

Simpact, Inc.
9210 Sky Park Court
San Diego, CA 92123

ICP2432 User’s Guide
for Windows NT

®

DC 900-1510C

July 1998

Simpact, Inc.
9210 Sky Park Court
San Diego, CA 92123
(619) 565-1865

ICP2432 User’s Guide for Windows NT
© 1997–1998 Simpact, Inc. All rights reserved
Printed in the United States of America

This document can change without notice. Simpact, Inc. accepts no liability for any errors this
document might contain.

Freeway is a registered trademark of Simpact, Inc.
All other trademarks and trade names are the properties of their respective holders.

DC 900-1510C

3

Contents

List of Figures 7

List of Tables 9

Preface 11

1 Product Overview 15

2 Software Installation 17

2.1 Memory Requirements . 17

2.2 ICP2432 Software Installation Procedure 17

2.3 Protocol or Toolkit Software Installation Procedure 22

3 Programming Using the Data Link Interface 31

3.1 Embedded Interface Description . 32

3.1.1 Comparison of Freeway Server and Embedded Interfaces 32

3.1.2 Embedded Interface Objectives . 33

3.2 DLI Embedded Interface . 34

3.2.1 Configuration Files . 34

3.2.1.1 TSI Configuration File . 34

3.2.1.2 DLI Configuration File . 36

3.2.2 The Application Program’s Interface to DLI 36

3.2.2.1 Embedded Interface — Changes in DLI/TSI Protocol 36

3.2.2.2 Changes in the Application Program’s Interface to DLI 37

3.2.2.3 NTsi Tracing . 39

3.2.2.4 NTsi Logging . 40

3.2.2.5 Error Codes. 42

4

DC 900-1510C

ICP2432 User’s Guide for Windows NT

4 Programming Using the Win32 Interface 43

4.1 Function Mappings . 43

4.1.1 Opening the ICP . 44

4.1.2 Reading Data . 45

4.1.3 Writing Data. 46

4.1.4 Cancelling I/O. 47

4.1.5 Device Control . 47

4.1.5.1 Cancelling I/O Requests . 48

4.1.5.2 Obtaining Internal Driver Information 49

4.1.5.3 Expedited Write Requests . 51

4.1.5.4 Support for ICP Initialization 53

4.1.6 Closing A Handle . 53

4.2 Driver Features and Capabilities . 54

4.2.1 Download Support . 54

4.2.2 Communication With ICP-Resident Tasks 54

4.2.3 Multiplexed I/O . 55

4.2.4 Error Logging . 55

4.3 I/O Completion Status . 58

4.3.1 Successful Completion . 58

4.3.2 Error Completion . 58

A ICPTool for Windows NT 65

A.1 ICPTool Main Menu . 65

A.1.1 Download Protocol . 67

A.1.1.1 Download Protocol Confirmation 69

A.1.1.2 Specifying a Protocol Download Script 69

A.1.2 Protocol Diagnostics . 70

A.1.2.1 Run Protocol Diagnostics . 70

A.1.2.2 Generic Diagnostic (Loopback) Test. 72

A.1.2.3 Default Configuration Menu. 74

A.1.2.4 Attach Link Menu . 76

A.1.2.5 Configure Link Menu. 77

A.1.2.6 Enable Link Menu . 78

A.1.2.7 Send Data Menu . 79

A.1.2.8 Disable Link Menu . 80

A.1.2.9 Detach Link Menu . 81

Contents

DC 900-1510C

5

A.1.3 Advanced Options . 82

A.1.3.1 Event Viewer . 83

B Debug Support for ICP-resident Software 85

C ADCCP NRM Loopback Test Procedure 89

C.1 Overview of the Test Program . 89

C.2 Hardware Setup for the Test Program 90

C.3 Running the Test Program . 91

C.4 Sample Output from Test Program . 92

D AWS Loopback Test Procedure 95

D.1 Overview of the Test Program . 95

D.2 Hardware Setup for the Test Program 96

D.3 Running the Test Program . 97

D.4 Sample Output from Test Program . 98

E BSC Loopback Test Procedure 101

E.1 Overview of the Test Program . 101

E.2 Hardware Setup for the Test Program 103

E.3 Running the Test Program . 103

E.4 Sample Output from Test Program . 104

F FMP Loopback Test Procedure 107

F.1 Overview of the Test Program . 107

F.2 Hardware Setup for the Test Program 108

F.3 Running the Test Program . 109

F.4 Sample Output from Test Program . 110

G Protocol Toolkit Loopback Test Procedure 113

G.1 Overview of the Test Program . 113

G.2 Hardware Setup for the Test Program 114

G.3 Running the Test Program . 115

G.4 Sample Output from Test Program . 118

H STD1200A Loopback Test Procedure 129

H.1 Overview of the Test Program . 129

6

DC 900-1510C

ICP2432 User’s Guide for Windows NT

H.2 Hardware Setup for the Test Program. 130

H.3 Running the Test Program . 131

H.4 Sample Output from Test Program . 132

I X.25/HDLC Loopback Test Procedure 135

I.1 Overview of the Test Programs . 135

I.2 Hardware Setup for the Test Programs 136

I.3 Running the Test Programs . 136

I.4 Sample Output from Test Programs. 139

Index 143

DC 900-1510C

7

List of Figures

Figure 1–1: Typical Data Communications System Configuration. 16

Figure 2–1: Startup Information for Embedded ICP2432 18

Figure 2–2: Installation Directory for Embedded ICP2432. 19

Figure 2–3: Program Folder . 20

Figure 2–4: Restart Windows. 21

Figure 2–5: Startup Information for FMP. 24

Figure 2–6: Installation Directory for FMP . 25

Figure 2–7: Simpact ICPTool Icon . 27

Figure 2–8: ICPTool Main Menu. 27

Figure 2–9: Protocol Download Menu. 28

Figure 3–1: DLI/TSI Interface in the Freeway Server Environment 32

Figure 3–2: DLI/NTsi Interface in the Embedded ICP2432 Environment 33

Figure 3–3: NTsi Trace Buffer Example . 41

Figure 3–4: NTsi Log Buffer Example . 41

Figure 4–1:

ICP_Driver_Info

 Structure . 50

Figure 4–2:

IcpState

 Field Definitions . 51

Figure 4–3: Sample Event Log Displayed in the Event Viewer 56

Figure 4–4: Log Message Event Detail . 57

Figure A–1: Simpact ICPTool Icon . 65

Figure A–2: ICPTool Main Menu. 66

Figure A–3: ICP Information. 66

Figure A–4: Protocol Download Menu. 68

Figure A–5: Protocol Download Confirmation . 69

Figure A–6: Protocol Diagnostics Menu . 71

Figure A–7: Generic Diagnostic Warning . 72

8

DC 900-1510C

ICP2432 User’s Guide for Windows NT

Figure A–8: Generic Diagnostic Main Menu . 73

Figure A–9: Default Configuration Menu . 75

Figure A–10: Attach Link Menu . 76

Figure A–11: Configure Link Menu . 77

Figure A–12: Enable Link Menu . 78

Figure A–13: Send Data Menu . 79

Figure A–14: Disable Link Menu . 80

Figure A–15: Detach Link Menu . 81

Figure A–16: Advanced Options Menu . 82

Figure A–17: Event Viewer . 83

Figure A–18: Event Detail Output . 84

Figure C–1: Sample Output: NRM Non-blocking Loopback Program (nrmalp) . . . 93

Figure D–1: Sample Output: AWS Non-Blocking Loopback Program (awsalp) 99

Figure E–1: Sample Output from BSC3780 Non-Blocking Loopback Program 105

Figure F–1: Sample Output from FMP Non-Blocking Loopback Program 111

Figure G–1: Main Menu of Protocol Toolkit Test . 116

Figure G–2: Sample Output from Protocol Toolkit Test Showing Demo Option. . . . 119

Figure G–3: Sample Output from Protocol Toolkit Test Showing a BSC Test. 120

Figure H–1: Sample Output from STD1200A Non-Blocking Loopback Program . . . 133

Figure I–1: Sample Output: HDLC Loopback Program (hdlc_user) 140

Figure I–2: Sample Output: X.25 Loopback Program (x25_svc) 141

DC 900-1510C

9

List of Tables

Table 2–1: Protocol Identifiers . 22

Table 3–1: NT Errors Mapped to tserrno Definitions 42

Table 4–1: ICP2432 Driver Control Codes . 48

Table 4–2:

ICP_Driver_Info

 Structure Fields . 50

Table A–1: Download a Protocol to the ICP. 67

Table A–2: Protocol Diagnostics Menu Selections 70

Table 5–1: BSC Protocol Loopback Test Programs 102

Table I–1: X.25/HDLC Test Files . 137

10

DC 900-1510C

ICP2432 User’s Guide for Windows NT

DC 900-1510C

11

Preface

Purpose of Document

This document describes how to use the ICP2432 intelligent communications proces-

sor in a peripheral component interconnect (PCI) bus computer running the

Windows NT operating system.

Intended Audience

This document is intended primarily for Windows NT system managers and applica-

tions programmers. Application programmers can use Simpact’s data link interface

(DLI) to interface to the ICP2432 device driver. The DLI provides

dlInit

,

dlOpen

,

dlClose

,

dlWrite

,

dlRead

, and related functions for accessing the ICP2432. Refer to

Chapter 3 for details.

Organization of Document

Chapter 1 is an overview of the product.

Chapter 2 describes how to install the ICP2432 software in a Windows NT system. This

chapter is of interest primarily to system managers.

Chapter 3 describes the Windows NT embedded interface to Simpact’s data link inter-

face (DLI). This chapter supplements the

Freeway Data Link Interface Reference Guide

and is of interest primarily to programmers who are either porting an existing applica-

tion (currently operational in the Freeway server environment) to the embedded envi-

12

DC 900-1510C

ICP2432 User’s Guide for Windows NT

ronment (for example, the PCI ICP2432) or who are developing an initial application

to the DLI in the embedded environment.

Chapter 4 describes the Win32 interface to the ICP2432 device driver.

Appendix A describes Simpact’s ICPTool for Windows NT which supports the software

installation procedure in Chapter 2 and provides a graphical user interface to the ICP

command-line tools.

Appendix B describes debug support.

Appendix C describes the loopback test procedure for the ADCCP NRM protocol.

Appendix D describes the loopback test procedure for the Asynchronous Wire Service

(AWS) protocol.

Appendix E describes the loopback test procedure for the BSC protocols.

Appendix F describes the loopback test procedure for the FMP toolkit.

Appendix G describes the loopback test procedure for the protocol toolkit.

Appendix H describes the loopback test procedure for the STD1200A protocol.

Appendix I describes the loopback test procedure for the X.25 protocol.

Document Conventions

The term “ICP,” as used in this document, refers to the physical ICP2432, whereas the

term “device” refers to all of the Windows NT software constructs (device driver, I/O

database, and so on) that define the device to the system, in addition to the ICP2432

itself.

Preface

DC 900-1510C

13

Physical “ports” on the ICPs are logically referred to as “links.” However, since port and

link numbers are always identical (that is, port 0 is the same as link 0), this document

uses the term “link.”

Program code samples are written in the “C” programming language.

Document Revision History

The revision history of the

ICP2432 User’s Guide for Windows NT

, Simpact document

DC 900-1510C, is recorded below:

Customer Support

If you are having trouble with any Simpact product, call us at 1-800-275-3889 Monday

through Friday between 8 a.m. and 5 p.m. Pacific time.

You can also fax your questions to us at (619)560-2838 or (619)560-2837 any time.

Please include a cover sheet addressed to “Customer Service.”

We are always interested in suggestions for improving our products. You can use the

report form in the back of this manual to send us your recommendations.

Document Revision Release Date Description

DC 900-1510A November 1997 Original release

DC 900-1510B March 1998 General enhancements; see

freeway\relnotes

.

DC 900-1510C July 1998 Added Chapter 4, a description of the Win32
interface

14

DC 900-1510C

ICP2432 User’s Guide for Windows NT

DC 900-1510C

15

Chapter

1

Product Overview

The Simpact ICP2432 data communications product allows PCIbus computers run-

ning the Windows NT operating system to transfer data to other computers or termi-

nals over standard communications circuits. The remote site need not have identical

equipment. The protocols used comply with various corporate, national, and interna-

tional standards.

The ICP2432 product consists of the software and hardware required for user applica-

tions to communicate with remote sites. Figure 1–1 is a block diagram of a typical sys-

tem configuration. Application software in the Windows NT system communicates

with the ICP2432 by means of the Simpact-supplied device driver.

The ICPTool program, supplied with the product, downloads the ICP-resident software

to the ICP2432. Simpact’s ICPTool for Windows NT (described in Chapter 2 and

Appendix A) supports the software installation process and provides a graphical user

interface to download protocols and run diagnostic test programs.

The ICP controls the communications links for the user applications. The user applica-

tion programs can use Simpact’s data link interface (DLI) to read and write data to the

ICP2432 for transmission to or receipt from the communications links, and can change

the link configuration parameters. See Chapter 3.

16

DC 900-1510C

ICP2432 User’s Guide for Windows NT

Figure 1–1:

Typical Data Communications System Configuration

User
Application

Process

ICPTool
Program

Host
Driver

(ICP2432.sys) ICP

Communication
link

Communication
link

P
C
I
b
u
s

•
•
•

Data links to
remote computer
or data network

3296

•
•
•

DLI/
NTsi

DC 900-1510C

17

Chapter

2

Software Installation

This chapter describes Simpact’s ICP2432 software installation procedure for

Windows NT 4.0.

2.1 Memory Requirements

Simpact recommends that you have at least 32 megabytes of system memory for the

ICP2432 product.

2.2 ICP2432 Software Installation Procedure

Step 1:

Verify that you have installed one or more ICP2432 boards in your computer, as

described in the

ICP2432 Hardware Installation Guide

.

Step 2:

Insert the first ICP2432 installation diskette or the CD-ROM into your Windows NT

computer.

Step 3:

Start the installation by running the

setup.exe

 program on the installation diskette or

CD-ROM. Click

Next

 when the startup information, shown in Figure 2–1, is displayed.

18

DC 900-1510C

ICP2432 User’s Guide for Windows NT

Note

If you install another ICP2432 board later, you do not have to run

the

setup.exe

 program again.

Figure 2–1:

Startup Information for Embedded ICP2432

tarticp.pcx at
00%

2: Software Installation

DC 900-1510C

19

Step 4:

The installation script prompts for an installation directory in which to install the dis-

tribution software (Figure 2–2). The default directory is

C:\

. The software directory

installed under

C:\

is

freeway

. All system files are installed in the Windows NT system

home directory (for example,

C:\WinNT\system32

). If the default directory is accept-

able, click

Next

.

To install the software in a different directory, click

Browse

. If you install the software in

a directory other than

C:\

, the

<installed directory>\freeway\boot\icptoolload

file

must be modified to point to the correct directory.

Figure 2–2:

Installation Directory for Embedded ICP2432

icp2432install.
tif at 100%

20

DC 900-1510C

ICP2432 User’s Guide for Windows NT

Step 5:

Setup will then add program icons to the program folder (Figure 2–3). If the default

folder name is acceptable, click

Next

. To choose a new folder name, click

Browse.

Step 6:

After completion of Step 5, the installation script updates and inserts keys into the sys-

tem registry.

Figure 2–3: Program Folder

2: Software Installation

DC 900-1510C 21

Step 7:

When the prompt asking “Do you want the ICP driver to be started automatically upon

reboot?” appears, click Yes.

Step 8:

The Restart Windows menu (Figure 2–4) provides two options, to restart your com-

puter now or later. Simpact recommends that you restart your computer now.

Note
Remove the installation diskette before restarting your computer.

Figure 2–4: Restart Windows

restart.tif at
100%

22 DC 900-1510C

ICP2432 User’s Guide for Windows NT

2.3 Protocol or Toolkit Software Installation Procedure

The ppp variables mentioned throughout this section specify the particular protocol

you are using. Refer to Table 2–1.

The following files are in the freeway directory:

• readme.ppp provides general information about the protocol software

• relnotes.ppp provides specific information about the current release of the pro-

tocol software

• relhist.ppp provides information about previous releases of the protocol soft-

ware

The load file, pppload, is in the freeway\boot directory.

a Except for the load configuration file where ppp is bsc. For example,
bscload is used for BSC3270 and BSC2780/3780.
b Except for the test directory where ppp is x25mgr.

Table 2–1: Protocol Identifiers

Protocol or Toolkit
Protocol Identifier

(pppppppppppp)

ADCCP NRM nrm

AWS aws

BSC3270 bsc3270a

BSC2780/3780 bsc3780a

FMP fmp

Protocol Toolkit sps

STD1200A s12

X.25/HDLC x25b

ee the file
ppptable”: to
dd
nformation as
ppendices
re added.

2: Software Installation

DC 900-1510C 23

The executable object for protocol software other than protocol toolkit

(ppp_fw_2432.mem) is in the freeway\icpcode\icp2432\protocols directory. The exe-

cutable object for the protocol toolkit software (sps_fw_2432.mem) is in the

freeway\icpcode\proto_kit\icp2432 directory.

The executable object for the system-services module for protocol software other than

protocol toolkit (xio_2432.mem) is in the freeway\icpcode\icp2432\osimpact direc-

tory. The executable object for the system-services module for the protocol toolkit

(xio_2432.mem) is in the freeway\icpcode\os_sds\icp2432 directory.

Source code for the loopback tests is in the freeway\client\test\ppp directory.

Step 1:

Insert the protocol installation diskette or CD-ROM into your Windows NT computer.

Step 2:

Start the installation by running the setup.exe program on the installation diskette or

CD-ROM. Click Next when the startup information, as shown in the FMP example in

Figure 2–5, is displayed.

24 DC 900-1510C

ICP2432 User’s Guide for Windows NT

Figure 2–5: Startup Information for FMP

tartfmp.pcx
t 100%

2: Software Installation

DC 900-1510C 25

Step 3:

The installation script prompts for an installation directory in which to install the dis-

tribution software (Figure 2–6). The default directory is C:\. All system files are

installed in the Windows NT system home directory (for example,

C:\WinNT\system32). If the default directory is acceptable, click Next. To install the soft-

ware in a different directory, click Browse.

Figure 2–6: Installation Directory for FMP

fmpinstall.tif
at 100%

26 DC 900-1510C

ICP2432 User’s Guide for Windows NT

Step 4:

Using any text editor, edit the load file (freeway\boot\pppload) for your protocol.

Uncomment the lines associated with ICP2432. Modify the path names as needed. Do

not change the memory locations (such as 40001200) for the LOAD commands.

Note
If you are installing the X.25 protocol, you must build the CS API

files. A make file is included that performs this operation.

From the freeway\lib\cs_api directory, enter the following com-

mand. The newly created file will be placed in the freeway\

client\int_nt_emb\bin directory.

ccccdddd CCCC::::\\\\ffffrrrreeeeeeeewwwwaaaayyyy\\\\lllliiiibbbb\\\\ccccssss____aaaappppiiii

nnnnmmmmaaaakkkkeeee ----ffff mmmmaaaakkkkeeeeffffiiiilllleeee....nnnnttttaaaa (for an Alpha NT system)

oooorrrr

nnnnmmmmaaaakkkkeeee ----ffff mmmmaaaakkkkeeeeffffiiiilllleeee....nnnnttttiiii (for an Intel NT system)

Dynamic link libraries must reside in the current working direc-

tory or in a directory specified in your “PATH” environment vari-

able. Do one of the following:

Add \freeway\client\int_nt_emb\lib to your path.

or

Copy the .dll files from \freeway\client\int_nt_emb\lib to

your bin directory or to another directory in your path.

Continue the installation at Step 5 below.

2: Software Installation

DC 900-1510C 27

Step 5:

From the freeway\client\test\ppp directory, enter one of the following commands:

nnnnmmmmaaaakkkkeeee ----ffff mmmmaaaakkkkeeeeffffiiiilllleeee....nnnnttttaaaa (for an Alpha NT system)

nnnnmmmmaaaakkkkeeee ----ffff mmmmaaaakkkkeeeeffffiiiilllleeee....nnnnttttiiii (for an Intel NT system)

The newly created files are placed in the freeway\client\int_nt_emb\bin directory.

Step 6:

Select “Start ➝ Programs ➝ Simpact ICP2432 ➝ Simpact ICPTool” (or just double

click on the Simpact ICPTool icon shown in Figure 2–7), then select Download Protocol

from the ICPTool Main Menu (Figure 2–8) to display the Protocol Download Menu

(Figure 2–9).

Figure 2–7: Simpact ICPTool Icon

Figure 2–8: ICPTool Main Menu

I changed
spacing for
step 6 and
both figures to
get all on this
page.

icon.tif at
100%

main.tif at
100%

28 DC 900-1510C

ICP2432 User’s Guide for Windows NT

Figure 2–9: Protocol Download Menu

ownload.tif
t 100%

2: Software Installation

DC 900-1510C 29

Step 7:

Select the protocol you wish to download in the List of Protocol Download Scripts,

then select Download to ICP.

Step 8:

When the protocol is downloaded successfully, click OK, then OK again to exit Protocol

Download, and Quit in the ICPTool Main Menu.

Step 9:

Go to the freeway\client\int_nt_emb\bin directory. Run the loopback test as

described in the appropriate appendix for your protocol.

30 DC 900-1510C

ICP2432 User’s Guide for Windows NT

DC 900-1510C 31

Chapter

3 Programming Using the
Data Link Interface

This chapter describes the application program interface to Simpact’s data link interface

(DLI) module residing in an “embedded PCI” environment, as opposed to a Freeway

server environment. An example of the embedded PCI environment is the PCI ICP2432

in a Windows NT system.

This chapter supplements the DLI interface described in the Freeway Data Link Inter-

face Reference Guide, which supports the Freeway environment and is the primary

source of information for application programmers. This chapter focuses on the differ-

ences between the DLI interface to Freeway and the interface required for the embedded

PCI in an NT system. The Freeway Data Link Interface Reference Guide also describes

DLI functionality and specific interface requirements.

Some references are made to the transport subsystem interface (TSI). However, a new

embedded TSI interface was developed for the NT system, called the “NTsi.” The NTsi

resides between the DLI and the NT system, and is transparent to the user program-

ming to the DLI interface.

This chapter is of interest primarily to programmers who are either porting an existing

application (currently operational in the Freeway environment) to the embedded envi-

ronment (such as the embedded PCI ICP2432), or who are developing an initial appli-

cation to the DLI in the embedded environment. For those developing initial

applications, first read (and always have available) the Freeway Data Link Interface Ref-

erence Guide.

32 DC 900-1510C

ICP2432 User’s Guide for Windows NT

3.1 Embedded Interface Description

3.1.1 Comparison of Freeway Server and Embedded Interfaces

An embedded interface is one where the application does not access a network in com-

municating with the ICP. Traditionally, the DLI and TSI interfaces supported client

applications communicating with the Freeway server on a local-area network (LAN).

This type of interface is shown in Figure 3–1.

In an embedded interface, the DLI does not access the ICP over a network. Instead, the

DLI references a modified TSI interface (NTsi) to access a locally attached ICP. This

interface is shown in Figure 3–2. The NTsi interface supports the functionality that DLI

expects by simulating a “Freeway-like” environment. In this environment no TSI mes-

sages are exchanged, and messages between the Freeway and MsgMux are simulated by

NTsi.

Figure 3–1: DLI/TSI Interface in the Freeway Server Environment

Freeway

ICP0

ICP1

ICP2

ICP3

TCP/IP

192.52.107.99 192.52.107.100

DLI
Client

Application TSI
TSI

Msg
Mux

Ethernet

WAN
Protocols

TCP/IP
Socket Interface

Client

34
00

St
an

da
rd

 B
u

s
In

du
st

ry

SRA

Shared Memory
Interface

dlicfg

DLI Text
Configuration

File

DLI Binary
Configuration File

DLI
Configuration
Preprocessor

(off-line)

TSI Text
Configuration

File

tsicfg

TSI
Configuration
Preprocessor

(off-line)

TSI Binary
Configuration File

3: Programming Using the Data Link Interface

DC 900-1510C 33

3.1.2 Embedded Interface Objectives

The major design objective of the embedded transport subsystem interface (NTsi) was

an implementation requiring no source code changes to the user’s DLI interface when

porting from a Freeway environment to an embedded PCI environment. The user pro-

gram could be re-linked with the DLI/NTsi library and executed in the embedded envi-

ronment. This objective has been met with the following exceptions:

• The dlControl function is not implemented

• The write expedite feature is not implemented

There are differences between these environments which the user must account for, as

well as differences in system behavior; these are described in Section 3.2.

Figure 3–2: DLI/NTsi Interface in the Embedded ICP2432 Environment

DLIHost
Application NTsi

dlicfg

DLI Text
Configuration

File

DLI Binary
Configuration File

DLI
Configuration
Preprocessor

(off-line)

TSI Text
Configuration

File

tsicfg

TSI
Configuration
Preprocessor

(off-line)

TSI Binary
Configuration File

Win32
API

ICP0

ICP1

ICP2

ICP3

PCI
Driver

WAN
Protocols

34
01

P
C

Ib
u

s

Windows
NT 4.x
(Intel)

34 DC 900-1510C

ICP2432 User’s Guide for Windows NT

3.2 DLI Embedded Interface

The DLI embedded Interface is described in terms of the application’s DLI/TSI config-

uration files (Section 3.2.1), and in the DLI itself (Section 3.2.2 on page 36). Within

each context, required changes and any behavior differences are noted.

Caution
The DLI embedded interface is not thread-safe (which is also true

with the Freeway interface). The multi-threaded user application

must provide protection to the DLI interface.

3.2.1 Configuration Files

3.2.1.1 TSI Configuration File

A TSI configuration file that is operational in the Freeway environment can be used by

the embedded PCI application without change. However, only a subset of those param-

eters required for Freeway operation are used in control of the embedded interface.

Those parameters which are not used are simply ignored. Only the following parame-

ters are used in the TSI configuration file:

TSI configuration file “Main” section:

• MaxConns

• LogLev

• AsyncIO

• MaxBufSize

• MaxBuffers

• LogName — Modify by adding an “nt” prefix and current process suffix

• TraceName — Modify by adding an “nt” prefix and current process suffix

• TraceLev

3: Programming Using the Data Link Interface

DC 900-1510C 35

TSI configuration file connection-specific section:

• MaxBufSize

• MaxInQ

• MaxOutQ

• MaxErrors

• LogLev

• TraceLev

• AsyncIO

• Timeout

• Transport — Specify as either “tcp-socket” or “shared-memory”. Even though not

applicable in the embedded environment, this parameter must be specified to

ensure compatibility with the Freeway environment.

Keep in mind the following points regarding the TSI configuration file:

1. Other than the Transport parameter, no parameters relating to TCP/IP or Shared

Memory connections are used.

2. The use of tracing by the NTsi is strongly discouraged in an operational environ-

ment. Tracing is controlled by the TraceLev parameter in the TSI configuration

file. NTsi tracing is performed “on-line” and adds significant overhead to the

application. Its use should be reserved for testing the interface in the event of

problems. When tracing is required, Simpact recommends that you first rely on

the DLI tracing capabilities.

3. Simpact also recommends that you rely on the DLI logging capabilities. If tracing

is specified in the TSI configuration file, a trace level of 3 or lower is strongly rec-

ommended. See Section 3.2.2.3 on page 39 and Section 3.2.2.4 on page 40 for

more information on NTsi tracing and logging.

36 DC 900-1510C

ICP2432 User’s Guide for Windows NT

3.2.1.2 DLI Configuration File

The DLI configuration file is used in the same manner as in the Freeway environment.

The relationship between the DLI and TSI configuration files is exactly as in the

Freeway environment.

3.2.2 The Application Program’s Interface to DLI

The embedded interface does not change the application’s interface to the DLI. While

this interface has remained intact, changes have been made in both the methods sup-

porting the DLI and in the underlying functionality.

3.2.2.1 Embedded Interface — Changes in DLI/TSI Protocol

The lack of a network connection has eliminated the need for some of the current DLI

and TSI functionality. While the changes described below are transparent to the user

application program, they might be noted when examining NTsi trace files.

TSI commands — The TSI Bind, Unbind, Unbind Force, Ack, and Nak com-

mands are not implemented. Essentially, the TSI transport layer has been

replaced with a Win32 interface to the PCI driver, which does not require

(or support) these commands.

DLI commands and responses — The Open Session command, Open Session

response, Close Session command, and Close Session response are not

required, but their transmission and reception are emulated. Even in Raw

operation these commands are processed only by the DLI; their emulation

should be transparent to the user application. While these commands are

only emulated, they are recorded in the NTsi trace file (the command and

response is treated exactly like a “real” transmission, except that they do not

generate any I/O).

3: Programming Using the Data Link Interface

DC 900-1510C 37

Transmission/Reception Buffer Format — The user data buffer is not affected

by the embedded interface. As in the Freeway interface, the DLI builds the

ICP and Protocol header using data from the DLI optional arguments

(OptArgs), if they are supplied; otherwise it uses its same algorithm to gen-

erate these headers. The DLI continues to build a Freeway header and

expects to receive this header in buffers from the ICP. NTsi strips the

Freeway header from the transmission buffer before giving the buffer to the

NT interface, and builds an appropriate Freeway header when receiving

buffers, prior to giving the buffer to the DLI. The user sees the Freeway, ICP,

and Protocol headers in the DLI trace file, but only sees the ICP and Proto-

col headers in the NTsi trace file.

3.2.2.2 Changes in the Application Program’s Interface to DLI

No changes are required in the user application’s interface to the DLI. Some DLI func-

tions have changed in their implementation which might affect the user’s expected

behavior of the function. Changes in affected functions are described below.

dlBufAlloc

Implementation of buffer allocation has changed. Rather than allocating buffers from a

pre-allocated buffer pool managed by TSI, buffer allocation requests are presented to

NTsi which uses the NT system memory services to allocate buffers (using malloc calls).

Do not assume any type of buffer initialization. Also, the size requested in the

dlBufAlloc request is the size requested from the system. If the application requests one

byte for the data buffer size, it should assume only one byte is returned. If buffers are

not freed, rather than eventually receiving a DLI_BUFA_ERR_NO_BUFS error, indicating the

TSI buffer pool has been exhausted, the user might notice a degradation of system per-

formance (as would any application “misusing” system memory). A

DLI_BUFA_ERR_NO_BUFS error should be interpreted as a failure in the underlying request

for system memory.

38 DC 900-1510C

ICP2432 User’s Guide for Windows NT

Note
The user’s buffer allocation only reflects the data size required by

the application. That size is further modified to include “header”

information required by the DLI. This header requirement is

invisible to the user application.

dlBufFree

This function has also changed its implementation. In concert with the change in buffer

allocation, a call to dlBufFree returns the requested buffer to the NT memory services

(using free). Where previously the user could use the buffer pointer returned with the

successful dlBufFree request (the buffer still existed in the TSI buffer pool), now that

buffer is indeed freed. Any further reference to the buffer results in unpredictable

results. Requests with a NULL buffer pointer continue to be returned with a

DLI_BUFF_ERR_INVALID_BUF error message.

The user must supply the pointer received from dlBufAlloc when releasing this same

buffer resource using dlBufFree.

dlClose

There is a minor change in the implementation which should be transparent to the user.

The dlClose function continues to “unbind” the protocol and “detach” the ICP, but

NTsi simulates a Freeway close action for the DLI (no Freeway to close). This action,

rather than releasing a socket resource, results in closing the file handle to Simpact’s ICP

NT driver. In Raw operation, this Freeway close can always be assumed to have been

completed successfully when returned from the call. The Freeway close and response

are in the Ntsi trace file even though the buffers are never transmitted.

3: Programming Using the Data Link Interface

DC 900-1510C 39

dlOpen

There is a minor change in the implementation which should be transparent to the user.

NTsi simulates a Freeway open action for the DLI (no Freeway to open) by returning a

Freeway Open response. When using Raw operation, the user can safely assume a suc-

cessful open when an open request returns with EWOULDBLOCK. If successful (when using

non-blocking I/O with callbacks enabled), callbacks occur as in the Freeway environ-

ment.

Callbacks

The DLI function now always receives callbacks in pairs; a connection callback followed

by a main callback. Also, the DLI’s callback function is never entered while “in a call-

back.” However, the application’s interface to DLI’s callback mechanism remains as in

the Freeway environment. The only difference the application might notice is more

“main” callbacks in the open/close sequences when using Normal operation. However,

in both cases, only one session callback is returned after either sequence completes.

User callbacks are invoked using a callback thread unique to the user’s process. This

may require examining data shared between the user’s callback processing and other

user threads. Users can invoke any DLI service from their callbacks.

3.2.2.3 NTsi Tracing

NTsi tracing is similar to the TSI tracing supported in the Freeway environment; differ-

ences are described below. One important difference for the user is that printing of for-

matted trace information now occurs as the trace data is captured. Trace data is not

saved to a trace buffer and printed at program completion. Rather, it is formatted and

printed as soon as the buffer completes an I/O operation (whether successful or failed).

For this reason, we strongly recommend that NTsi tracing be enabled only in diagnostic

situations. The user might notice a less responsive interface with NTsi tracing enabled.

However, because trace data is printed immediately, trace data is almost always available

(even with abnormal program termination).

40 DC 900-1510C

ICP2432 User’s Guide for Windows NT

Trace file differences:

1. NTsi time stamps each buffer with millisecond granularity.

2. NTsi presents the number of bytes requested as well as the number transferred

(input or output).

3. NTsi presents the NT system error code returned from the operation.

4. Freeway headers are not in NTsi buffers.

5. TSI headers are not in NTsi buffers.

6. NTsi decodes the ICP and Protocol headers.

7. The trace option (the TraceLev parameter in the TSI configuration file) of 16

(trace user’s data) is not supported.

8. NTsi does not require running tsidecode.exe to decode the trace file. The trace

file is written in a decoded format.

Figure 3–3 shows an example NTsi trace buffer.

3.2.2.4 NTsi Logging

Like tracing, NTsi logging is similar to the TSI logging supported in the Freeway envi-

ronment; differences are described below. NTsi maps NT system errors into tserrno.

Section 3.2.2.5 describes how specific NT errors are mapped to tserrno.

Log file differences:

1. NTsi presents the NT system error code (if no NT error occurred, 0 is displayed).

2. NTsi does not accompany the error code with a text description.

Figure 3–4 shows an example of an NTsi log buffer.

3: Programming Using the Data Link Interface

DC 900-1510C 41

--
Conn(0) :Sun Jun 08 13:11:02.213 1997
IOQ information: NumberReq(142), NumberXfered(98), ErrorCode(0)
======> (WRITE 98 bytes)
 000000: 00 00 00 00 00 52 08 05 40 00 cd cd 00 00 cd cdR..@.......
 000016: 01 10 00 00 00 00 00 00 01 00 cd cd cd cd cd cd
 000032: 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 defghijklmnopqrs
 000048: 74 75 76 77 78 79 7a 20 41 42 43 44 45 46 47 48 tuvwxyz ABCDEFGH
 000064: 49 4a 4b 4c 4d 4e 4f 50 51 52 53 54 55 56 57 58 IJKLMNOPQRSTUVWX
 000080: 59 5a 20 30 31 32 33 34 35 36 37 38 39 20 61 62 YZ 0123456789 ab
 000096: 63 00 c.
@@@@@ Decoding begins
 ICP header info:
 OldClientID = 0 OldServerID = 0
 DataLength = 82 Cmd(2053) = DLI_ICP_CMD_WRITE
 Status(16384) = DLI_ICP_ERR_NO_ERR
 Parms: [0] = 52685 [1] = 0 [2] = 52685
 Protocol header info:
 Cmd(4097) = DLI_PROT_SEND_TRANS_DATA_EOM
 Modifier = 0 Link = 0
 Cir = 0 Sess = 1 Seq = 52685
 Parms: [0] = 52685 [1] = 52685
--

Figure 3–3: NTsi Trace Buffer Example

Conn - 1: tserrno = -712, nterrno = 121,
Conn - 0: tserrno = -716, nterrno = 995,
Conn - 0: tserrno = -716, nterrno = 995,
Conn - 0: tserrno = -716, nterrno = 22,
Conn - 0: tserrno = -716, nterrno = 22,

Figure 3–4: NTsi Log Buffer Example

42 DC 900-1510C

ICP2432 User’s Guide for Windows NT

3.2.2.5 Error Codes

All NT system errors are mapped into existing TSI error codes (tserrno) so DLI can

recognize the error condition and react accordingly. All NT errors are returned from

calls to GetLastError() when an NT service fails. NT errors are mapped to tserrno def-

initions as shown in Table 3–1.

Table 3–1: NT Errors Mapped to tserrno Definitions

NT Error Code tserrno Value

ERROR_BAD_COMMAND TSI_READ_ERR_SOCK_CLOSED – 615

TSI_WRIT_ERR_SOCK_CLOSED –1714

TSI_POLL_ERR_SOCK_CLOSED – 716

ERROR_MORE_DATA TSI_READ_ERR_OVERFLOW – 612

TSI_POLL_ERR_OVERFLOW – 711

ERROR_ACCESS_DENIED TSI_READ_ERR_INVALID_STATE – 601

TSI_WRIT_ERR_INVALID_STATE –1701

ERROR_BUSY(170)

ERROR_SEM_TIMEOUT TSI_READ_ERR_READ_TIMEOUT – 613

TSI_WRIT_ERR_WRITE_TIMEOUT –1712

TSI_POLL_ERR_READ_TIMEOUT – 712

TSI_POLL_ERR_WRITE_TIMEOUT – 713

ERROR_INVALID_FUNCTION

ERROR_INVALID_PARAMETER

ERROR_IO_DEVICE

ERROR_NOACCESS

ERROR_NOT_ENOUGH_MEMORY

ERROR_OPERATION_ABORTED TSI_READ_ERR_INTERNAL – 614

TSI_WRIT_ERR_INTERNAL –1713

TSI_POLL_ERR_SOCKET_CLOSED – 716

ERROR_INVALID_USER_BUFFER TSI_READ_ERR_INVALID_BUF – 604

TSI_WRIT_ERR_INVALID_BUF –1707

TSI_POLL_ERR_SOCKET_CLOSED – 716

DC 900-1510C 43

Chapter

4 Programming Using the
Win32 Interface

Simpact’s API layers are designed to free developers from the often-difficult program-

ming details of an operating system and the interface details of the protocol software on

the ICP. Simpact’s API layers take care of tasks such as queuing I/O requests, buffer allo-

cation (with properly aligned I/O buffers), building protocol headers, endian transla-

tion, session management, and others. Using the DLI interface described in Chapter 3

allows developers to concentrate more on their specific applications rather than the dif-

ficult communication and programming details associated with transferring data from

one system to the next via a wide-area network. Simpact strongly encourages users to

implement their applications using the DLI interface; however, users who wish to

bypass Simpact’s API layers and use the Win32 system services directly may do so,

although many services provided by the DLI will need to be “reinvented” in the user

application. This chapter provides the information necessary to build Win32 applica-

tions.

4.1 Function Mappings

This section describes how a user application interfaces with the ICP2432 device driver

using Win32 system calls. It is not intended to be a Win32 tutorial; users who bypass

Simpact’s API layers are assumed to already know how to write Win32 applications, the

purpose of the individual Win32 functions, and the programming issues that arise. This

section merely lists the Win32 functions used to communicate with the ICP (via the

device driver) and the actions performed.

44 DC 900-1510C

ICP2432 User’s Guide for Windows NT

4.1.1 Opening the ICP

Before a user application can perform any I/O transaction with the ICP, a handle to the

ICP must be obtained. This is done by opening the ICP using the CreateFile Win32

system service.

One of the parameters to the CreateFile function is a device name having the form

\\.\IcpX, where ‘X’ represents the device number (1, 2, …).1 CreateFile returns a han-

dle to the ICP2432. After the handle is obtained, it is used in other Win32 system service

calls, such as ReadFile or WriteFile.

Note that normal Windows NT file access control is in effect when the device is opened.

For example, if an application sets the dwDesiredAccess parameter for CreateFile to

GENERIC_READ and then later attempts to perform a write request to the ICP, the write

request will fail. Access control is especially important when considering the value to

use for the dwSharedMode parameter, since users will most likely wish to have multiple

sessions to the ICP open simultaneously.

A typical call to CreateFile would look like this:

 HANDLE hFile;
 ...
 hFile = CreateFile("\\\\.\\Icp1",
 GENERIC_READ | GENERIC_WRITE,
 FILE_SHARE_READ | FILE_SHARE_WRITE,
 NULL,
 OPEN_EXISTING,
 FILE_ATTRIBUTE_NORMAL | FILE_FLAG_OVERLAPPED,
 NULL);

When CreateFile returns, hFile contains the handle to the ICP. Note also that over-

lapped I/O is being requested in the above example.2 For non-overlapped I/O, remove

the FILE_FLAG_OVERLAPPED flag from the call.

1. Keep in mind that unlike other Simpact products, device numbers begin at one instead of zero under
Windows NT.

4: Programming Using the Win32 Interface

DC 900-1510C 45

4.1.2 Reading Data

The ReadFile Win32 function is called by a user application to receive data from the

ICP2432. One of the parameters to this function is the file handle that was returned

from CreateFile. The handle must have been opened with GENERIC_READ access. The

user buffer address and buffer size are also passed to ReadFile.

A typical call to ReadFile would look like this:

 char Buffer[1024];
 DWORD BytesReceived;
 HANDLE hFile;
 BOOLEAN Status;
 ...
 Status = ReadFile(hFile,
 Buffer,
 1024,
 &BytesReceived,
 NULL); // Assume non-overlapped operation.

The final parameter must point to an OVERLAPPED structure if the handle was originally

opened using the FILE_FLAG_OVERLAPPED flag in CreateFile.

It should be noted that direct I/O (as opposed to buffered I/O) is used to exchange data

with the ICP. This means that when an I/O request is made, the physical page frames for

the user buffer are locked in memory and become temporarily non-pageable until the

ICP satisfies the request (which could be at a much later time). Hence, if a user applica-

tion uses large I/O buffers and/or has a high number of outstanding read requests,

memory resources are being used up and some system degradation might occur due to

an increased number of page faults. When the I/O request is satisfied, the pages become

unlocked and can be paged by Windows NT in the normal manner.

2. Overlapped I/O is the Win32 term used to describe non-blocking I/O (also called asynchronous I/O).
When an overlapped I/O request is issued, the executing thread does not block, but continues executing
concurrently with the I/O. When overlapped I/O is used, it is up to the user application to synchronize with
I/O completion before processing the data. This is usually done by associating an event object with the I/O
request and using the Win32 function WaitForSingleObject or WaitForMultipleObjects to wait for the
event(s) to enter the signalled state.

46 DC 900-1510C

ICP2432 User’s Guide for Windows NT

4.1.3 Writing Data

The WriteFile Win32 function is called by a user application to send data to the ICP.

One of the parameters to this function is the file handle that was returned from

CreateFile. The handle must have been opened with GENERIC_WRITE access. The user

buffer address and requested transfer size are also passed to WriteFile.

A typical call to WriteFile would look like this:

 char Buffer[1024];
 DWORD BytesWritten;
 HANDLE hFile;
 BOOLEAN Status;
 ...
 Status = WriteFile(hFile,
 Buffer,
 1024,
 &BytesWritten,
 NULL); // Assume non-overlapped operation.

The final parameter must point to an OVERLAPPED structure if the handle was originally

opened using the FILE_FLAG_OVERLAPPED flag in CreateFile.

Caution
For proper communication with the ICP, as well as efficient data

transfer over the 32-bit data path of the PCIbus, the ICP requires

user I/O buffers to be aligned on a longword boundary. In addi-

tion, the Windows NT operating system itself may impose addi-

tional alignment requirements. User applications are responsible

for meeting all alignment requirements; the Windows NT I/O

Manager does not correct alignment discrepancies during a DMA

transfer. The alignment requirement for a particular ICP may be

determined by using the IOCTL_ICP_GET_DRIVER_INFO device con-

trol request (Section 4.1.5).

4: Programming Using the Win32 Interface

DC 900-1510C 47

4.1.4 Cancelling I/O

I/O requests may be cancelled using the Win32 CancelIo function. 3 This function takes

one parameter; a file handle obtained from CreateFile. Using CancelIo automatically

implies the use of overlapped I/O. That is, a thread that issues a non-overlapped I/O

request blocks on the ReadFile or WriteFile call until the I/O completes; and if the

thread is blocked, it cannot call CancelIo. A typical call to CancelIo looks like this:

HANDLE hFile;
BOOLEAN Status;
...
Status = CancelIo(hFile);

The CancelIo function cancels all I/O requests – both reads and writes – that were

issued by the calling thread for the handle specified. If two or more threads have dupli-

cate handles (for example, when one thread creates a second thread, and the second

thread inherits the first thread’s handles), only the I/O requests issued by the calling

thread are cancelled for the given handle; any other I/O requests for the handle are still

active. One implication of this is that a thread cannot use CancelIo to unblock a second

thread that is waiting for a non-overlapped I/O request to complete.

4.1.5 Device Control

User applications might sometimes need to communicate directly to the device driver

(rather than the ICP) to obtain information or perform other control functions. The

DeviceIoControl Win32 function makes special requests directly to the driver. Again,

the handle returned by CreateFile is necessary as a parameter to this function. In addi-

tion, a control code is passed in the dwIoControlCode parameter. This control code tells

the driver which special function to perform. The control codes recognized by the

ICP2432 driver are given in Table 4–1, and defined in the Icp2432Nt.h header file that

is included on the product installation media.

3. CancelIo is a new Win32 function as of Windows NT release 4.0.

48 DC 900-1510C

ICP2432 User’s Guide for Windows NT

4.1.5.1 Cancelling I/O Requests

The IOCTL_ICP_CANCEL_xxx (where xxx is either READS or WRITES) control codes are used

to cancel I/O requests that were issued by the file handle indicated in the

DeviceIoControl call. No input or output buffers need to be specified in the function

call when one of these control codes is used. The following example shows how to can-

cel all read requests issued for a handle:

DWORD Dummy;
HANDLE hFile;
OVERLAPPED Overlap;
BOOLEAN Status;
...
Status = DeviceIoControl(hFile,
 IOCTL_ICP_CANCEL_READS,
 NULL,
 0,
 NULL,
 0,
 &Dummy, // Not used, but required.
 &Overlap);

The final parameter must point to a valid OVERLAPPED structure. Threads using

non-overlapped I/O block until a request completes, and therefore cannot cancel I/O

requests.

Table 4–1: ICP2432 Driver Control Codes

IOCTL Code Description

IOCTL_ICP_CANCEL_READS Cancel all pending read requests for a given file handle

IOCTL_ICP_CANCEL_WRITES Cancel all pending write requests for a given file handle

IOCTL_ICP_GET_DRIVER_INFO Get internal information from the driver

IOCTL_ICP_INIT_ICP Reset the ICP

IOCTL_ICP_INIT_PROC Inform the ICP to execute its INIT routine

IOCTL_ICP_SET_DNL_TARGET_ADDR Set ICP target address of next download block

IOCTL_ICP_WRITE_EXPEDITE Send a high-priority request to the ICP

4: Programming Using the Win32 Interface

DC 900-1510C 49

Note that the IOCTL_ICP_CANCEL_xxx functions have different semantics than the

CancelIo Win32 function. The CancelIo function cancels I/O requests based on a par-

ticular thread/handle combination; the IOCTL functions supplied by Simpact cancel all

I/O requests of a particular type (reads or writes) for a particular handle, regardless of

who issued the requests.

The IOCTL_ICP_CANCEL_WRITES function cancels all pending write requests for a given

file handle, including any expedited writes (see Section 4.1.5.3).

Caution
The IOCTL_ICP_CANCEL_xxx functions are supplied by Simpact for

backward compatibility with device drivers prior to version 1.1-0.

Simpact does not guarantee that these functions will be supported

in future releases, and recommends that the CancelIo function be

used to cancel I/O requests.

4.1.5.2 Obtaining Internal Driver Information

The IOCTL_ICP_GET_DRIVER_INFO control code is used to retrieve information from the

driver. The application supplies an output buffer large enough to hold an

ICP_Driver_Info structure, which is defined in the Icp2432Nt.h header file and has the

format shown in Figure 4–1. Table 4–2 describes the ICP_Driver_Info structure fields.

The possible ICP states are given in Figure 4–2 and also defined in the Icp2432Nt.h

header file.

50 DC 900-1510C

ICP2432 User’s Guide for Windows NT

Figure 4–1: ICP_Driver_Info Structure

Table 4–2: ICP_Driver_Info Structure Fields

Field Description

Node Driver’s internal node number corresponding to the file handle used in
the DeviceIoControl request (Section 4.2.3 describes node numbers)

IcpWasReset TRUE if the ICP has been reset since the handle was open

DeviceNumber Device number of the ICP to which the handle is opened

NumberOfPorts Number of ports (links) on the ICP (2, 4, or 8)

IcpState Current state of the ICP (see Figure 4–2)

BufferAlignment The device’s alignment requirement for user I/O buffers. For example,
a value of four is returned if buffers must be aligned on a longword
boundary, eight is returned for quadword alignment, and so on

NumberOfOpenHandles Number of distinct handles open to this particular ICP

NumberOfIcps Total number of ICP2432s in the system recognized by the driver

Version A NULL-terminated string specifying the driver version number

 typedef struct _ICP_Driver_Info
 {
 /* Handle-specific items. */
 ULONG Node;
 BOOLEAN IcpWasReset;

 /* Items about the ICP to which the handle is opened. */
 ULONG DeviceNumber;
 ULONG NumberOfPorts;
 ICP_State IcpState;

ULONG BufferAlignment;
 ULONG NumberOfOpenHandles;

 /* Driver-wide global information. */
 ULONG NumberOfIcps;

 /* Driver-specific items. */
 UCHAR Version[MAX_VERSION_LENGTH];
 } ICP_Driver_Info, *PICP_Driver_Info;

4: Programming Using the Win32 Interface

DC 900-1510C 51

The following excerpt shows how to obtain the driver information:

DWORD BytesReturned;
 ICP_Driver_Info DriverInfo;
 HANDLE hFile;
 BOOLEAN Status;
 ...
 Status = DeviceIoControl(hFile,
 IOCTL_ICP_GET_DRIVER_INFO,
 NULL,
 0,
 &DriverInfo,
 sizeof(DriverInfo),
 &BytesReturned,
 NULL); // Assume non-overlapped operation.

When the function completes, DriverInfo contains the driver information.

4.1.5.3 Expedited Write Requests

The IOCTL_ICP_WRITE_EXPEDITE control code is used to send an “expedited” message to

the ICP. The device driver sends expedited write requests to the ICP before any normal

write requests (that is, requests that were posted with WriteFile). Multiple expedited

write requests are sent to the ICP in the order in which they are received by the driver,

but always before any normal writes that may be queued. The following segment shows

how to make an expedited write request:

Figure 4–2: IcpState Field Definitions

typedef enum
{
 ICP_State_Unknown, // Unknown state. ICP is unusable.
 ICP_State_POST, // RESET# asserted. POSTs active.
 ICP_State_Reset, // POSTs complete. ICP is reset.
 ICP_State_Download, // ICP is in download mode.
 ICP_State_Init, // ICP is executing INIT procedure.
 ICP_State_Ready // Normal operation.
} ICP_State, *PICP_State;

52 DC 900-1510C

ICP2432 User’s Guide for Windows NT

char Bfr[1024];
DWORD BytesWritten;
HANDLE hFile;
OVERLAPPED Overlap;
BOOLEAN Status;
...
Status = DeviceIoControl(hFile,
 IOCTL_ICP_WRITE_EXPEDITE,
 Bfr,
 1024,
 NULL,
 0,
 &BytesWritten,
 &Overlap);

The above example uses overlapped I/O. An application using non-overlapped I/O

probably has no need to make expedited write requests because only one write request

will be active at any given time (that is, the thread blocks during the write). However, if

multiple threads share a single file handle, there is nothing to stop one of the threads

from making expedited write requests using non-overlapped I/O (for example, one of

the threads might be a “control” thread whose messages have precedence over those of

the other threads).

Care must be taken when using expedited writes because an expedited write is a global

entity to the driver. That is, an expedited write is sent before all normal write requests

that the driver has queued, not just before normal writes for the specified handle. For

example, if five processes, each with a unique handle open to the ICP, simultaneously

issue write requests to an ICP, and one of those requests is an expedited write, the expe-

dited write preempts the requests of the other processes and is sent to the ICP first. 4

Additionally, there is a greater amount of overhead associated with expedited writes

than with normal writes, and expedited writes are less efficient and require more system

resources. Developers should use the expedited write capability judiciously.

4. Requests cannot be queued “exactly” at the same time, of course, so it is possible that the driver may
have started sending a normal write request to the ICP before receiving the expedited write request from the
user application. Once in progress, however, a normal write request cannot be preempted. The expedited
write will be the next request sent to the ICP.

4: Programming Using the Win32 Interface

DC 900-1510C 53

Not all Simpact protocols recognize expedited write requests and treat them the same as

normal write requests. Some protocols that do recognize expedited writes also associate

special characteristics with them in addition to the high-priority nature (for example,

expedited writes may not be subject to flow control). Consult the programmer’s guide

for your particular protocol to determine whether expedited writes are supported and

what attributes are given to them by the protocol software. Regardless of how the pro-

tocol software treats expedited writes, the ICP2432 device driver does not assign any

special characteristics to them other than to send them to the ICP before any normal

writes that are queued.

4.1.5.4 Support for ICP Initialization

The remaining control codes – IOCTL_ICP_INIT_ICP, IOCTL_ICP_INIT_PROC, and

IOCTL_ICP_SET_DNL_TARGET_ADDR – are used to initialize the ICP and are beyond the

scope of this document. The IcpTool utility provided by Simpact on the distribution

media should be used to initialize an ICP. Customers who have a genuine need to

dynamically reinitialize an ICP from within their application should contact Simpact

Customer Support as described on page 13 for information on using the IcpDnld.dll

dynamic link library provided on the distribution media.

4.1.6 Closing A Handle

A user application terminates a session with the ICP by closing the associated file han-

dle. The CloseHandle function is used to close a handle to the ICP.

A typical call to CloseHandle would look like:

 HANDLE hFile;
 BOOLEAN Status;
 ...
 Status = CloseHandle(hFile);

54 DC 900-1510C

ICP2432 User’s Guide for Windows NT

4.2 Driver Features and Capabilities

The ICP2432 device driver provides the following capabilities:

• Support for downloading an application system to the ICP

• Communication with ICP-resident tasks

• Multiplexed I/O (multiple active requests per device)

• Error logging

4.2.1 Download Support

Before applications can use the ICP, it must be downloaded; that is, the ICP-resident

application system must be copied to the ICP’s memory, then executed. This procedure

must occur whenever the ICP is reset. The ICP2432 device driver provides the services

necessary to reset and download the ICPs.

Note
User applications normally do not have to worry about download-

ing the ICP. The ICPTool program supplied with the ICP2432 takes

care of downloading the ICP with the appropriate software.

4.2.2 Communication With ICP-Resident Tasks

A Windows NT application controls the ICP by communicating with the protocol soft-

ware that is executing on the ICP. It accomplishes this by opening a “session” with the

ICP. In normal ICP operation (that is, after the download sequence has completed),

user applications communicate with the ICP software by making read and write

requests. Creating a file handle opens a data path to the ICP and its software, and the

first command sent by the application to the ICP software is usually an “attach” com-

mand, which opens a session to a particular link on the ICP. The commands and

4: Programming Using the Win32 Interface

DC 900-1510C 55

responses recognized by the ICP software are described in the Programmer’s Guide for

the particular protocol executing on the ICP.

4.2.3 Multiplexed I/O

Whenever a file handle is created (not duplicated, but created), a new data path is made

with the ICP. File handles can be thought of as being associated with a logical channel to

the ICP (what is known as a node internally to the driver). All nodes share one physical

interface to the ICP. At any given moment, there is at most one command being sent to

the ICP (because there is only one physical channel), but there can be any number of

pending I/O requests active. Requests are queued on their associated node until such

time when the ICP completes the request. User applications using non-overlapped I/O,

have at most one I/O request pending on a given node; whereas any number of reads or

writes can be pending on a node when overlapped I/O is used.

I/O requests on a given node always complete sequentially.5 However, I/O requests

complete randomly on a global device-wide basis; that is, if Process A issues a read

request and Process B then issues a read request, there is no guarantee that Process A’s

request will complete before Process B’s request (assuming the two processes are using

distinct file handles to the ICP).

4.2.4 Error Logging

When the ICP2432 driver detects an error, it creates an entry in the Windows NT sys-

tem event log. The system event log can be viewed by opening the Event Viewer

(Start–>Programs–>Administrative Tools (Common)–>Event Viewer) and selecting

Log–>System from the menu bar. Figure 4–3 shows a sample event log displayed in the

Event Viewer.

5. At least within the type of request. That is, all read requests on a node complete sequentially in the order
in which they were issued, and all write requests on a node complete sequentially, but the combined set of
reads and writes does not necessarily complete in the order issued.

56 DC 900-1510C

ICP2432 User’s Guide for Windows NT

The “Source” column identifies the source of the log message. As shown in Figure 4–3,

error messages from the ICP2432 driver are identified by the string “ICP2432.” The icon

at the beginning of each line indicates the severity of the event; an ‘i’ indicates an infor-

mational message, an exclamation point indicates a warning message, and a stop sign

indicates an error message. Double-clicking on a line gives further details about the

event, as shown in Figure 4–4.

The “Description” field in the Event Detail describes the event, and the severity is indi-

cated in the “Type” field. Depending on the event, the ICP2432 driver might dump

internal information along with the event notification. This information (which is for

Simpact internal use only) is displayed in the “Data” field of the Event Detail (beginning

at offset 0028).

Figure 4–3: Sample Event Log Displayed in the Event Viewer

33
20

4: Programming Using the Win32 Interface

DC 900-1510C 57

Figure 4–4: Log Message Event Detail

33
21

58 DC 900-1510C

ICP2432 User’s Guide for Windows NT

4.3 I/O Completion Status

The ICP2432 driver is responsible for setting the completion status of any I/O request

that it processes.6 If a Win32 I/O function returns an error, the GetLastError or

GetOverlappedResult function can be used by the application to obtain the error code

that indicates the reason for the failure. Because the meaning of a Win32 error code can

sometimes be obscured when it is translated from the original status code returned to

the I/O Manager by the driver, this section describes the error responses that user appli-

cations might encounter and their cause. Note that this is a subset of all possible error

returns, because other Windows NT components can also fail an I/O request.

4.3.1 Successful Completion

The following success codes are returned by the driver.

EEEERRRRRRRROOOORRRR____IIIIOOOO____PPPPEEEENNNNDDDDIIIINNNNGGGG

The request requires additional processing and is pending. Only applications

using overlapped I/O see this completion code.

NNNNOOOO____EEEERRRRRRRROOOORRRR or EEEERRRRRRRROOOORRRR____SSSSUUUUCCCCCCCCEEEESSSSSSSS

These are two names for the same completion code and indicate that a request

completed successfully.

4.3.2 Error Completion

The following error codes are returned by the driver.

EEEERRRRRRRROOOORRRR____AAAACCCCCCCCEEEESSSSSSSS____DDDDEEEENNNNIIIIEEEEDDDD

The requesting handle is stale (that is, the ICP has been reset since the handle was

opened). The handle must be closed (with CloseHandle).

6. Not all I/O requests necessarily reach the ICP2432 driver; other Windows NT components such as the
I/O Manager can fail an I/O request without passing it to the driver.

4: Programming Using the Win32 Interface

DC 900-1510C 59

EEEERRRRRRRROOOORRRR____BBBBAAAADDDD____CCCCOOOOMMMMMMMMAAAANNNNDDDD

A read request or an expedited write request was issued while the ICP was not in

normal operating mode. Reads and expedited writes cannot be requested until

the ICP has been initialized.

A write request was issued while the ICP was not in normal operating mode or

download mode.

A cancel request was issued while the ICP was not in normal operating mode.

Requests may not be cancelled until the ICP has been initialized.

An IOCTL_ICP_INIT_PROC request was issued while the ICP was not in download

mode. User applications should never encounter this scenario because ICPs are

initialized with Simpact-supplied utilities only.

An IOCTL_ICP_SET_DNL_TARGET_ADDR request was issued while the ICP was not in

download mode. User applications should never encounter this scenario because

ICPs are initialized with Simpact-supplied utilities only.

EEEERRRRRRRROOOORRRR____BBBBUUUUSSSSYYYY

An attempt was made to open a handle to the ICP during board initialization

while a handle was already open. The device driver forces exclusive access to the

ICP during initialization to prevent collisions between two or more threads that

might attempt to initialize the ICP concurrently.

A read request or an IOCTL_ICP_CANCEL_READS request was issued while a read

cancel operation was in progress.

A write request, expedited write request, or IOCTL_ICP_CANCEL_WRITES request

was issued while a write cancel operation was in progress.

An IOCTL_ICP_INIT_PROC request was issued while the ICP was writing a down-

load block or there was already an initialization request in progress. User applica-

60 DC 900-1510C

ICP2432 User’s Guide for Windows NT

tions should never encounter these scenarios because ICPs are initialized with

Simpact-supplied utilities only.

An IOCTL_ICP_SET_DNL_TARGET_ADDR request was issued while the target address

was already set. User applications should never encounter this scenario because

ICPs are initialized with Simpact-supplied utilities only.

EEEERRRRRRRROOOORRRR____FFFFIIIILLLLEEEE____NNNNOOOOTTTT____FFFFOOOOUUUUNNNNDDDD

The device driver did not find any ICP2432s in the system. User applications will

never see this error because it can only occur when the driver is initially loaded

into the system.

EEEERRRRRRRROOOORRRR____IIIINNNNVVVVAAAALLLLIIIIDDDD____FFFFUUUUNNNNCCCCTTTTIIIIOOOONNNN

An DeviceIoControl function call was made with an unrecognized control code.

A request to write a download block was issued before the target address was set

or while a download write was already in progress. User applications should never

encounter these scenarios because ICPs are initialized with Simpact-supplied util-

ities only.

EEEERRRRRRRROOOORRRR____IIIINNNNVVVVAAAALLLLIIIIDDDD____PPPPAAAARRRRAAAAMMMMEEEETTTTEEEERRRR

A filename was specified with the device name in CreateFile (for example,

\\.\Icp1\Filename). ICPs are not storage devices, and therefore a filename can-

not be specified when opening a handle to the device.

A NULL buffer pointer was used in an I/O request.

An IOCTL_ICP_GET_DRIVER_INFO request was made with a NULL output buffer

pointer.

An IOCTL_ICP_INIT_PROC or IOCTL_ICP_SET_DNL_TARGET_ADDR request was made

with a NULL input buffer pointer, or a value of zero was supplied. User applica-

4: Programming Using the Win32 Interface

DC 900-1510C 61

tions should never encounter these scenarios because ICPs are initialized with

Simpact-supplied utilities only.

EEEERRRRRRRROOOORRRR____IIIINNNNVVVVAAAALLLLIIIIDDDD____UUUUSSSSEEEERRRR____BBBBUUUUFFFFFFFFEEEERRRR

An invalid buffer size was used in an I/O request. Buffers must be at least large

enough to contain the headers recognized by the protocol software. The one

exception to this is the download block, which may be a minimum of one byte in

length. The maximum buffer size allowed by the driver is 65K, which is the max-

imum amount of data that the ICP can transfer in a single DMA operation. The

Windows NT kernel can also impose additional restrictions on the maximum

buffer size. Kernel-imposed restrictions are defined by the maximum number of

mapping registers that it allocates for a single DMA transaction. Because there is

a one-to-one correspondence between mapping registers and virtual memory

pages, the system’s page size also influences the maximum buffer size allowed by

the kernel.

An IOCTL_ICP_GET_DRIVER_INFO request was made with an output buffer that was

too small to hold the information.

An IOCTL_ICP_INIT_PROC or IOCTL_ICP_SET_DNL_TARGET_ADDR request was made

with an input buffer that was too small to hold the information required by the

driver. User applications should never encounter these scenarios because ICPs are

initialized with Simpact-supplied utilities only.

EEEERRRRRRRROOOORRRR____IIIIOOOO____DDDDEEEEVVVVIIIICCCCEEEE

The file object pointer passed from the I/O Manager to the device driver does not

correspond to any active node. This is an internal driver error.

No work queue entry was found for an I/O Request Packet (IRP) that the I/O

Manager was attempting to cancel. This is an internal driver error.

The ICP negatively acknowledged a driver command. This is an internal driver

error, or possibly an indication of a hardware error in the system.

62 DC 900-1510C

ICP2432 User’s Guide for Windows NT

The ICP did not finish its power-on tests within the allotted time from reset, or a

failure was detected during the tests. Both of these are indications of a bad ICP.

User applications should never encounter these scenarios because ICPs are initial-

ized with Simpact-supplied utilities only.

The ICP sent an unrecognized command after the protocol software was initial-

ized. This indicates a bad ICP or possible system hardware problems. User appli-

cations should never encounter this scenario because ICPs are initialized with

Simpact-supplied utilities only.

EEEERRRRRRRROOOORRRR____MMMMOOOORRRREEEE____DDDDAAAATTTTAAAA

A user buffer for a read request was too small to hold the amount of data that the

ICP wanted to supply. The user buffer contains partial data (filled to capacity),

but the remaining data is lost.

EEEERRRRRRRROOOORRRR____NNNNOOOOAAAACCCCCCCCEEEESSSSSSSS

An I/O buffer was misaligned.

EEEERRRRRRRROOOORRRR____NNNNOOOOTTTT____EEEENNNNOOOOUUUUGGGGHHHH____MMMMEEEEMMMMOOOORRRRYYYY

The driver could not allocate non-pageable system memory.

An attempt was made to open a handle to the ICP, but all nodes in the driver were

already allocated.

An adapter object could not be allocated for a device. User applications will never

see this error because it can only occur when the driver is initially loaded.

EEEERRRRRRRROOOORRRR____OOOOPPPPEEEERRRRAAAATTTTIIIIOOOONNNN____AAAABBBBOOOORRRRTTTTEEEEDDDD

The I/O request was cancelled. A request can be cancelled for various reasons. For

example, an application may have explicitly issued a cancel request via the

CancelIo function or the DeviceIoControl function (with a control code of

IOCTL_ICP_CANCEL_xxx). Another reason could be that the board was reset, either

explicitly when the user reinitialized the ICP or implicitly when the driver

4: Programming Using the Win32 Interface

DC 900-1510C 63

detected an unrecoverable error (such as the board not responding to a com-

mand). Additionally, the I/O Manager may attempt to cancel I/O requests in

response to a thread being terminated abnormally. However, this last scenario can

only occur in applications that share file handles (and I/O requests) among mul-

tiple threads.

EEEERRRRRRRROOOORRRR____RRRREEEESSSSOOOOUUUURRRRCCCCEEEE____DDDDAAAATTTTAAAA____NNNNOOOOTTTT____FFFFOOOOUUUUNNNNDDDD

The driver could not find resource information (such as the interrupt vector, base

address, and so on) for an ICP2432. User applications will never see this error

because it can only occur when the driver is initially loaded.

EEEERRRRRRRROOOORRRR____SSSSEEEEMMMM____TTTTIIIIMMMMEEEEOOOOUUUUTTTT

The ICP did not respond to a driver command within the allotted time.

64 DC 900-1510C

ICP2432 User’s Guide for Windows NT

DC 900-1510C 65

Appendix

A ICPTool for Windows NT

This appendix describes the features of the Simpact ICPTool program for Windows NT.

ICPTool provides a graphical user interface to download protocol software to the

ICP2432 and run the diagnostic test programs. ICPTool is installed with the ICP2432

product software.

A.1 ICPTool Main Menu

To start the ICPTool program, select “Start ➝ Programs ➝ Simpact ICP2432 ➝ Sim-

pact ICPTool” (or just double click on the Simpact ICPTool icon shown in Figure A–1).

The ICPTool Main Menu (Figure A–2) allows you to:

• download a protocol onto the ICP (Section A.1.1)

• run any protocol diagnostic test (Section A.1.2)

• do advanced configuration (Section A.1.3).

Select About ICP to display ICP information similar to Figure A–3.

Figure A–1: Simpact ICPTool Icon

icon.tif at
100%

66 DC 900-1510C

ICP2432 User’s Guide for Windows NT

Figure A–2: ICPTool Main Menu

Figure A–3: ICP Information

main.tif at
00%

bout.tif at
00%

A: ICPTool for Windows NT

DC 900-1510C 67

A.1.1 Download Protocol

Select Download Protocol from the ICPTool Main Menu to display the Protocol Down-

load Menu (Figure A–4). If your system contains more than one ICP2432 board, select

the ICP to be downloaded. Select a download script from the List of Protocol Down-

load Scripts (which are stored in <installation directory>\freeway\boot).

Table A–1 summarizes the download selections.

Within the Protocol script currently downloaded box, if no protocol is currently

loaded on the ICP, the message <None> is displayed. If there is no information from the

driver, the message Not available is displayed for the Number of links.

Table A–1: Download a Protocol to the ICP

Button Selected Action

Download to ICP After you make a selection from the List of Protocol Download Scripts, the
protocol software is downloaded to the ICP

Have Disk Allows you to specify the location of a user-defined protocol download
script to be loaded. A browser window appears to locate the download
script file.

Download upon
reboot

If you want the protocol to be automatically downloaded to the ICP upon
future reboot, select this button. The script specified in “Protocol scripts
currently downloaded” will be set in “Protocol script to be loaded upon
Reboot.”

Clear If you do not want to load the download script specified in “Protocol script
to be loaded upon Reboot” upon reboot, select this button.

Techpubs —
“Have Disk” is
a common
Windows NT
term.

68 DC 900-1510C

ICP2432 User’s Guide for Windows NT

Figure A–4: Protocol Download Menu

ownload.tif
t 100%; also
n chapter 2.

A: ICPTool for Windows NT

DC 900-1510C 69

A.1.1.1 Download Protocol Confirmation

A successful Download to ICP request is confirmed by the Protocol Download Confirma-

tion. An example is shown in Figure A–5. Click OK.

A.1.1.2 Specifying a Protocol Download Script

If you select Have Disk from the Protocol Download Menu, a browser window appears to

locate the user-defined download script file, which is then used to download a protocol

to the selected ICP.

Note
Specify the name of the .mem file in the download script file. All

.mem files are in the boot directory.

After download completion, the Protocol Download Confirmation (Figure A–5) is

displayed. Click OK.

Figure A–5: Protocol Download Confirmation

dwnldsucc.pcx
 at 100%

70 DC 900-1510C

ICP2432 User’s Guide for Windows NT

A.1.2 Protocol Diagnostics

Select Protocol Diagnostics from the ICPTool Main Menu to display the Protocol Diag-

nostics Menu (Figure A–6). A List of Protocol Diagnostics is provided.

A.1.2.1 Run Protocol Diagnostics

To run the diagnostic tests, highlight the desired entries in the list and select Run Diag-

nostics. Table A–2 summarizes the menu selections.

The List of Protocol Diagnostics varies depending on your system configuration. The

Generic Diagnostics test is always included with the ICPTool product. If you select the

Generic Diagnostics test, Section A.1.2.2 on page 72 explains the menu sequence.

Table A–2: Protocol Diagnostics Menu Selections

Button Selected Action

Run Diagnostics The tests highlighted in the List of Protocol Diagnostics are run.
The results are displayed in a report window.

Select All All tests in the list are highlighted.

A: ICPTool for Windows NT

DC 900-1510C 71

Figure A–6: Protocol Diagnostics Menu

diagnostics.tif
at 100%

72 DC 900-1510C

ICP2432 User’s Guide for Windows NT

A.1.2.2 Generic Diagnostic (Loopback) Test

Caution
This is a loopback test, so make sure you have the loopback cable

connected on the ICP. This diagnostic only works with the

ICPToolLoad protocol script.

When you select Generic Diagnostics (Loopback test) from the Protocol Diagnostics

Menu (Figure A–6 on page 71), a warning message appears (Figure A–7) asking you to

make sure the ICPToolLoad protocol script has been downloaded to the ICP. If you click

“Yes” when asked if you want to continue, the Generic Diagnostic Main Menu appears as

shown in Figure A–8. You can run the test with the default configuration

(Section A.1.2.3) or control the entire test process interactively using the button selec-

tions from the Generic Diagnostic Main Menu (Section A.1.2.4 through

Section A.1.2.9).

Note
For most sites, you can select Run Default to verify the ICP hard-

ware and software installation.

Figure A–7: Generic Diagnostic Warning

enericmsg.tif
t 84% to get
t on this page

A: ICPTool for Windows NT

DC 900-1510C 73

Figure A–8: Generic Diagnostic Main Menu

generic.tif at
100%

74 DC 900-1510C

ICP2432 User’s Guide for Windows NT

A.1.2.3 Default Configuration Menu

When you select Run Default from the Generic Diagnostic Main Menu, the Default Con-

figuration Menu appears as shown in Figure A–9. You can run the generic test with the

displayed defaults or you can reconfigure parameters prior to running the default test

(pulldown menus are provided for some parameters). Select Run Test when you are

ready to run the test.

Note
For most sites, the default configuration is adequate for running

the generic protocol diagnostic to verify the ICP hardware and

software installation.

Note
The menus in Section A.1.2.4 through Section A.1.2.9 allow you to

control the entire generic test interactively using the button selec-

tions from the Generic Diagnostic Main Menu (page 73).

A: ICPTool for Windows NT

DC 900-1510C 75

Figure A–9: Default Configuration Menu

default.tif at
90%

76 DC 900-1510C

ICP2432 User’s Guide for Windows NT

A.1.2.4 Attach Link Menu

Figure A–10: Attach Link Menu

ttach.tif at
00%

A: ICPTool for Windows NT

DC 900-1510C 77

A.1.2.5 Configure Link Menu

Figure A–11: Configure Link Menu

configlure.tif
at 100%

78 DC 900-1510C

ICP2432 User’s Guide for Windows NT

A.1.2.6 Enable Link Menu

Figure A–12: Enable Link Menu

nable.tif at
00%

A: ICPTool for Windows NT

DC 900-1510C 79

A.1.2.7 Send Data Menu

Figure A–13: Send Data Menu

senddata.tif
at 100%

80 DC 900-1510C

ICP2432 User’s Guide for Windows NT

A.1.2.8 Disable Link Menu

Figure A–14: Disable Link Menu

isable.tif at
00%

A: ICPTool for Windows NT

DC 900-1510C 81

A.1.2.9 Detach Link Menu

Figure A–15: Detach Link Menu

detach.tif at
100%

82 DC 900-1510C

ICP2432 User’s Guide for Windows NT

A.1.3 Advanced Options

Select Advanced Options from the ICPTool Main Menu to display the Advanced Options

Menu (Figure A–16). Click Yes to automatically start the ICP2432 driver upon reboot.

Click Uninstall to uninstall the ICP2432 software.

Figure A–16: Advanced Options Menu

dvanced.pcx
t 100%

A: ICPTool for Windows NT

DC 900-1510C 83

A.1.3.1 Event Viewer

Run the Event Viewer to verify which protocols are downloaded during reboot.

Step 1:

Start the Event Viewer, typically from the “Start ➝ Programs ➝ Administrative Tools ➝

Event Viewer” menu.

Step 2:

Select “Log ➝ Application” to view the results of the automatic download.

Step 3:

To view the event log of a remote computer, select “Log ➝ Select Computer,” enter the

computer name at the Computer entry box, and click OK.

Step 4:

To view the detail of an event in the Event Viewer, double click on the entry to display

the Event Detail Output as shown in Figure A–18.

Figure A–17: Event Viewer

event.pcx at
55%

84 DC 900-1510C

ICP2432 User’s Guide for Windows NT

Figure A–18: Event Detail Output

ventdtl.pcx at
00%

DC 900-1510C 85

Appendix

B Debug Support for
ICP-resident Software

Simpact’s Protocol Toolkit product allows users to develop ICP-resident protocol soft-

ware. During software development, application programmers will probably need to

set breakpoints to halt program execution while examining data structures and pro-

gram flow. However, the Windows NT device driver for the ICP2432 uses a watchdog

timer when sending commands to the ICP, so hitting a breakpoint in the debugger can

cause the host driver to time out, resulting in the ICP being reset (and all pending I/O

requests on the host to be completed with an error code of Error_Operation_Aborted).

To allow developers to set breakpoints without having the ICP reset by the host driver,

Simpact ships two versions of the driver. During product installation, a copy of each

version is placed in the C:\freeway\client\int_nt_emb directory (for Intel) or the

C:\freeway\client\axp_nt_emb directory (for Alpha). Icp2432.sys is the “production”

version and is also installed in the system drivers directory during installation.

Icp2432_Dbg.sys is the “debug” version and must be installed manually. The difference

between the two versions is that watchdog timers are disabled in the debug version.

To substitute the debug version for the production version, the following steps must be

performed on the host machine:

1. Close the Event Viewer if it is currently open.

2. Delete Icp2432.sys from the %SystemRoot%\System32\Drivers directory

(%SystemRoot% usually translates to C:\WINNT).

3. Copy Icp2432_Dbg.sys from the C:\freeway\client\int_nt_emb or axp_nt_emb

directory into %SystemRoot\System32\Drivers.

86 DC 900-1510C

ICP2432 User’s Guide for Windows NT

4. Rename the new copy (in the system drivers directory) from Icp2432_Dbg.sys to

Icp2432.sys.

5. Stop the currently installed driver. Go to Start, then Settings, then click Control

Panel. From the Control Panel, click on the Devices icon, then select Icp2432.

Click the Stop button if it is enabled.

6. Start the driver. There are two ways to do this. The first way is to go to Start, then

Settings, then click Control Panel. From the Control Panel, click on the Devices

icon, then select Icp2432. Click the Start button. The second way is to execute

IcpTool which automatically starts the driver.

7. Verify that the debug version of the driver is running by starting IcpTool and

clicking the “About IcpTool...” button. The driver version string should contain an

extra “-NWT” in it, indicating ‘N’o ‘W’atchdog ‘T’imers.

ICP-resident software may now be debugged without worry. Two things need to be

noted, however. First, IcpTool will appear as if it is hung when downloading a protocol

to the ICP because it is waiting for the host driver to complete the last request, and the

driver in turn is waiting for a response from the ICP (which will have hit an initial

breakpoint in the debug module linked with the operating system). When the break-

point is exited and the ICP-resident software resumes execution, IcpTool will complete

normally.

The second item to note is that watchdog timers are disabled! Therefore, if the ICP soft-

ware crashes, hangs, or does anything abnormal so that it cannot respond to the host

driver, then the host driver is hung; it cannot be stopped, nor can it be used any further.

The host machine must be restarted when this occurs (select Restart from the Start ➝

Shutdown icon and click the OK button).

B: Debug Support for ICP-resident Software

DC 900-1510C 87

After development of the ICP-resident software has completed, the procedure given

above may be followed to reinstall the production version of the driver, with the follow-

ing adjustments:

1. Omit Step 2.

2. In Step 3, change Icp2432_Dbg.sys to Icp2432.sys.

3. Omit Step 4. (Step 3 overwrites the debug version of the driver, which is why

Step 2 and Step 4 may be omitted)

4. In Step 7, the driver version string should not contain “-NWT”.

88 DC 900-1510C

ICP2432 User’s Guide for Windows NT

DC 900-1510C 89

Appendix

C ADCCP NRM Loopback Test
Procedure

This appendix describes the ADCCP NRM loopback test procedure, including the fol-

lowing:

• an overview of the test

• a description of how to install the hardware needed for the test

• instructions on how to run the test

• sample screen displays from the test

C.1 Overview of the Test Program

The ADCCP NRM loopback test program is placed in the freeway\client\

[axp_nt_emb or int_nt_emb]\bin directory during installation.

Note
Earlier Simpact terminology used the term “synchronous” for

blocking I/O and “asynchronous” for non-blocking I/O. Some

parameter names reflect the previous terminology.

One high-level test program written in C is supplied with the ADCCP NRM protocol,

nrmalp, which uses non-blocking I/O. The program is interactive; it prompts you for all

the information needed to run the test. The test communicates with the ICP through

the client data link interface (DLI) commands.

90 DC 900-1510C

ICP2432 User’s Guide for Windows NT

The loopback test performs the following functions:

• Configures the link-level control parameters such as baud rates, clocking, and

protocol

• Enables and disables links

• Initiates the transmission and reception of data on the serial lines

• Obtains link statistics from the ICP

You can use the loopback test to verify that the installed devices and cables are func-

tioning correctly. You can also use it as a template for designing client applications that

interface with the DLI layer.

C.2 Hardware Setup for the Test Program

The test program runs in loopback mode. Before running the test, perform the follow-

ing procedure to install the loopback cabling:

Step 1:

Provide a synchronous modem. Configure the modem to supply continuous clocking

at a data rate of 2400 bits per second. The ICPs are default configured for external

clocking, and the modem supplies the clock signal for loopback testing.

Step 2:

Select a pair of adjacent ports to loopback. Ports are looped back in the following pairs:

(0,1), (2,3), (4,5), and so on. Install the special three-headed loopback cable between

the ports you selected and the synchronous modem.

Note
The loopback cable is only used during testing, not during normal

operation.

C: ADCCP NRM Loopback Test Procedure

DC 900-1510C 91

C.3 Running the Test Program

Step 1:

Change to the directory that contains the test program: freeway\client\[axp_nt_emb

or int_nt_emb]\bin. Enter the following command at the system prompt:

nnnnrrrrmmmmaaaallllpppp

Step 2:

The following prompts are displayed. Defaults are shown in brackets:

Need help [n]?

Enter nnnn to proceed without help. Enter yyyy to view a brief description of the test pro-

cedure.

Minutes to run (1-1440) [1]

Enter the number of minutes you want the test to run.

ICP board on which to run test (0-3) [0]

Enter the number of the ICP to be tested. This is the ICP that you cabled for test-

ing in Section C.2, Step 2.

Even port number (0, 2, ..., 14) [0]

Enter the even-numbered port you cabled for testing in Section C.2, Step 2. For

example, if you enter 0, the loopback test will be performed on ports 0 and 1.

Step 3:

After you answer the last prompt, the test starts. It displays a series of periods, greater

than (>) symbols, or less than (<) symbols to indicate that it is running. When it com-

pletes, it displays the test results in the form of a brief Statistics Report that shows activ-

ity on the two ports being tested. If no errors are shown, your installation is verified.

92 DC 900-1510C

ICP2432 User’s Guide for Windows NT

Step 4:

Remove the loopback cable and configure the cables for normal operation.

C.4 Sample Output from Test Program

Figure C–1 shows the screen display from a sample ADCCP NRM non-blocking loop-

back test program (nrmalp). Output displayed by the program is shown in typewriter

type and your responses are shown in bold type. Each entry is followed by a carriage

return.

C: ADCCP NRM Loopback Test Procedure

DC 900-1510C 93

% nnnnrrrrmmmmaaaallllpppp
Need help [n]? yyyy

 This program transfers data between a pair of adjacent ports on an ICP
 board. These ports must be connected with the supplied Simpact THREE-
 headed loopback cable. The third head of the cable must be connected
 to your powered up modem. Your modem supplies clocking to move the
 data. The data does not reach the modem, but the program does not
 work without an external clock source. The configuration file,
 nrmaldcfg, specifies an external clock source, i.e. modem-supplied
 clocking. The ICP and the distribution panel jumpers are configured
 at the factory for external clocks. The first ICP is zero; the first
 port is zero. The program defaults to ICP board zero, ports zero and
 one.

 When prompted for values, the range of legal values appears within
 parentheses immediately following the prompt. The default value then
 appears within square brackets. To select the default value, simply
 press the RETURN key. To select a value other than the default, enter
 the desired value followed by the RETURN key.

Minutes to run (1-1440) [1]? 1111
ICP board on which to run test (0-3) [0]? 1111
Even port number (0, 2, ..., 14) [0]? 0000

ADCCP NRM Asynchronous Port-to-Port LOOP BACK program.
 Test duration of 1 minute
 ICP board number 1
 Ports 0 & 1
INIT COMPLETED
OPEN SESSION server0icp1port0
OPEN SESSION server0icp1port1
WAIT FOR SESSION server0icp1port0 TO BECOME ACTIVE
WAIT FOR SESSION server0icp1port1 TO BECOME ACTIVE
COMPLETED dlOpen
ADCCP NRM version:
@(#) Simpact ADCCP NRM for FREEWAY 2000 - V03.3 13-Dec-95, OS/Impact - V1.6
ADCCP NRM (ANSI X3.66-1979) 13-DEC-1995 - 3.1.4

..<.>><.>.><<<<>>..>.>>><<<<..>.>.<<<<>><<<<.>>>><<<<>>>><<<<.>>>><<<<>>>>..>>.<
<<<.>>>>>.<<<<>..>>.>><<<<..>.<<<<>>>..>.>>><<<<..>.<<<<>>>..>.>>><<<<..>.<<<<>>
>.<<>>.>.>>><<<<.>>>.<<<<><<<.>>
DONE READS / WRITES

Figure C–1: Sample Output: NRM Non-blocking Loopback Program (nrmalp)

94 DC 900-1510C

ICP2432 User’s Guide for Windows NT

ADCCP NRM Statistics Report ICP1
Links 0 1

inv addresses 0 0
inv ctlfields 0 0
rcv FCS errs 0 0
Ifrm too long 0 0
rcv overruns 0 0
txmt underruns 0 0
txmt wtchdg 0 0
stn resets 0 0

data writes 533 534
data reads 535 533

CLOSING SESSIONS
Closing Session 0
Closing Session 1
Waiting for all sessions closed
Run time: 60 seconds.
nrmalp completed OK.

Figure C–1: Sample Output: NRM Non-blocking Loopback Program (nrmalp) (Cont’d)

DC 900-1510C 95

Appendix

D AWS Loopback Test
Procedure

This appendix describes the Asynchronous Wire Service (AWS) loopback test proce-

dure, including the following:

• an overview of the test

• a description of how to install the hardware needed for the test

• instructions on how to run the test

• sample screen displays from the test

D.1 Overview of the Test Program

The AWS loopback test program is placed in the freeway\client\[axp_nt_emb or

int_nt_emb]\bin directory during installation.

Note
Earlier Simpact terminology used the term “synchronous” for

blocking I/O and “asynchronous” for non-blocking I/O. Some

parameter names reflect the previous terminology.

One high-level test program written in C is supplied with the AWS protocol: awsalp,

which uses non-blocking I/O. The program is interactive; it prompts you for all the

information needed to run the test. The test communicates with the ICP through the

client data link interface (DLI) commands.

96 DC 900-1510C

ICP2432 User’s Guide for Windows NT

The loopback test performs the following functions:

• Configures the link-level control parameters such as baud rates, clocking, and

protocol

• Enables and disables links

• Initiates the transmission and reception of data on the serial lines

• Obtains link statistics from the ICP

You can use the loopback test to verify that the installed devices and cables are func-

tioning correctly. You can also use it as a template for designing client applications that

interface with the DLI layer.

D.2 Hardware Setup for the Test Program

The test program runs in loopback mode. Before running the test, perform the follow-

ing procedure to install the loopback cabling:

Step 1:

Provide a synchronous modem. Configure the modem to supply continuous clocking

at a data rate of 9600 bits per second. The ICPs are default configured for external

clocking, and the modem supplies the clock signal for loopback testing.

Step 2:

Select a pair of adjacent ports to loopback. Ports are looped back in the following pairs:

(0,1), (2,3), (4,5), and so on. Install the special three-headed loopback cable between

the ports you selected and the synchronous modem.

Note
The loopback cable is only used during testing, not during normal

operation.

D: AWS Loopback Test Procedure

DC 900-1510C 97

D.3 Running the Test Program

Step 1:

Change to the directory that contains the test program: freeway\client\[axp_nt_emb

or int_nt_emb]\bin. Enter the following command at the system prompt:

aaaawwwwssssaaaallllpppp

Step 2:

The following prompts are displayed. Defaults are shown in brackets:

Need help [n]?

Enter nnnn to proceed without help. Enter yyyy to view a brief description of the test pro-

cedure.

Minutes to run (1-1440) [1]

Enter the number of minutes you want the test to run.

ICP board on which to run test (0-3) [0]

Enter the number of the ICP to be tested. This is the ICP that you cabled for test-

ing in Step 2 on page 96.

Even port number (0, 2, ..., 14) [0]

Enter the even-numbered port you cabled for testing in Step 2 on page 96. For

example, if you enter 0, the loopback test will be performed on ports 0 and 1.

Step 3:

After you answer the last prompt, the test starts. It displays a series of periods, greater

than (>) symbols, or less than (<) symbols to indicate that it is running. If no errors are

shown, your installation is verified.

Step 4:

Remove the loopback cable and configure the cables for normal operation.

98 DC 900-1510C

ICP2432 User’s Guide for Windows NT

D.4 Sample Output from Test Program

Figure D–1 shows the screen display from a sample AWS non-blocking loopback test

program (awsalp). Output displayed by the program is shown in typewriter type and

your responses are shown in bold type. Each entry is followed by a carriage return

D: AWS Loopback Test Procedure

DC 900-1510C 99

Figure D–1: Sample Output: AWS Non-Blocking Loopback Program (awsalp)

% aaaawwwwssssaaaallllpppp
Need help [n]? yyyy

 This program transfers data between a pair of adjacent ports on an ICP
 board. These ports must be connected with the supplied Simpact THREE-
 headed loopback cable. The third head of the cable must be connected
 to your powered up modem. Your modem supplies clocking to move the
 data. The data does not reach the modem, but the program does not
 work without an external clock source. The configuration file,
 awsaldcfg, specifies an external clock source, i.e., modem-supplied
 clocking. The ICP and the distribution panel jumpers are configured
 at the factory for external clocks. The first ICP is zero; the first
 port is zero. The program defaults to ICP board zero, ports zero and
 one.

 When prompted for values, the range of legal values appears within
 parentheses immediately following the prompt. The default value then
 appears within square brackets. To select the default value, simply
 press the RETURN key. To select a value other than the default, enter
 the desired value followed by the RETURN key.

Minutes to run (1-1440) [1]? 1111
ICP board on which to run test (0-3) [0]? 0000
Even port number (0, 2, ..., 14) [0]? 0000

AWS Asynchronous Port-to-Port LOOP BACK program.
 Test duration of 1 minute
 ICP board number 0
 Ports 0 & 1
INIT COMPLETED
OPEN SESSION server0icp0port0
OPEN SESSION server0icp0port1
COMPLETED dlOpen
.>>.>>.<<.>>.<<.>>.<<.>>.<<.>>.<<.>>.<<.>>.<<.>>.<<.>>.<<.>>.<<.>>.<<.>>.<<.>>.<
<.>>.<<.>>.<<.>>.<<.>>.<<.>>.<<.>>.<<.>>.<<.>>.<<.>>.<<.>>.<<.>>.<<.>>.<<.>>.<<.
>>.<<.>>.<<.>>.<<.>>.<<.>>.<<.>>.<<.>>.<<.>>.<<.>>.<<.>>.<<.>>.<<

CLOSING SESSIONS
Closing Session 0
Closing Session 1
Waiting for all sessions closed
Run time: 66 seconds.
awsalp completed OK.

100 DC 900-1510C

ICP2432 User’s Guide for Windows NT

DC 900-1510C 101

Appendix

E BSC Loopback Test
Procedure

This appendix describes the BSC loopback test procedure, including the following:

• an overview of the test

• a description of how to install the hardware needed for the test

• instructions on how to run the test

• a sample screen display from the test

E.1 Overview of the Test Program

The BSC loopback test program is placed in the freeway\client\[axp_nt_emb or

int_nt_emb]\bin directory during the installation procedures. Each BSC protocol has

its own loopback test program as shown in Table 5–1.

Note
Earlier Simpact terminology used the term “synchronous” for

blocking I/O and “asynchronous” for non-blocking I/O. Some

parameter names reflect the previous terminology.

102 DC 900-1510C

ICP2432 User’s Guide for Windows NT

One high-level test program written in C is supplied with each BSC protocol,

bsc3270alp or bsc3780alp, which use non-blocking I/O. The program is interactive; it

prompts you for all the information needed to run the test. The test communicates with

the ICP through the client data link interface (DLI) commands.

The loopback test performs the following functions:

• Configures the link-level control parameters such as baud rates, clocking, and

protocol

• Enables and disables links

• Initiates the transmission and reception of data on the serial lines

• Obtains link statistics from the ICP

You can use the loopback test to verify that the installed devices and cables are func-

tioning correctly. You can also use it as a template for designing client applications that

interface with the DLI layer.

a The type of I/O is set in the AsyncIO parameter of the TSI configuration file in the freeway\
client\test\filename directory.

Table 5–1: BSC Protocol Loopback Test Programs

Protocol Type of I/Oa Test Program TSI Configuration File

BSC3270 Non-blocking bsc3270alp bsc3270altcfg

BSC3780 Non-blocking bsc3780alp bsc3780altcfg

E: BSC Loopback Test Procedure

DC 900-1510C 103

E.2 Hardware Setup for the Test Program

The test program runs in loopback mode. Before running the test, perform the follow-

ing procedure to install the loopback cabling:

Step 1:

Provide a synchronous modem. Configure the modem to supply continuous clocking

at a data rate between 300 and 19,200 bits per second. The ICPs are default configured

for external clocking, and the modem supplies the clock signal for loopback testing.

Step 2:

Select a pair of adjacent ports to loopback. Ports are looped back in the following pairs:

(0,1), (2,3), (4,5), and so on. Install the special three-headed loopback cable between

the ports you selected and the synchronous modem.

Note
The loopback cable is only used during testing, not during normal

operation.

E.3 Running the Test Program

Step 1:

Change to the directory that contains the test program: freeway\client\[axp_nt_emb

or int_nt_emb]\bin. Enter one of the following commands at the system prompt:

bbbbsssscccc3333222277770000aaaallllpppp

or

bbbbsssscccc3333777788880000aaaallllpppp

104 DC 900-1510C

ICP2432 User’s Guide for Windows NT

Step 2:

The following prompts are displayed. Defaults are shown in brackets:

Need help (Y/N) [N]?

Enter nnnn to proceed without help. Enter yyyy to view a brief description of the test pro-

cedure.

Minutes to run (1-1440) [1]?

Enter the number of minutes you want the test to run.

ICP board on which to run test (0-5) [0]?

Enter the number of the ICP to be tested. This is the ICP that you cabled for test-

ing in Step 2 on page 103.

Even port number (0, 2, ..., 14) [0]?

Enter the even-numbered port you cabled for testing in Step 2 on page 103. For

example, if you enter 0, the loopback test will be performed on ports 0 and 1.

Step 3:

After you answer the last prompt, the test starts. It displays a series of periods, greater

than (>) symbols, or less than (<) symbols to indicate that it is running. When it com-

pletes, it displays the test results in the form of a brief Statistics Report that shows activ-

ity on the two ports being tested. If no errors are shown, your installation is verified.

Step 4:

Remove the loopback cable and configure the cables for normal operation.

E.4 Sample Output from Test Program

Figure E–1 shows the screen display from a sample BSC3780 non-blocking loopback

test program (bsc3780alp). Output displayed by the program is shown in typewriter

type and your responses are shown in bold type. Each entry is followed by a carriage

return.

E: BSC Loopback Test Procedure

DC 900-1510C 105

% bbbbsssscccc3333777788880000aaaallllpppp
Need help (Y/N) [N]? Y

This program transfers data between a pair of adjacent ports on an ICP
board. These ports must be connected with the supplied Simpact THREE-
headed loopback cable. The third head of the cable must be connected
to your powered up modem. Your modem supplies clocking to move the
data. The data does not reach the modem, but the program does not
work without an external clock source. The configuration file,
bsc3780aldcfg, specifies an external clock source, i.e. modem-
supplied clocking. The ICP and the distribution panel jumpers are
configured at the factory for external clocks. The first ICP is zero;
the first port is zero. The program defaults to ICP board zero, ports
zero and one.

When prompted for values, the range of legal values appears within
parentheses immediately following the prompt. The default value then
appears within square brackets. To select the default value, simply
press the RETURN key. To select a value other than the default, enter
the desired value followed by the RETURN key.

Minutes to run (1-1440) [1]? 1
ICP board on which to run test (0-5) [0]? 0
Even port number (0, 2, ..., 14) [0]? 0

BSC 2780/3780 Asynchronous Port-To-Port Loopback Program.
 Test duration in minutes: 1 minute
 ICP board number: 0
 Ports: 0 & 1

BSC 2780/3780 Software Version:
 <@@> VI-100-0186: BSC 2.0-0 BSC 2780/3780 16-June-98
 OS/Impact Version V331

BSC 2780/3780 ICP Buffer Report:
 1024 ICP message buffer size
 278 Number of free ICP message buffers
 297 Total number of ICP message buffers
 512 Transmission buffer size
 1 Number of free transmission buffers
 1 Total number of transmission buffers
 16 Total number of links
><<><><><>><><<>><<>><<>><<><><><><><><><><><>><><<>><<>><<>><<><><><>< - 1
><><><><><>><><<>><<>><<>><<><><><><><><><><><>><><<>><<>><<>><<><><><>< - 2
><><><><><>><><<>><<>><<>><<><><><><><><><>>><<<>><<>><<>><<>><<>><<><>> - 3

Figure E–1: Sample Output from BSC3780 Non-Blocking Loopback Program

106 DC 900-1510C

ICP2432 User’s Guide for Windows NT

BSC 2780/3780 Statistics Report:
 server0icp0port0 server0icp0port1
 ----------------- -----------------
 Block check errors 0 0
 Parity errors 0 0
 Receive overrun errors 0 0
 Buffer errors 0 0
 Messages sent 338 338
 Messages received 338 338
 NAKs sent 0 0
 NAKs received 0 0
 Buffer errors on send 0 0
 Transmission blocks sent 338 338
 Transmission blocks received 338 338

Loopback test complete

Figure E–1: Sample Output from BSC3780 Non-Blocking Loopback Program (Cont’d)

DC 900-1510C 107

Appendix

F FMP Loopback Test
Procedure

This appendix describes the FMP loopback test procedure, including the following:

• an overview of the test

• a description of how to install the hardware needed for the test

• instructions on how to run the test

• a sample screen display from the test

F.1 Overview of the Test Program

The FMP loopback test program is placed in the freeway\client\[axp_nt_emb or

int_nt_emb]\bin directory during the installation procedures.

Note
Earlier Simpact terminology used the term “synchronous” for

blocking I/O and “asynchronous” for non-blocking I/O. Some

parameter names reflect the previous terminology.

One high-level test program written in C is supplied with each FMP protocol, fmpalp,

which use non-blocking I/O. The program is interactive; it prompts you for all the

information needed to run the test. The test communicates with the ICP through the

client data link interface (DLI) commands.

108 DC 900-1510C

ICP2432 User’s Guide for Windows NT

The loopback test performs the following functions:

• Configures the link-level control parameters such as baud rates, clocking, and

protocol

• Enables and disables links

• Initiates the transmission and reception of data on the serial lines

• Obtains link statistics from the ICP

You can use the loopback test to verify that the installed devices and cables are func-

tioning correctly. You can also use it as a template for designing client applications that

interface with the DLI layer.

F.2 Hardware Setup for the Test Program

The test program runs in loopback mode. Before running the test, perform the follow-

ing procedure to install the loopback cabling:

Step 1:

Provide a synchronous modem. Configure the modem to supply continuous clocking

at a data rate between 300 and 19,200 bits per second. The ICPs are default configured

for external clocking, and the modem supplies the clock signal for loopback testing.

Step 2:

Select a pair of adjacent ports to loopback. Ports are looped back in the following pairs:

(0,1), (2,3), (4,5), and so on. Install the special three-headed loopback cable between

the ports you selected and the synchronous modem.

Note
The loopback cable is only used during testing, not during normal

operation.

F: FMP Loopback Test Procedure

DC 900-1510C 109

F.3 Running the Test Program

Step 1:

Change to the directory that contains the test program: freeway\client\[axp_nt_emb

or int_nt_emb]\bin. Enter the following command at the system prompt:

ffffmmmmppppaaaallllpppp

Step 2:

The following prompts are displayed. Defaults are shown in brackets:

Need help (Y/N) [N]?

Enter nnnn to proceed without help. Enter yyyy to view a brief description of the test pro-

cedure.

Minutes to run (1-1440) [1]?

Enter the number of minutes you want the test to run.

Number of initial writes (1-4) [1]?

Enter the number of writes to be allowed before a response.

ICP board on which to run test (0-5) [0]?

Enter the number of the ICP to be tested. This is the ICP that you cabled for test-

ing in Step 2 on page 108.

Even port number (0, 2, ..., 14) [0]?

Enter the even-numbered port you cabled for testing in Step 2 on page 108. For

example, if you enter 0, the loopback test will be performed on ports 0 and 1.

110 DC 900-1510C

ICP2432 User’s Guide for Windows NT

Step 3:

After you answer the last prompt, the test starts. It displays a series of periods, greater

than (>) symbols, or less than (<) symbols to indicate that it is running. When it com-

pletes, it displays the test results in the form of a brief Statistics Report that shows activ-

ity on the two ports being tested. If no errors are shown, your installation is verified.

Step 4:

Remove the loopback cable and configure the cables for normal operation.

F.4 Sample Output from Test Program

Figure F–1 shows the screen display from a sample FMP non-blocking loopback test

program (fmpalp). Output displayed by the program is shown in typewriter type and

your responses are shown in bold type. Each entry is followed by a carriage return. .

F: FMP Loopback Test Procedure

DC 900-1510C 111

% ffffmmmmppppaaaallllpppp
Need help (Y/N) [N]? yyyy

 This program transfers data between a pair of adjacent ports on an ICP
 board. These ports must be connected with the supplied Simpact THREE-
 headed loopback cable. The third head of the cable must be connected
 to your powered up modem. Your modem supplies clocking to move the
 data. The data does not reach the modem, but the program does not
 work without an external clock source. The configuration file,
 fmpaldcfg, specifies an external clock source, i.e. modem-
 supplied clocking. The ICP and the distribution panel jumpers are
 configured at the factory for external clocks. The first ICP is zero;
 the first port is zero. The program defaults to ICP board zero, ports
 zero and one.

 When prompted for values, the range of legal values appears within
 parentheses immediately following the prompt. The default value then
 appears within square brackets. To select the default value, simply
 press the RETURN key. To select a value other than the default, enter
 the desired value followed by the RETURN key.

Minutes to run (1-1440) [1]? 1111
Number of initial writes (1-4) [1]? 2222
ICP board on which to run test (0-3) [0]? 0000
Even port number (0, 2, ..., 14) [0]? 0000

FMP Asynchronous Port-To-Port Loopback Program.
 Test duration in minutes: 1 minute
 ICP board number: 0
 Ports: 0 & 1

FMP Software Version:
@(#) Simpact FMP (Financial Market Protocols) - V1.5 22-Jan-96
 for the Freeway 2000/4000/8800 server (ICP6000)
(OS/Impact Version V1.6)

Figure F–1: Sample Output from FMP Non-Blocking Loopback Program

112 DC 900-1510C

ICP2432 User’s Guide for Windows NT

FMP ICP Buffer Report:
 1024 ICP message buffer size
 523 Number of free ICP message buffers
 592 Total number of ICP message buffers
 1019 Transmission buffer size
 30 Number of free transmission buffers
 30 Total number of transmission buffers
 8 Total number of links
><><><<><>><><><<>><><<>><<><>><><><<><>><<><><>><><<>><<>><<>><>><<><<>><<>><<>
><>><<><<>><<>><<>><>><<><<>><<>><>><<><><><<>><<>><>><<><<>><<>><<>><>><<><<>><
<>><<>><>><<><<>><<>><<>><>><<><<>><<>><<>><>><<><<>><<>><>><<><<>><<>><<>><>><<
><><><<>><<>><>><<><<>><<>><>><<><><><<>><<>><>><<><><><<>><<>><>><<><<>><<>><>>
<<><<>><<>><<>><>><<><<>><<>><<
FMP Statistics Report:
 server0icp0port0 server0icp0port1
 ----------------- -----------------
 Block check errors 0 0
 Parity errors 0 0
 Receive overrun errors 0 0
 Q limit errors 0 0
 Messages sent 703 580
 Messages received 580 703
 Buffers not available 0 0
 Buffer overruns 0 0
Loopback test complete

Figure F–1: Sample Output from FMP Non-Blocking Loopback Program (Cont’d)

DC 900-1510C 113

Appendix

G Protocol Toolkit Loopback
Test Procedure

This appendix describes the protocol toolkit test procedure, including the following:

• an overview of the test

• a description of how to install the hardware needed for the test

• instructions on how to run the test

• a sample screen display from the test

G.1 Overview of the Test Program

The protocol toolkit loopback test program is placed in the freeway\client\

[axp_nt_emb or int_nt_emb]\bin directory during installation.

Note
Earlier Simpact terminology used the term “synchronous” for

blocking I/O and “asynchronous” for non-blocking I/O. Some

parameter names reflect the previous terminology.

One high-level test program written in C is supplied with the protocol toolkit: spsalp,

which uses non-blocking I/O. The program is interactive; it prompts you for all the

information needed to run the test. The test communicates with the ICP through the

client data link interface (DLI) commands.

11/13/97: For
the embedded
NT product,
we only have
spsslp. Bill
doesn’t know
when or it we
will have
spsalp.

114 DC 900-1510C

ICP2432 User’s Guide for Windows NT

The loopback test performs the following functions:

• Configures the link-level control parameters such as baud rates, clocking, and

protocol

• Enables and disables links

• Communicates with the ICP and initiates the transmission and reception of data

on the serial lines

• Obtains link statistics from the ICP

You can use the loopback test to verify that the installed devices and cables are function-

ing correctly. You can also use it as a template for designing client applications that

interface with the DLI layer.

The test program can configure any of the ICP links to perform one of three methods

of communication: bit synchronous (HDLC/SDLC), byte synchronous (BSC), and

asynchronous (ASYNC). The synchronous methods use an external modem as the

clocking device. No external modem is required for the asynchronous method.

G.2 Hardware Setup for the Test Program

The test program runs in loopback mode. Before running the test, perform the follow-

ing procedure to install the loopback cabling:

Step 1:

If you are using a synchronous protocol (HDLC/SDLC or BSC), locate a synchronous

modem that you can use during the test.

G: Protocol Toolkit Loopback Test Procedure

DC 900-1510C 115

Step 2:

Select a pair of adjacent ports to loopback. Ports are looped back in the following pairs:

(0,1), (2,3), (4,5), and so on.

If you are using a synchronous protocol, install the special three-headed loopback

cable between the ports you selected and the synchronous modem. It supplies the

needed clock signal. Configure the modem to supply continuous clocking at a data rate

between 300 and 19,200 bits per second.

If you are using an asynchronous protocol, the male connector of the loopback cable

does not have to be attached to anything; however, if you have just run the synchronous

test, you do not have to detach the modem before running the asynchronous test.

Note
The loopback cable is only used during testing, not during normal

operation.

G.3 Running the Test Program

Step 1:

Change to the directory that contains the test program: freeway\client\[axp_nt_emb

or int_nt_emb]\bin. Enter the following command at the system prompt:

ssssppppssssaaaallllpppp

Step 2:

You are asked if you need help. Enter nnnn to proceed without help. Enter yyyy to view a brief

description of the test procedure.

Eric says the
asynchronous
loopback test
associated with
protocol toolkit is
different than the
asynchronous
loopback test used
in the other
protocols. The
others must have a
modem hooked up
even if they’re
running alp.

116 DC 900-1510C

ICP2432 User’s Guide for Windows NT

Step 3:

You are prompted for the number of the ICP to be used for the test. This is the ICP that

you cabled for testing in Step 2 on page 115.

Step 4:

The protocol toolkit main menu is displayed as shown in Figure G–1. You can select an

operation by entering a digit from 0 to 8 followed by a carriage return. Depending on

your choice, you are then prompted for additional information. When an operation

completes, the main menu is displayed again. You can then choose another operation or

exit the program by selecting menu option 8. For samples of the screen displays that you

will see during the test, refer to Section G.4 on page 118.

If you want to use option 0 (Demo), you must have connected links 0 and 1 of ICP 0 in

Section G.2 of this procedure. The Demo option automatically opens and enables links

0 and 1, using default link configurations. It then loops back several blocks of data

before disabling and closing the links.

Figure G–1: Main Menu of Protocol Toolkit Test

Menu
(0) Demo
(1) Open
(2) Configure
(3) Enable
(4) Send a file
(5) Link statistics
(6) Disable
(7) Close
(8) Exit
Select (0-8):

G: Protocol Toolkit Loopback Test Procedure

DC 900-1510C 117

Step 5:

To further verify the software installation, use menu options 1, 2, and 3 to open, config-

ure, and enable each of the two links connected to the loopback cable.

For example, suppose the loopback cable is connected to links 2 and 3. You would then:

• Select menu option 1 to open link 2.

• Select menu option 2 to configure link 2. You are prompted for the link configu-

ration parameters. Be sure that the external clock is selected if you are using a syn-

chronous protocol (BSC or HDLC/SDLC).

• Select menu option 3 to enable link 2.

• Select menu options 1, 2, and 3 again, this time for link 3. Be sure to enter the

same link configuration parameters for link 3 as you did for link 2.

Step 6:

Select menu option 4 (Send a file) to loop back data between the two links you config-

ured in Step 5. You are prompted for the block size, file name, and transmit and receive

link numbers. Normally, you will specify 128 as the block size and ..\..\test\sps

\spstest.h as the file name.

After obtaining the configuration parameters, the test program opens the specified file,

reads a block of data, and sends it to the ICP. The ICP-resident protocol task in the

server transmits the block from the transmit link. The block is looped back into the

receive link. The server then returns the block to the test program which compares it

with the block it originally sent. If the blocks do not match, an error is displayed. If they

match, the program reads the next block of data from the file and sends it to the ICP,

and so on. This process repeats until the entire file has been looped back.

While the loopback process is running, the test program displays a greater than (>)

symbol each time it successfully sends a block of data to the ICP. The program displays

a less than (<) symbol each time the block that has been looped back matches the block

118 DC 900-1510C

ICP2432 User’s Guide for Windows NT

that was originally sent. If they do not match, an error message is displayed. When the

process completes, the main menu is redisplayed.

Step 7:

The installation is verified if the test successfully finishes without errors. Select option 8

(Exit) to exit the program.

Step 8:

Remove the loopback cable and configure the cables for normal operation.

G.4 Sample Output from Test Program

Figure G–2 shows a sample screen display when the Demo option is selected (option 0).

Figure G–3 shows a sample screen display for a typical byte synchronous test. Output

displayed by the program is shown in typewriter type and your responses are shown in

bold type. Each entry is followed by a carriage return.

G: Protocol Toolkit Loopback Test Procedure

DC 900-1510C 119

% ssssppppssssaaaallllpppp
Need help [n]? nnnn
ICP number to run (0-15) [0]: 0000
SPS Asynchronous Port-to-Port LOOP BACK program.

 Menu
 (0) Demo
 (1) Open
 (2) Configure
 (3) Enable
 (4) Send a file
 (5) Link statistics
 (6) Disable
 (7) Close
 (8) Exit

Select (0-8): 0000
Link 0 open.
Link 1 open.
Link 0 configured.
Link 1 configured.
Link 0 enabled.
Link 1 enabled.
<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>
File ../../test/sps/spstest.data sent on link 1, received on link 0.
Link 0 disabled.
Link 1 disabled.
Link 0 closed.
Link 1 closed.
Demo succeeded.

 Menu
 (0) Demo
 (1) Open
 (2) Configure
 (3) Enable
 (4) Send a file
 (5) Link statistics
 (6) Disable
 (7) Close
 (8) Exit

Select (0-8): 8888
Waiting for quiescence
spsalp complete.

Figure G–2: Sample Output from Protocol Toolkit Test Showing Demo Option

120 DC 900-1510C

ICP2432 User’s Guide for Windows NT

% ssssppppssssaaaallllpppp
Need help [n]? yyyy

 This program writes data to an even port and reads it from the adjacent
 higher numbered odd port, e.g. write to port 0 and read from port 1.
 These ports must be connected with the supplied Simpact THREE-headed
 loopback cable. The third head of the cable must be connected to your
 powered up modem. Your modem supplies clocking to move the data. The
 data does not reach the modem, but the program does not work without
 an external clock source. The configuration file, spssldcfg,
 specifies an external clock source, i.e. modem-supplied clocking. The
 ICP and the distribution panel jumpers are configured at the factory
 for external clocks. The first ICP is zero; the first port is zero.
 The program defaults to ICP board zero, ports zero and one.

 When prompted for values, the range of legal values appears within
 parentheses immediately following the prompt. The default value then
 appears within square brackets. To select the default value, simply
 press the RETURN key. To select a value other than the default, enter
 the desired value followed by the RETURN key.

ICP number to run (0-15) [0]: 0000
SPS Synchronous Port-to-Port LOOP BACK program.

 Menu
 (0) Demo
 (1) Open
 (2) Configure
 (3) Enable
 (4) Send a file
 (5) Link statistics
 (6) Disable
 (7) Close
 (8) Exit

Select (0-8): 1111
Open link: 2222
Link 2 open.

Figure G–3: Sample Output from Protocol Toolkit Test Showing a BSC Test

G: Protocol Toolkit Loopback Test Procedure

DC 900-1510C 121

 Menu
 (0) Demo
 (1) Open
 (2) Configure
 (3) Enable
 (4) Send a file
 (5) Link statistics
 (6) Disable
 (7) Close
 (8) Exit

Select (0-8): 2222
Configure link: 2222

0 = BSC
1 = Asynch
2 = HDLC/SDLC
Communication mode: 0000

0 = EIA232
1 = EIA562
2 = EIA530
3 = V.35
Electrical interface: 0000

 0 = external
 1 = internal
Clock source: 0000

 0 = 300
 1 = 600
 2 = 1200
 3 = 2400
 4 = 4800
 5 = 9600
 6 = 19200
 7 = 38400
 8 = 57600
 9 = 64000
 10 = 263300
 11 = 307200
 12 = 460800
Baud rate: 5555

Figure G–3: Sample Output from Protocol Toolkit Test Showing a BSC Test (Cont’d)

122 DC 900-1510C

ICP2432 User’s Guide for Windows NT

 0 = off
 1 = on
CRC generation/checking: 1111

Number of sync characters (1 - 8): 3333

Hex value of character to start block: 1111
Link 2 configured.

 Menu
 (0) Demo
 (1) Open
 (2) Configure
 (3) Enable
 (4) Send a file
 (5) Link statistics
 (6) Disable
 (7) Close
 (8) Exit

Select (0-8): 3333
Enable link: 2222
Link 2 enabled.

 Menu
 (0) Demo
 (1) Open
 (2) Configure
 (3) Enable
 (4) Send a file
 (5) Link statistics
 (6) Disable
 (7) Close
 (8) Exit

Select (0-8): 1111
Open link: 3333
Link 3 open.

Figure G–3: Sample Output from Protocol Toolkit Test Showing a BSC Test (Cont’d)

G: Protocol Toolkit Loopback Test Procedure

DC 900-1510C 123

 Menu
 (0) Demo
 (1) Open
 (2) Configure
 (3) Enable
 (4) Send a file
 (5) Link statistics
 (6) Disable
 (7) Close
 (8) Exit

Select (0-8): 2222
Configure link: 3333

0 = BSC
1 = Asynch
2 = HDLC/SDLC
Communication mode: 0000

0 = EIA232
1 = EIA562
2 = EIA530
3 = V.35
Electrical interface: 0000

 0 = external
 1 = internal
Clock source: 0000

 0 = 300
 1 = 600
 2 = 1200
 3 = 2400
 4 = 4800
 5 = 9600
 6 = 19200
 7 = 38400
 8 = 57600
 9 = 64000
 10 = 263300
 11 = 307200
 12 = 460800
Baud rate: 5555

Figure G–3: Sample Output from Protocol Toolkit Test Showing a BSC Test (Cont’d)

124 DC 900-1510C

ICP2432 User’s Guide for Windows NT

 0 = off
 1 = on
CRC generation/checking: 1111

Number of sync characters (1 - 8): 3333

Hex value of character to start block: 1111
Link 3 configured.

 Menu
 (0) Demo
 (1) Open
 (2) Configure
 (3) Enable
 (4) Send a file
 (5) Link statistics
 (6) Disable
 (7) Close
 (8) Exit

Select (0-8): 3333
Enable link: 3333
Link 3 enabled.

 Menu
 (0) Demo
 (1) Open
 (2) Configure
 (3) Enable
 (4) Send a file
 (5) Link statistics
 (6) Disable
 (7) Close
 (8) Exit

Select (0-8): 4444
Block size: 111122228888
Filename:////........////tttteeeesssstttt////ssssppppssss////ssssppppsssstttteeeesssstttt....hhhh
Transmit link: 3333
Receive link: 2222

Figure G–3: Sample Output from Protocol Toolkit Test Showing a BSC Test (Cont’d)

G: Protocol Toolkit Loopback Test Procedure

DC 900-1510C 125

><><><><><><><><><><><><><><><><><><><><><><><><><><
File ../../test/sps/spstest.h sent on link 3, received on link 2.

 Menu
 (0) Demo
 (1) Open
 (2) Configure
 (3) Enable
 (4) Send a file
 (5) Link statistics
 (6) Disable
 (7) Close
 (8) Exit

Select (0-8): 5555
Read statistics of link: 2222

Report of link errors:

Data blocks sent: 0
Data blocks received: 26
Received messages too long: 0
Times DCD lost: 0
Received messages aborted: 0
Receive overruns: 0
Transmit underruns: 0
Receive parity errors: 0
Receive framing errors: 0
Receive CRC errors: 0

 Menu
 (0) Demo
 (1) Open
 (2) Configure
 (3) Enable
 (4) Send a file
 (5) Link statistics
 (6) Disable
 (7) Close
 (8) Exit

Select (0-8): 5555

Figure G–3: Sample Output from Protocol Toolkit Test Showing a BSC Test (Cont’d)

126 DC 900-1510C

ICP2432 User’s Guide for Windows NT

Read statistics of link: 3333

Report of link errors:

Data blocks sent: 26
Data blocks received: 0
Received messages too long: 0
Times DCD lost: 0
Received messages aborted: 0
Receive overruns: 0
Transmit underruns: 0
Receive parity errors: 0
Receive framing errors: 0
Receive CRC errors: 0

 Menu
 (0) Demo
 (1) Open
 (2) Configure
 (3) Enable
 (4) Send a file
 (5) Link statistics
 (6) Disable
 (7) Close
 (8) Exit

Select (0-8): 6666
Disable link: 2222
Link 2 disabled.

 Menu
 (0) Demo
 (1) Open
 (2) Configure
 (3) Enable
 (4) Send a file
 (5) Link statistics
 (6) Disable
 (7) Close
 (8) Exit

Select (0-8): 6666
Disable link: 3333
Link 3 disabled.

Figure G–3: Sample Output from Protocol Toolkit Test Showing a BSC Test (Cont’d)

G: Protocol Toolkit Loopback Test Procedure

DC 900-1510C 127

 Menu
 (0) Demo
 (1) Open
 (2) Configure
 (3) Enable
 (4) Send a file
 (5) Link statistics
 (6) Disable
 (7) Close
 (8) Exit

Select (0-8): 7777
Close link: 2222
Link 2 closed.

 Menu
 (0) Demo
 (1) Open
 (2) Configure
 (3) Enable
 (4) Send a file
 (5) Link statistics
 (6) Disable
 (7) Close
 (8) Exit

Select (0-8): 7777
Close link: 3333
Link 3 closed.

 Menu
 (0) Demo
 (1) Open
 (2) Configure
 (3) Enable
 (4) Send a file
 (5) Link statistics
 (6) Disable
 (7) Close
 (8) Exit

Select (0-8): 8888
Waiting for quiescence
spsalp complete.

Figure G–3: Sample Output from Protocol Toolkit Test Showing a BSC Test (Cont’d)

128 DC 900-1510C

ICP2432 User’s Guide for Windows NT

DC 900-1510C 129

Appendix

H STD1200A Loopback Test
Procedure

This appendix describes the STD1200A loopback test procedure, including the follow-

ing:

• an overview of the test

• a description of how to install the hardware needed for the test

• instructions on how to run the test

• a sample screen display from the test

H.1 Overview of the Test Program

The STD1200A loopback test program is placed in the freeway\client\[axp_nt_emb or

int_nt_emb]\bin directory during installation.

Note
Earlier Simpact terminology used the term “synchronous” for

blocking I/O and “asynchronous” for non-blocking I/O. Some

parameter names reflect the previous terminology.

One high-level test program written in C is supplied with the STD1200A protocol:

s12alp, which uses non-blocking I/O. The program is interactive; it prompts you for all

the information needed to run the test. The test communicates with the ICP through

the client data link interface (DLI) commands.

130 DC 900-1510C

ICP2432 User’s Guide for Windows NT

The loopback test performs the following functions:

• Configures the link-level control parameters such as baud rates, clocking, and

protocol

• Enables and disables links

• Initiates the transmission and reception of data on the serial lines

• Obtains link statistics from the ICP

You can use the loopback test to verify that the installed devices and cables are func-

tioning correctly. You can also use it as a template for designing client applications that

interface with the DLI layer.

H.2 Hardware Setup for the Test Program

The test program runs in loopback mode. Before running the test, perform the follow-

ing procedure to install the loopback cabling:

Step 1:

Provide a synchronous modem. Configure the modem to supply continuous clocking

at a data rate of 2400 bits per second. The ICPs are default configured for external

clocking, and the modem supplies the clock signal for loopback testing.

Step 2:

Select a pair of adjacent ports to loopback. Ports are looped back in the following pairs:

(0,1), (2,3), (4,5), and so on. Install the special three-headed loopback cable between

the ports you selected and the synchronous modem.

Note
The loopback cable is only used during testing, not during normal

operation.

H: STD1200A Loopback Test Procedure

DC 900-1510C 131

H.3 Running the Test Program

Step 1:

Change to the directory that contains the test program: freeway\client\[axp_nt_emb

or int_nt_emb]\bin. Enter the following command at the system prompt:

ssss11112222aaaallllpppp

Step 2:

The following prompts are displayed. Defaults are shown in brackets:

Need help (H) or internal clocking (I) [N]

Enter NNNN if you are using external clocking and you do not want to view the help

information. Enter HHHH to view a brief description of the test procedure. Enter I if

you are using internal clocking.

Minutes to run (1-1440) [1]

Enter the number of minutes you want the test to run.

ICP board on which to run test (0-5) [0]

Enter the number of the ICP to be tested. This is the ICP that you cabled for test-

ing in Step 2 on page 130. The number must correspond to the BoardNo parame-

ter in the freeway\client\test\s12\stdaldcfg file.

Even port number (0, 2, ..., 14) [0]

Enter the even-numbered port you cabled for testing in Step 2 on page 130. For

example, if you enter 0, the loopback test will be performed on ports 0 and 1.

Step 3:

After you answer the last prompt, the test starts. It displays a series of greater than (>)

or less than (<) symbols to indicate that it is running. When it completes, it displays the

test results in the form of a brief Statistics Report that shows activity on the two ports

being tested. If no errors are shown, your installation is verified.

132 DC 900-1510C

ICP2432 User’s Guide for Windows NT

Step 4:

Remove the loopback cable and configure the cables for normal operation.

H.4 Sample Output from Test Program

Figure H–1 shows the screen display from a sample STD1200A non-blocking loopback

test program (s12alp). Output displayed by the program is shown in typewriter type

and your responses are shown in bold type. Each entry is followed by a carriage return.

H: STD1200A Loopback Test Procedure

DC 900-1510C 133

% ssss11112222aaaallllpppp

Need help (H) or internal clocking (I) [N] ? HHHH

 This program transfers data between a pair of adjacent ports on an ICP
 board. The first ICP is zero; the first port on an ICP is zero. The
 program defaults to ICP zero, ports zero and one.

 The ICPs and distribution panels are configured at the factory for
 external clocking. An adjacent port pair is normally connected with a
 Simpact-supplied THREE-headed loopback cable, with the third head of
 the cable connected to your powered up modem. Your modem supplies
 clocking to move the data, but the data does not reach the modem. The
 program does not work with an internal clock source unless "I" is
 entered in response to the above prompt.

 When prompted for values, the range of legal values appears within
 parentheses immediately following the prompt. The default value then
 appears within square brackets. To select the default value, simply
 press the RETURN key. To select a value other than the default, enter
 the desired value followed by the RETURN key.

 Once the program is running, entering one Control C causes the program
 to turn the timer off and go through its normal exit process as if the
 time had expired. Entering two consecutive Control C's causes the
 program to exit immediately.

Minutes to run (1-1440) [1]? 1111
ICP board on which to run test (0-5) [0]? 0000
Even port number (0, 2, ..., 14) [0]? 0000

STD1200A Asynchronous Port-To-Port Loopback Program.
 Test duration in minutes: 1 minute
 ICP board number: 0
 Ports: 0 & 1

STD1200A Software Version:
FREEWAY 2000/4000 ICP6000 COMMUNICATIONS FRONT END PROCESSOR
SIO-STD-1200A Rev 1 (V5.1-3, VI-100-0160) 22-DEC-97

>>>>>>><<>>>>>>>><<<<>>>><<>>>><<>>><<<<<<<<<<>>>>>>>>>>>>><<<<<<<<>>>><<>>><<<<
<<<<<<><<>>>><<>>>>><<>>>>>>><<<<>>><<<<<<<<<<><<>>>><<>>>><<>>>><<>>>><<>>><<<<
<<<<<<>>>>>>>>><<<<<<>>>>>>>>><<<<>><<<<<<<<<<><<>>>>>>>>>>>>>>>><<<<<<<<>>><<<

Figure H–1: Sample Output from STD1200A Non-Blocking Loopback Program

134 DC 900-1510C

ICP2432 User’s Guide for Windows NT

STD1200A Statistics Report:
 server0icp0port0 server0icp0port1
 ----------------- -----------------
 inv addresses 0 0
 inv ctlfields 0 0
 rcv CRC errs 0 0
 Ifrm too long 0 0
 rcv overruns 0 0
 txmt underruns 0 0
 txmt wtchdg 0 0
 ITS achieved 1 1
 data writes 591 584
 data reads 584 591
Loopback test complete

Figure H–1: Sample Output from STD1200A Non-Blocking Loopback Program (Cont’d)

DC 900-1510C 135

Appendix

I X.25/HDLC Loopback Test
Procedure

This appendix describes the X.25/HDLC loopback test procedure, including the follow-

ing:

• an overview of the tests

• a description of how to install the hardware needed for the tests

• instructions on how to run the tests

• sample screen displays from the tests

I.1 Overview of the Test Programs

The X.25/HDLC loopback test programs are placed in the freeway\client\

[axp_nt_emb or int_nt_emb]\bin directory during installation. These test programs are

written in C and communicate with the ICP through the CS API function calls to per-

form the following functions:

• Establish virtual circuit or data link connections.

• Initiate the transmission and reception of data on the serial lines.

• Terminate virtual circuit or data link connections.

You can use the loopback tests to verify that the installed devices and cables are func-

tioning correctly. You can also use them as templates for designing client applications

that interface with the CS API layer.

136 DC 900-1510C

ICP2432 User’s Guide for Windows NT

I.2 Hardware Setup for the Test Programs

The test programs run in loopback mode. Before running any test program, perform

the following procedure to install the loopback cabling:

Step 1:

Provide a synchronous modem. Configure the modem to supply continuous clocking

at a data rate between 300 and 64,000 bits per second. The ICPs are default configured

for external clocking, and the modem supplies the clock signal for loopback testing.

Step 2:

Install the special three-headed loopback cable between ports 0 and 1 on ICP 0 and the

synchronous modem. To test other ports or ICPs, you must edit the .setup file in the

freeway\client\test\x25mgr directory, then run the make file.

Note
The loopback cable is only used during testing, not during normal

operation.

I.3 Running the Test Programs

Step 1:

Change to the directory that contains the test programs: freeway\client\[axp_nt_emb

or int_nt_emb]\bin.

Before running the X.25 test program, x25_svc, or HDLC test program, hdlc_user, you

must run the x25_manager utility to configure the X.25/HDLC software. This utility

runs interactively or uses an input setup file to configure the links to test either X.25 or

HDLC. Table I–1 shows the appropriate setup file for each test program.

I: X.25/HDLC Loopback Test Procedure

DC 900-1510C 137

Step 2:

Enter the following command at the system prompt. If you omit the optional CS API

configuration file name, x25_manager uses the default cs_config file.

xxxx22225555____mmmmaaaannnnaaaaggggeeeerrrr [[[[CCCCSSSS AAAAPPPPIIII ccccoooonnnnffffiiiigggguuuurrrraaaattttiiiioooonnnn ffffiiiilllleeee nnnnaaaammmmeeee]]]]

Step 3:

At the x25_manager prompt, enter the file command with the appropriate setup file:

ffffiiiilllleeee((((ffffwwww1111000000000000____hhhhddddllllcccc....sssseeeettttuuuupppp))))

ffffiiiilllleeee((((ffffwwww1111000000000000____ssssvvvvcccc....sssseeeettttuuuupppp))))

The fw1000_hdlc.setup input file instructs the x25_manager program to configure the

ICP links for running HDLC. The fw1000_svc.setup input file instructs the

x25_manager program to configure the ICP links for running X.25.

a These files are located in the freeway\client\test\x25mgr directory. The executable files are located in the
freeway\client\[axp_nt_emb or int_nt_emb]\bin directory.

Table I–1: X.25/HDLC Test Filesa

Program Description
Setup File for Input to

x25_manager

x25_manager This is the configuration utility program described
fully in the Freeway X.25/HDLC Configuration
Guide. It runs interactively or accepts a setup file as
input to the x25_manager file command.

—

hdlc_user This is the sample test program used to verify the
installation and configuration of the HDLC proto-
col service on the ICP.

fw1000_hdlc.setup

x25_svc This is the sample test program used to verify the
installation and configuration of the X.25 protocol
service on the ICP.

fw1000_svc.setup

138 DC 900-1510C

ICP2432 User’s Guide for Windows NT

Step 4:

To start the test program, enter one of the following command at the system prompt. If

you omit the optional CS API configuration file name, x25_manager uses the default

cs_config file.

hhhhddddllllcccc____uuuusssseeeerrrr [[[[CCCCSSSS AAAAPPPPIIII ccccoooonnnnffffiiiigggguuuurrrraaaattttiiiioooonnnn ffffiiiilllleeee nnnnaaaammmmeeee]]]]

xxxx22225555____ssssvvvvcccc [[[[CCCCSSSS AAAAPPPPIIII ccccoooonnnnffffiiiigggguuuurrrraaaattttiiiioooonnnn ffffiiiilllleeee nnnnaaaammmmeeee]]]]

Step 5:

The following prompts are displayed:

• Test length in minutes

• Packet data field size; this must not exceed the larger of the two buffer sizes con-

figured in the setup file

• Packet transmit window size. The setup file configures the ICP to support a win-

dow size of 1–7. To use a window size greater than 7, you must change the setup

file to support packet level modulo 128 operation. See the Freeway X.25/HDLC

Configuration Guide.

• Link numbers of the links that were looped back in Step 2 on page 136

• User data field value (X.25 only). This may be any value in the given range. How-

ever, if you run multiple copies of the x25_svc test program, you must specify a

different user data field value for each.

After you answer the last prompt, the test starts. The installation is verified if the test

completes successfully without errors.

Step 6:

Remove the loopback cable and configure the cables for normal operation.

I: X.25/HDLC Loopback Test Procedure

DC 900-1510C 139

I.4 Sample Output from Test Programs

Figure I–1 shows the screen display from a sample hdlc_user test program. Figure I–2

shows the screen display from a sample x25_svc test program. Output displayed by the

program is shown in typewriter type and your responses are shown in bold type. Each

entry is followed by a carriage return.

140 DC 900-1510C

ICP2432 User’s Guide for Windows NT

Figure I–1: Sample Output: HDLC Loopback Program (hdlc_user)

% xxxx22225555____mmmmaaaannnnaaaaggggeeeerrrr

SIMPACT X.25 MANAGER

: ffffiiiilllleeee((((ffffwwww1111000000000000____hhhhddddllllcccc....sssseeeettttuuuupppp))))
SAPX25{: @(#) Protocol: CCITT/ISO 1984/1988 X.25:SERVICE_XIO:ICP2432:OS-V331
SAPX25{: @(#) Version: VI-100-0135: X25FW2432 3.2-5 Oct 17 1997 16:24:33
SAPX25{BUFFERS[: Configuring buffers.
SAPX25{BUFFERS[: Configured 1080 SMALL buffers 1024 bytes each.
SAPX25{SLP[: Configuring SLP 0.
SAPSLP{SLP[: Configuring SLP 1.

% hhhhddddllllcccc____uuuusssseeeerrrr

SIMPACT HDLC OPTIONS

Test Length in Minutes (1 to 1440): 1111

HDLC data field size (32 to 1024): 555511112222

HDLC transmit window (1 to 127): 7777

Lowest link ID in test (0 to 7): 0000

Highest link ID in test (0 to 7): 1111

Connecting clients
Transferring data
No further screen interruptions for 1 minute(s)

2 links in test
Packet data size 512 bytes.
Packets/second: XMIT 4 RECV 4 TOTAL 8
Bits/second: XMIT 16384 RECV 16384 TOTAL 32768
Link ID number 0 1
LCN reset errors 0 0
Transport errors 0 0
RCV data packets 136 136
XMT data packets 143 142

Allowing ICP to settle
Disconnecting
HDLC TEST test terminated

I: X.25/HDLC Loopback Test Procedure

DC 900-1510C 141

% xxxx22225555____mmmmaaaannnnaaaaggggeeeerrrr

SIMPACT X.25 MANAGER

: ffffiiiilllleeee((((ffffwwww1111000000000000____ssssvvvvcccc....sssseeeettttuuuupppp))))
SAPX25{: @(#) Protocol: CCITT/ISO 1984/1988 X.25:SERVICE_XIO:ICP2432:OS-V331
SAPX25{: @(#) Version: VI-100-0135: X25FW2432 3.2-5 Oct 17 1997 16:24:33
SAPX25{BUFFERS[: Configuring buffers.
SAPX25{BUFFERS[: Configured 12 BIG buffers 1024 bytes each.
SAPX25{BUFFERS[: Configured 3262 SMALL buffers 128 bytes each.
SAPX25{BUFFERS[: Configured 256 virtual circuit maximum.
SAPX25{SLP[: Configuring SLP 0.
SAPX25{CALLSERVICE[: Configuring CALLSERVICE on SLP 0.
SAPX25{SLP[: Configuring SLP 1.
SAPX25{CALLSERVICE[: Configuring CALLSERVICE on SLP 1.
SAPX25{REQUEST[: Enabling link 0.
SAPX25{REQUEST[: Enabling link 1.

% xxxx22225555____ssssvvvvcccc

SIMPACT X.25 SVC OPTIONS

Test Length in Minutes (1 to 1440): 1111

Packet data field size (32 to 1024): 555511112222

Packet transmit window (1 to 127): 7777

Lowest link ID in test (0 to 15): 0000

Highest link ID in test (0 to 15): 1111

User data field value (0 to 32767): 2222

Connecting clients
Transferring data
No further screen interruptions for 1 minute(s)

2 links in test
Packet data size 512 bytes.
Packets/second: XMIT 4 RECV 4 TOTAL 8
Bits/second: XMIT 16384 RECV 16384 TOTAL 32768
Link ID number 0 1
LCN reset errors 0 0
Transport errors 0 0
RCV data packets 134 134
XMT data packets 139 138

Allowing ICP to settle
Disconnecting clients
X25 SVC TEST test terminated

Figure I–2: Sample Output: X.25 Loopback Program (x25_svc)

142 DC 900-1510C

ICP2432 User’s Guide for Windows NT

DC 900-1510C 143

Index

A

ADCCP NRM loopback test 89
Advanced options menu 82
Asynchronous I/O 45
Attach link menu 76
Audience 11
AWS loopback test 95
awsalp loopback test 95

B

BSC3270 loopback test 101
bsc3270alp loopback test 102
BSC3780 loopback test 101
bsc3780alp loopback test 102
Buffer format changes 37
Buffered I/O 45
Buffers

longword boundary alignment 46

C

Callbacks 39
CancelIo function 47, 48
Cancelling I/O 47
Cancelling I/O requests 48
Caution

buffer alignment on longword boundary 46
non thread-safe DLI 34
tracing in embedded environment 35

CloseHandle function 53
Closing a handle 53
Codes

see Control codes
see Error codes
see Success codes

Configuration

default menu 75
DLI file 36
TSI file 34

connection-specific parameters 35
“main” section parameters 34

typical system 16
Configuration file

fw1000_hdlc.setup 137
fw1000_svc.setup 137

Configure link menu 77
Control codes 48

IOCTL_ICP_CANCEL_READS 48
IOCTL_ICP_CANCEL_WRITES 48
IOCTL_ICP_GET_DRIVER_INFO 48, 49
IOCTL_ICP_INIT_ICP 48, 53
IOCTL_ICP_INIT_PROC 48, 53
IOCTL_ICP_SET_DNL_TARGET_ADDR 4

8, 53
IOCTL_ICP_WRITE_EXPEDITE 48, 51

CreateFile function 44
file handles 55

Customer support 13

D

Data
reading 45
writing 46

Data link interface, See DLI
Data send menu 79
Default configuration menu 75
Detach link menu 81
Device control 47
Device driver 15, 43

control codes 48
error logging 55

144 DC 900-1510C

ICP2432 User’s Guide for Windows NT

features and capabilities 54
ICP-resident task communication 54
ICPTool download support 54
multiplexed I/O 55
version number 50

DeviceIoControl function 47
Diagnostics generic test main menu 73
Diagnostics protocol test 70
Diagnostics test menu 71
Direct I/O 45
Disable link menu 80
dlBufAlloc function 37
dlBufFree function 38
dlClose function 38
DLI

callbacks 39
changes in commands and responses 36
changes in DLI/TSI protocol 36
comparison of Freeway server and

embedded 32
dlBufAlloc function 37
dlBufFree function 38
dlClose function 38
dlOpen function 39
embedded environment 33
Freeway server environment 32
interface to application program 36
non thread-safe 34
programming using the DLI 31

dlOpen function 39
DMA transfer 46
Download protocol 67
Download protocol confirmation menu 69
Download protocol menu 28, 68
Download protocol scripts 28, 68
Download script

have disk option 69
Download support (ICPTool)

device driver 54

E

Embedded environment
comparison with Freeway server 32
logging 40
tracing 39

Embedded interface
changes in buffer format 37
changes in DLI commands and responses 36
changes in DLI/TSI protocol 36
changes in TSI commands 36
DLI 34
environment 33
objectives 33

Enable link menu 78
Error codes 42

ERROR_ACCESS_DENIED 58
ERROR_BAD_COMMAND 59
ERROR_BUSY 59
ERROR_FILE_NOT_FOUND 60
ERROR_INVALID_FUNCTION 60
ERROR_INVALID_PARAMETER 60
ERROR_INVALID_USER_BUFFER 61
ERROR_IO_DEVICE 61
ERROR_MORE_DATA 62
ERROR_NOACCESS 62
ERROR_NOT_ENOUGH_MEMORY 62
ERROR_OPERATION_ABORTED 62
ERROR_RESOURCE_DATA_NOT_FOUND

63
ERROR_SEM_TIMEOUT 63

Error logging 55
message detail 57
sample event log 56

Event detail menu 84
Event viewer 55, 83

log message detail 57
sample event log 56

Expedited write requests 51

F

Features
device driver 54

File handles 55
closing 53
opening 44
see also CloseHandle function
see also CreateFile function

Files
DLI configuration 36
download scripts 67

Index

DC 900-1510C 145

ICP2432 software installation directory 19
Icp2432.h 47, 49
protocol software installation directory 25
system files installation directory 19, 25
toolkit software installation directory 25
TSI configuration 34
user-defined download script file 69

FMP loopback test 107
freeway directory 22
Freeway server

comparison with embedded 32
Function mappings 43
Functions

callbacks 39
CancelIo 47, 48
CloseHandle 53
CreateFile 44

file handles 55
DeviceIoControl 47
dlBufAlloc 37
dlBufFree 38
dlClose 38
dlOpen 39
GetLastError 58
GetOverlappedResult 58
ReadFile 45
WaitForMultipleObjects 45
WaitForSingleObject 45
WriteFile 46

G

Generic diagnostic main menu 73
GetLastError function 58
GetOverlappedResult function 58

H

Have disk option
protocol download script 67, 69

HDLC loopback test 135
HDLC test program

sample output 140
hdlc_user test program 138
Header files

Icp2432.h 47, 49
History of revisions 13

I

ICP
closing session 53
multiple sessions 44
opening session 44

ICP information menu 66
ICP initialization, support 53
ICP states

definitions 51
ICP_Driver_Info structure 49, 50

field descriptions 50
Icp2432.h header file 47, 49
ICP-resident tasks

communication 54
ICPTool download support 54
ICPTool main menu 27, 66
ICPTool program

how to use 65
Installation directory for embedded ICP2432

menu 19
Installation directory for FMP menu 25
Installation of software

ICP2432 17
protocol 22

I/O
asynchronous 45
buffered 45
completion status 58
control codes 48
direct 45
longword alignment of buffers 46
multiplexed 55
non-blocking 45
non-overlapped 55
overlapped 55
Windows NT I/O Manager 58

I/O requests
cancelling 48

L

Link attach menu 76
Link configuration menu 77
Link detach menu 81
Link disable menu 80
Link enable menu 78

146 DC 900-1510C

ICP2432 User’s Guide for Windows NT

Load file 22
Logging

DLI versus TSI 35
embedded environment 40

Logical channel 55
Longword boundary buffer alignment 46
Loopback test

ADCCP NRM 89
ADCCP NRM protocol

non-blocking sample output 93
AWS protocol 95

non-blocking sample output 99
awsalp 95
BSC3270 protocol 101
bsc3270alp 102
BSC3780 protocol 101
bsc3780alp 102
FMP protocol 107

non-blocking sample output 105, 111
HDLC protocol 135
NRM 89
NRM protocol

non-blocking sample output 93
nrmalp 89
protocol toolkit 113

BSC sample output 120
demo sample output 119

spsslp 113
STD1200A 129
STD1200A protocol

non-blocking sample output 133
stdalp 129
X.25 protocol 135

Loopback test programs
sample output for HDLC 140
sample output for X.25 141

M

Memory requirements 17
Menus

attach link 76
configure link 77
default configuration 75
detach link 81
disable link 80

enable link 78
event detail 84
event viewer 83
generic diagnostic main menu 73
ICP information 66
ICPTool main menu 27, 66
installation directory for embedded

ICP2432 19
installation directory for FMP 25
protocol diagnostics 71
protocol download 28, 68
protocol download confirmation 69
restart Windows 21
send data 79
startup information for embedded

ICP2432 18
startup information for FMP 24

Multiplexed I/O 55

N

Node numbers 50, 55
Non-blocking I/O 45
Non-overlapped I/O 55
NRM loopback test 89
nrmalp loopback test 89

O

Opening the ICP 44
Overlapped I/O 55
Overview of product 15

P

Page faults 45
PCIbus 15
Product

overview 15
support 13

Programming
using DLI interface 31
using the Win32 interface 43

Protocol diagnostics 70
Protocol diagnostics menu 71
Protocol download 67
Protocol download confirmation menu 69
Protocol download menu 28, 68

Index

DC 900-1510C 147

Protocol download scripts 28, 68
Protocol toolkit loopback test 113

R

ReadFile function 45
Reading data 45
readme.ppp 22
relhist.ppp 22
relnotes.ppp 22
Restart Windows menu 21
Revision history 13

S

Send data menu 79
Sessions

closing ICP 53
multiple 44
opening ICP 44, 54

Software installation procedure
ICP2432 17
protocol 22

Source code for the loopback tests 23
spsslp loopback test 113
Startup information for embedded ICP2432

menu 18
Startup information for FMP menu 24
States

ICP 51
signalled state 45

Status, I/O completion 58
STD1200A loopback test 129
stdalp loopback test 129
Structures

ICP_Driver_Info 49, 50
ICP_Driver_Info field descriptions 50

Success codes
ERROR_IO_PENDING 58
ERROR_SUCCESS 58
NO_ERROR 58

Support for ICP initialization 53
Support, product 13
System registry keys 20
System services

see Functions

T

Technical support 13
Toolkit (protocol) loopback test 113
Tracing

caution in embedded environment 35
embedded environment 39

Transport subsystem interface
See Embedded interface
See TSI

TSI
Freeway server environment 32

TSI command changes 36

V

Version number
device driver 50

W

WaitForMultipleObjects function 45
WaitForSingleObject function 45
Win32 interface 43
WriteFile function 46
Writing data 46

X–Z

X.25 loopback test 135
X.25 test program

sample output 141
x25_manager

use during installation 136
x25_svc test program 138

148 DC 900-1510C

ICP2432 User’s Guide for Windows NT

ICP2432 User’s Guide for Windows NT

DC 900-1510C

Customer Report Form

We are constantly improving our products. If you have suggestions or problems you would

like to report regarding the hardware, software or documentation, please complete this form

and mail it to Simpact at 9210 Sky Park Court, San Diego, CA 92123, or fax it to

(619) 560-2838.

If you are reporting errors in the documentation, please enter the section and page number.

Your Name:

Company:

Address:

Phone Number:

Product:

Problem or

Suggestion:

Simpact, Inc.
Customer Service

9210 Sky Park Court
San Diego, CA 92123

	Contents
	List of Figures
	List of Tables
	Preface
	1 Product Overview
	Figure 1–1:� Typical Data Communications System Co...
	2 Software Installation
	2.1� Memory Requirements
	2.2� ICP2432 Software Installation Procedure
	Figure 2–1:� Startup Information for Embedded ICP2...
	Figure 2–2:� Installation Directory for Embedded I...
	Figure 2–3:� Program Folder
	Figure 2–4:� Restart Windows
	2.3� Protocol or Toolkit Software Installation Pro...
	Table 2–1:� Protocol Identifiers
	Figure 2–5:� Startup Information for FMP
	Figure 2–6:� Installation Directory for FMP
	Figure 2–7:� Simpact ICPTool Icon
	Figure 2–8:� �ICPTool Main Menu
	Figure 2–9:� Protocol Download Menu
	3 Programming Using the 3 Data Link Interface
	3.1� Embedded Interface Description
	3.1.1� Comparison of �Freeway Server and Embedded ...
	Figure 3–1:� �DLI/TSI Interface in the Freeway Ser...
	Figure 3–2:� DLI/NTsi Interface in the Embedded IC...
	3.1.2� Embedded Interface Objectives
	3.2� DLI Embedded Interface
	3.2.1� Configuration Files
	3.2.1.1� TSI Configuration File
	3.2.1.2� DLI Configuration File
	3.2.2� The Application Program’s Interface to DLI
	3.2.2.1� Embedded Interface — Changes in DLI/TSI P...
	3.2.2.2� Changes in the Application Program’s Inte...
	3.2.2.3� NTsi Tracing
	Figure 3–3:� NTsi Trace Buffer Example
	3.2.2.4� NTsi Logging
	Figure 3–4:� NTsi Log Buffer Example
	3.2.2.5� Error Codes
	Table 3–1:� NT Errors Mapped to tserrno Definition...
	4 Programming Using the 4 Win32 Interface
	4.1� Function Mappings
	4.1.1� Opening the ICP
	4.1.2� Reading Data
	4.1.3� Writing Data
	4.1.4� Cancelling I/O
	4.1.5� Device Control
	Table 4–1:� ICP2432 Driver Control Codes
	4.1.5.1� Cancelling I/O Requests
	4.1.5.2� Obtaining Internal Driver Information
	Figure 4–1:� �ICP_Driver_Info Structure
	Table 4–2:� �ICP_Driver_Info Structure Fields
	Figure 4–2:� IcpState Field Definitions
	4.1.5.3� Expedited Write Requests
	4.1.5.4� Support for ICP Initialization
	4.1.6� Closing A Handle
	4.2� Driver Features and Capabilities
	4.2.1� Download Support
	4.2.2� Communication With ICP-Resident Tasks
	4.2.3� Multiplexed I/O
	4.2.4� Error Logging
	Figure 4–3:� Sample Event Log Displayed in the Eve...
	Figure 4–4:� Log Message Event Detail
	4.3� I/O Completion Status
	4.3.1� Successful Completion
	4.3.2� Error Completion
	A ICPTool for Windows�NT
	A.1� ICPTool Main Menu
	Figure A–1:� Simpact ICPTool Icon
	Figure A–2:� ICPTool Main Menu
	Figure A–3:� ICP Information
	A.1.1� Download Protocol
	Table A–1:� Download a Protocol to the ICP
	Figure A–4:� Protocol Download Menu
	A.1.1.1� Download Protocol Confirmation
	Figure A–5:� Protocol Download Confirmation
	A.1.1.2� Specifying a Protocol Download Script
	A.1.2� Protocol Diagnostics
	A.1.2.1� Run Protocol Diagnostics
	Table A–2:� Protocol Diagnostics Menu Selections
	Figure A–6:� Protocol Diagnostics Menu
	A.1.2.2� Generic Diagnostic (Loopback) Test
	Figure A–7:� Generic Diagnostic Warning
	Figure A–8:� Generic Diagnostic Main Menu
	A.1.2.3� Default Configuration Menu
	Figure A–9:� Default Configuration Menu
	A.1.2.4� Attach Link Menu�
	Figure A–10:� Attach Link Menu
	A.1.2.5� Configure Link Menu�
	Figure A–11:� Configure Link Menu
	A.1.2.6� Enable Link Menu�
	Figure A–12:� Enable Link Menu
	A.1.2.7� Send Data Menu�
	Figure A–13:� Send Data Menu
	A.1.2.8� Disable Link Menu�
	Figure A–14:� Disable Link Menu
	A.1.2.9� Detach Link Menu�
	Figure A–15:� Detach Link Menu
	A.1.3� Advanced Options
	Figure A–16:� Advanced Options Menu
	A.1.3.1� Event Viewer
	Figure A–17:� Event Viewer
	Figure A–18:� Event Detail Output
	B Debug Support for B ICP�resident Software
	C ADCCP NRM Loopback Test C Procedure
	C.1� Overview of the Test Program
	C.2� Hardware Setup for the Test Program
	C.3� Running the Test Program
	C.4� Sample Output from Test Program
	Figure C–1:� Sample Output: NRM Non-blocking Loopb...
	D AWS Loopback Test D Procedure
	D.1� Overview of the Test Program
	D.2� Hardware Setup for the Test Program
	D.3� Running the Test Program
	D.4� Sample Output from Test Program
	Figure D–1:� Sample Output: AWS Non-Blocking Loopb...
	E BSC Loopback Test E Procedure
	E.1� Overview of the Test Program
	Table 5–1:� �BSC Protocol Loopback Test Programs
	E.2� Hardware Setup for the Test Program
	E.3� Running the Test Program
	E.4� Sample Output from Test Program
	Figure E–1:� Sample Output from BSC3780 Non-Blocki...
	F FMP Loopback Test F Procedure
	F.1� Overview of the Test Program
	F.2� Hardware Setup for the Test Program
	F.3� Running the Test Program
	F.4� Sample Output from Test Program
	Figure F–1:� Sample Output from FMP Non-Blocking L...
	G Protocol Toolkit Loopback G Test Procedure
	G.1� Overview of the Test Program
	G.2� Hardware Setup for the Test Program
	G.3� Running the Test Program
	Figure G–1:� Main Menu of Protocol Toolkit Test
	G.4� Sample Output from Test Program
	Figure G–2:� Sample Output from Protocol Toolkit T...
	Figure G–3:� Sample Output from Protocol Toolkit T...
	H STD1200A Loopback Test H Procedure
	H.1� Overview of the Test Program
	H.2� Hardware Setup for the Test Program
	H.3� Running the Test Program
	H.4� Sample Output from Test Program
	Figure H–1:� Sample Output from STD1200A Non-Block...
	I X.25/HDLC Loopback Test I Procedure
	I.1� Overview of the Test Programs
	I.2� Hardware Setup for the Test Programs
	I.3� Running the Test Programs
	Table I–1:� X.25/HDLC Test Files
	I.4� Sample Output from Test Programs
	Figure I–1:� Sample Output: HDLC Loopback Program ...
	Figure I–2:� Sample Output: X.25 Loopback Program ...
	Index

