DDN 174
debuglog 123
Diagnostic codes 165
DLI configuration 18
DNIC 174
Document conventions 14
Documents

reference 12
DTE 174

E

Event handler 69
Event types 19, 55, 59
Examples

cs_select usage 106

F

Fast select call transaction 32
File dependencies 49
Functions

connection handling
cs_accept 93
cs_connect 79
cs_connect_nb_remote 84
cs_listen 90
cs_redirect 96
cs_refuse 98
cs_register 86

data transfer
cs_read 101
cs_reset 102
DC 900-1392E



Index
cs_select 105

example 106
cs_write 108

miscellaneous
cs_bufsize 128
cs_config 121
cs_gen_event 127
cs_getpid 122
cs_resume_events 126
cs_sleep 120
cs_sperror 119
cs_suicide 124
cs_suspend_events 125
debuglog 123

server preparation
cs_attach 76
cs_bind 77
cs_init 75

server shutdown
cs_deregister 110
cs_detach 117
cs_disconnect 112
cs_terminate 118
cs_unbind 115

G

Getting started 17

H

HDLC 174
HIC 174
History of revisions 15
HOC 174
HTC 174

I

ICF 174
ICP 174
ICP-resident software 174
Include files

cs_api.h 144
cs_dfine.h 145
cs_errno.h 151
cs_proto.h 152
cs_struc.h 149
DC 900-1392E
cs_x25.h 154
Include files, CS API 143

cs_struct.h 91
Interrupt data

acknowledging 38
reading 37, 38

I/O
see blocking I/O
see non-blocking I/O

IP 175
ISO 175

L

LAN 175
LAN protocol 175
LAPB 175
LCN 175
LIC 175
LOC 175
Log file 51
LTC 175

M

Manager session 19
M-bit 35, 175
Memory pool, exhausting 69
Miscellaneous functions 119

cs_bufsize 128
cs_config 121
cs_gen_event 127
cs_getpid 122
cs_resume_events 126
cs_sleep 120
cs_sperror 119
cs_suicide 124
cs_suspend_events 125
debuglog 123

MLP 175
MOD 128 175
MOD 8 175

N

Non-Blocking I/O
operations 54

Non-blocking I/O 53
181



X.25 Call Service API Guide
event handler 63, 69
events table 55

Normal data
reading 37, 45
writing 36, 44, 45

Normal data transfer 35, 44, 45

O

Operating system 175
Operations

blocking I/O 59
multitasking 62
non-blocking I/O 54

Optional arguments 19

P

Passive connection program 158
pasv.c 158
Permanent virtual circuit 19
Permanent virtual circuit connections 26
P(R) 176
Procedure errors 40
Process 176
Product support 16
P(S) 176
PVC, see permanent virtual circuit 26

Q

Q-bit 35, 176
QOS, see Quality of service 129
Quality of service 23
Quality of service item formats 129
Quality of service support 129, 131

R

Reference documents 12
REJ 176
Reset 46
Reset indication

acknowledging 39
detecting 39, 46

Reset request
issuing 39, 46

Resource 176
Revision history 15
182
RPOA 176
Run-time file dependencies 49

S

SABM 176
SAP 176
Server preparation

cs_attach 76
cs_bind 77
cs_init 75

Server processor 176
Server shutdown

cs_deregister 110
cs_detach 117
cs_disconnect 112
cs_terminate 118
cs_unbind 115

Server shutdown functions 110
Server-resident software 177
Service 177
Service access point 19
Session

manager 19
SLP 177
Support, product 16
SVC, see switched virtual circuit 26
Switched virtual circuit 20

call placement 28
call reception 30
calls

incoming 21
outgoing 20

connections 26
Synchronous operations

see Blocking I/O 59

T

Task 177
TCP/IP 177
Technical support 16
TOA/NPI 177
TSI configuration 18

U

UA 177
DC 900-1392E



Index
UNIX 177
Unsolicited input 47

W

WAN 177
WAN interface processor 177

X–Z

X.25 178
x25_svc 18
DC 900-1392E
 183



X.25 Call Service API Guide
184
 DC 900-1392E



X.25 Call Service API Guide

DC 900-1392E
Customer Report Form

We are constantly improving our products. If you have suggestions or problems you would

like to report regarding the hardware, software or documentation, please complete this form

and mail it to Protogate at 12225 World Trade Drive, Suite R, San Diego, CA 92128, or fax it

to (877) 473-0190.

If you are reporting errors in the documentation, please enter the section and page number.

Your Name:

Company:

Address:

Phone Number:

Product:

Problem or

Suggestion:



Protogate, Inc.
Customer Service

12225 World Trade Drive, Suite R
San Diego, CA 92128


	X.25 Call Service API Guide
	DC�900-1392E

	Contents
	List of Figures
	List of Tables
	Preface
	Purpose of Document
	Intended Audience
	Organization of Document
	Protogate References
	Document Conventions
	Revision History
	Customer Support
	1 Overview
	1.1� Getting Started
	1.2� Configuring the TSI and DLI
	1.3� Service Access Point
	1.4� Permanent Virtual Circuit
	1.5� Switched Virtual Circuit
	1.5.1� Outgoing SVC Calls
	1.5.2� Incoming SVC Calls
	1.6� Quality of Service
	2 Writing CS�API User-Client Software
	2.1� X.25 Applications
	2.1.1� X.25 Connection Establishment
	2.1.1.1� PVC Connections
	Figure 2–1:� X.25 PVC Connection Establishment
	2.1.1.2� SVC Connections
	Figure 2–2:� X.25 SVC Call Placement
	Figure 2–3:� X.25 SVC Call Reception
	2.1.2� X.25 Connection Operation
	Figure 2–4:� X.25 Connection Operation
	2.1.2.1� X.25 Normal Data Transfer
	2.1.2.2� X.25 Interrupt Data Transfer
	2.1.2.3� X.25 Circuit Reset
	2.1.2.4� X.25 Procedure Errors — CS_STA_ERROR
	2.1.3� X.25 Connection Termination
	2.1.3.1� PVC Connection Termination
	2.1.3.2� SVC Connection Termination
	2.2� HDLC Applications
	2.2.1� HDLC Connection Establishment
	Figure 2–5:� HDLC Connection Establishment
	2.2.2� HDLC Connection Operation
	Figure 2–6:� HDLC Connection Operation
	2.2.2.1� HDLC Normal Data Transfer
	2.2.2.2� HDLC UI Frame Data Transfer
	2.2.2.3� HDLC Reset
	2.2.3� HDLC Connection Termination
	2.3� Client Program Environment
	2.3.1� Handling Unsolicited Input
	2.3.2� Child Processes
	3 CS�API Run-time File Dependencies
	3.1� CS�API Configuration File
	3.2� CS�API Log File
	4 CS�API Operational Modes
	4.1� Non-Blocking I/O Operations�
	Table 4–1:� Non-blocking I/O Events �
	4.2� Blocking I/O Operations �
	Table 4–2:� Blocking I/O Function Return Values �
	4.3� Multitasking Operations
	4.4� Event-driven Program
	4.5� Event Handler
	5 CS�API Reference
	Table 5–1:� CS�API Function Groups
	Table 5–2:� CS�API Errors Defined in cserrno.h Include File�
	5.1� Connection Preparation
	5.1.1� cs_init
	5.1.2� cs_attach
	5.1.3� cs_bind
	5.2� Active Connection Handling
	5.2.1� cs_connect
	5.2.2� cs_connect_nb_remote
	5.3� Passive Connection Handling
	5.3.1� cs_register
	5.3.2� cs_listen
	5.3.3� cs_accept
	5.3.4� cs_redirect
	5.3.5� cs_refuse
	5.4� Data Transfer
	5.4.1� cs_read
	5.4.2� cs_reset
	5.4.3� cs_select
	5.4.4� cs_write
	5.5� Connection Shutdown
	5.5.1� cs_deregister
	5.5.2� cs_disconnect
	5.5.3� cs_unbind
	5.5.4� cs_detach
	5.5.5� cs_terminate
	5.6� Miscellaneous
	5.6.1� cs_sperror
	5.6.2� cs_sleep
	5.6.3� cs_config
	5.6.4� cs_getpid
	5.6.5� debuglog
	5.6.6� cs_suicide
	5.6.7� cs_suspend_events
	5.6.8� cs_resume_events
	5.6.9� cs_gen_event
	5.6.10� cs_bufsize
	5.7� QOS Item Formats
	Table 5–3:� CS�API QOS Options Listed
	Table 5–4:� CS�API Functions QOS Support �
	A CS�API Include Files
	A.1� cs_api.h
	A.2� cs_dfine.h
	A.3� cs_struc.h
	A.4� cs_errno.h
	A.5� cs_proto.h
	A.6� cs_x25.h
	B Sample Programs
	B.1� pasv.c
	B.2� actv.c
	C X.25 Diagnostic Codes
	Table C–1:� X.25 Diagnostic Codes for qos Item HF_DIAG �
	D X.25 Packet Types Cross Reference
	Table D–1:� X.25 Packet vs. DLI Packet Cross Reference�
	Glossary
	Index

