

Simpact, Inc.
9210 Sky Park Court
San Diego, CA 92123

ICP2432 User’s Guide
for OpenVMS Alpha

DC 900-1511B

August 1998

Simpact, Inc.
9210 Sky Park Court
San Diego, CA 92123
(619) 565-1865

ICP2432 User’s Guide for OpenVMS Alpha
© 1998 Simpact, Inc. All rights reserved
Printed in the United States of America

This document can change without notice. Simpact, Inc. accepts no liability for any errors this
document might contain.

Freeway is a registered trademark of Simpact, Inc.
All other trademarks and trade names are the properties of their respective holders.

DC 900-1511B

3

Contents

List of Figures 7

List of Tables 9

Preface 11

1 Product Overview 13

2 Software Installation 15

2.1 Device Driver Installation Procedure . 15

2.2 Protocol Software Installation Procedure 20

2.3 Loading the ICP2432 Driver and Protocol Software 22

3 Application Interface 25

3.1 Device Driver Interface . 25

3.1.1 Channel Assignment . 27

3.1.2 $QIO Interface . 28

3.1.2.1 I/O Function Code . 28

3.1.2.2 I/O Status Block (IOSB) . 28

3.1.2.3 Buffer Address and Size (P1 and P2) 29

3.1.2.4 Node Numbers (P4) . 29

3.2 Supported VMS System Services . 31

3.2.1 SYS$ASSIGN . 31

3.2.2 SYS$CANCEL . 32

3.2.3 SYS$DASSGN. 33

3.2.4 SYS$QIO(W) . 34

3.2.4.1 IO$_INITIALIZE[|IO$M_NOWAIT]. 36

3.2.4.2 IO$_LOADMCODE . 37

3.2.4.3 IO$_STARTMPROC . 38

4

DC 900-1511B

ICP2432 User’s Guide for OpenVMS Alpha

3.2.4.4 IO$_READVBLK, IO$_READLBLK, and IO$_READVPLK . . 39

3.2.4.5 IO$_WRITEVBLK, IO$_WRITELBLK, and IO$_WRITEPBLK 41

3.3 DLI Session Interface . 43

3.3.1 DLI Session Basics. 43

3.3.2 Use Of Node Numbers (DLI). 43

3.3.2.1 Node 1. 44

3.3.2.2 Node 2. 44

3.3.2.3 Nodes 3 through 126 . 44

3.3.3 DLI Session Commands . 44

3.3.3.1 ATTACH Command . 45

3.3.3.2 DETACH Command . 45

3.3.3.3 TERMINATE Command . 46

3.3.4 ICP Discarded Packets . 46

3.4 Compatibility with older ICP Protocols 46

3.5 Protocol Toolkit . 47

4 ICP Packet Formats 49

4.1 DLI Packet Format . 49

4.2 DLI Optional Arguments . 51

5 ICP Utility 53

5.1 ICPLOAD Components . 53

5.2 OS/Impact and Downloaded Files . 54

5.3 Get or Set the Timeout Value . 54

5.4 Using ICPLOAD.EXE . 55

5.4.1 Invoking ICPLOAD via the RUN Command 55

5.4.2 Invoking ICPLOAD as a Foreign Command. 55

5.4.3 ICPLOAD Commands . 56

5.4.3.1 HELP . 58

5.4.3.2 RESET . 59

5.4.3.3 LOAD . 60

5.4.3.4 START. 61

5.4.3.5 GET . 62

5.4.3.6 SET . 63

5.5 ICPLOAD Callable Routines. 64

5.5.1 Conventions . 64

Contents

DC 900-1511B

5

5.5.1.1 icpreset . 65

5.5.1.2 icpload . 66

5.5.1.3 icpstart . 67

Index 69

6

DC 900-1511B

ICP2432 User’s Guide for OpenVMS Alpha

DC 900-1511B

7

List of Figures

Figure 1–1: Typical Data Communications System Configuration. 14

Figure 3–1: P4 Parameter Format . 30

Figure 4–1: “C” Definition of ICP Packet Structure. 50

Figure 4–2: “C” Definition of DLI Optional Arguments Structure. 51

8

DC 900-1511B

ICP2432 User’s Guide for OpenVMS Alpha

DC 900-1511B

9

List of Tables

Table 2–1: Protocol Identifiers . 20

Table 4–1: Comparison of DLI_OPT_ARGS and ICP_PACKET Structures 52

Table 5–1: ICPLOAD Command Summary. 56

10

DC 900-1511B

ICP2432 User’s Guide for OpenVMS Alpha

DC 900-1511B

11

Preface

Purpose of Document

This document describes how to use the ICP2432 intelligent communications proces-

sor (ICP) in a peripheral component interconnect (PCI) bus computer running the

VMS operating system.

Intended Audience

This document is intended primarily for VMS system managers and applications pro-

grammers.

Organization of Document

Chapter 1 is an overview of the product.

Chapter 2 describes how to install the ICP2432 and protocol software in a VMS system.

Chapter 3 describes the application interface to the ICP2432 device driver.

Chapter 4 describes the format of packets written to or read from the ICP.

Chapter 5 describes the

icpload.exe

 utility.
I deleted the
References
section until
DLI works
with this
product.

12

DC 900-1511B

ICP2432 User’s Guide for OpenVMS Alpha

Document Conventions

The term “ICP,” as used in this document, refers to the physical ICP2432, whereas the

term “device” refers to all of the VMS software constructs (device driver, I/O database,

and so on) that define the device to the system, in addition to the ICP2432 itself.

Document Revision History

The revision history of the

ICP2432 User’s Guide for OpenVMS Alpha

, Simpact docu-

ment DC 900-1511B, is recorded below:

Customer Support

If you are having trouble with any Simpact product, call us at 1-800-275-3889 Monday

through Friday between 8 a.m. and 5 p.m. Pacific time.

You can also fax your questions to us at (619)560-2838 or (619)560-2837 any time.

Please include a cover sheet addressed to “Customer Service.”

We are always interested in suggestions for improving our products. You can use the

report form in the back of this manual to send us your recommendations.

Document Revision Release Date Description

DC 900-1511A January 1998 Original release

DC 900-1511B August 1998 Added auto-configuration support
Added Single Step Debugger support

DC 900-1511B

13

Chapter

1

Product Overview

The Simpact ICP2432 data communications product allows PCIbus computers run-

ning the VMS operating system to transfer data to other computers or terminals over

standard communications circuits. The remote site need not have identical equipment.

The protocols used comply with various corporate, national, and international stan-

dards.

The ICP2432 product consists of the software and hardware required for user applica-

tions to communicate with remote sites. Figure 1–1 is a block diagram of a typical sys-

tem configuration. Application software in the VMS system communicates with the

ICP2432 by means of the Simpact-supplied device driver.

The ICP controls the communications links for the user applications. The user applica-

tion writes commands and data to the ICP in the form of packets. The user application

also reads responses and data from the ICP in the form of packets. All packets conform

to the format described in Chapter 4.

14

DC 900-1511B

ICP2432 User’s Guide for OpenVMS Alpha

Figure 1–1:

Typical Data Communications System Configuration

Host Driver
(ZJDRIVER.EXE)

User
Application

Processes ICP

Communication
link

Communication
link

P
C
I
b
u
s

•
•
•

Data links
to remote computer

or data network

3421

•
•
•

DC 900-1511B

15

Chapter

2

Software Installation

A typical software installation contains two or more distribution media packages

(tapes, disks, and so on). One package contains the ICP2432 VMS device driver and its

related files. The other package contains a specific Simpact protocol and its related files.

This chapter describes the installation procedure for both the device driver and the pro-

tocol software for VMS systems.

The software installation procedures in this chapter refer to directory names that are

used by Simpact’s “Freeway” line of server products. The ICP2432 driver and protocol

software use the “Freeway” directory tree for building executable images.

2.1 Device Driver Installation Procedure

Step 1:

Verify that you have installed one or more ICP2432 boards in your computer, as

described in the

ICP2432 Hardware Installation Guide

.

Step 2:

Insert the ICP2432 installation tape into your VMS computer. The software distribu-

tion media contains several VMS

BACKUP

 savesets. To install the software from the dis-

tribution media onto your VMS computer, use the

VMSINSTAL

 utility as described in the

following procedure.

16

DC 900-1511B

ICP2432 User’s Guide for OpenVMS Alpha

Caution

Remember that installing new software overwrites the previous

software.

After the distribution media is mounted, the procedure is automated and only requires

that you respond to menu prompts. Console displays are shown in

typewriter

type

 and

your responses are shown in

bold

type

. Follow each entry with a carriage return. The

abbreviation

DDDDDDDDCCCCUUUU

 signifies that a device name is required.

You might find it useful to perform the installation at a hardcopy terminal. This pro-

vides a printed record that you can use for troubleshooting if needed.

Step 3:

On the host computer, log in to an account that has system-manager privileges.

Step 4:

Insert the protocol distribution media into the appropriate drive. Run

VMSINSTAL

 as fol-

lows to copy the files from each distribution media to your VMS computer (

V

nnnn

 is

the current software version number).

$

@@@@SSSSYYYYSSSS$$$$UUUUPPPPDDDDAAAATTTTEEEE::::VVVVMMMMSSSSIIIINNNNSSSSTTTTAAAALLLL

OpenVMS AXP Software Product Installation Procedure V

nnnn

It is

today’s date

 at

current time

.

Enter a question mark (?) at any time for help.

The computer checks the following conditions:

•

Are you logged in to the system manager’s account? You should install the soft-

ware from that account; however, any account with the necessary privileges is

acceptable.

2: Software Installation

DC 900-1511B

17

•

Do you have adequate account quotas for installing software?

VMSINSTAL

 checks

for the various quota values.

•

Are any users logged on the system? Problems might occur if someone tries to use

the system while you are installing a new release of the software.

Step 5:

If there are potential problems with the account quotas, the computer displays:

The following account quotas may be too low.

The computer lists the account quotas that might be too low. Next, it lists any other

active processes.

If any potentially conflicting conditions are noted, the computer gives you the opportu-

nity to stop the installation by displaying the following message:

* Do you want to continue anyway [NO]?

If you answer

yyyyeeeessss

, the computer asks:

Are you satisfied with the backup of your system disk [YES]?

If you answer

nnnnoooo

, the installation stops so you can save your data before restarting the

installation.

Step 6:

If you proceed with the installation, the computer displays the following message.

Remember that

DDDDDDDDCCCCUUUU

 means a device name.

* Where will the distribution volumes be mounted:

DDDDDDDDCCCCUUUU::::

For

DDDDDDDDCCCCUUUU

, substitute a device name such as MUA0, MKA100, DUAl, or something simi-

lar.

18

DC 900-1511B

ICP2432 User’s Guide for OpenVMS Alpha

Step 7:

The computer displays:

Enter the products to be processed from the first distribution

volume set.

* Products: *

Enter an asterisk (this causes all products to be installed).

Step 8:

The computer displays:

* Enter installation options you wish to use (none):

Refer to Digital’s

VMS Installation Guide

 for a list of the

VMSINSTAL

 options and how to

enter them. Press <return> to select the standard installation options.

Step 9:

The computer displays:

This installation procedure will place the files on device

SYS$SYSDEVICE.

* Is this acceptable [Y]?

y

Press <return> to answer yes (

this is highly recommended

). If you answer

nnnnoooo

, you are

prompted to enter the name of a target disk.

2: Software Installation

DC 900-1511B 19

Step 10:

The computer displays:

This installation procedure will place the product files in

directory [FREEWAY...]

on device ddcu

* Is this acceptable [Y]? y

Remember that DDDDDDDDCCCCUUUU means a device name. Press <return> to answer yes (this is highly

recommended). If you answer nnnnoooo, you are prompted to enter the name of a directory.

Step 11:

The computer displays:

There are no more questions. The installation will proceed.

The procedure completes automatically. Depending on the speed of your system, this

will take several minutes, then it displays:

%VMSINSTAL-I-MOVEFILES, Files will now be moved to their target directories...

Installation of Product Vnnnn completed at current time.

Step 12:

The computer displays:

Enter the products to be processed from the next distribution volume set.

* Products:

If you will be installing another protocol, enter an asterisk (*) to continue. When there

are no other distribution sets, enter eeeexxxxiiiitttt. The computer displays:

VMSINSTAL procedure done at current time.

The ICP2432 software is now installed onto your computer’s disk.

20 DC 900-1511B

ICP2432 User’s Guide for OpenVMS Alpha

2.2 Protocol Software Installation Procedure

The software installation procedures described in this section refer to file names that

include a “ppp” identifier to indicate a specific protocol. Table 2–1 shows the “ppp” iden-

tifiers for various protocols. For example, ppp_FW_2432.MEM translates to

BSC3270_FW_2432.MEM for BSC3270 or X25_FW_2432.MEM for X.25.

a Except for the readme and release notes, where ppp is adn.
b Except for the readme, release notes, release history, and load configuration
files where ppp is bsc for both BSC3270 and BSC2780/3780.
c Except for the executable object for the protocol software where ppp is sps
(sps_fw_2432.mem).
d Except for the load configuration files where ppp is milxxxyyy (xxxyyy
identifies the particular TACMIL product designation, distinguished by the
unique subset of the full set of military protocols that it contains).
e Except for the DLI and TSI configuration files which are apidcfg and
apitcfg and the test directory where ppp is x25mgr.

Table 2–1: Protocol Identifiers

Protocol or Toolkit
Protocol Identifier

(pppppppppppp)

AUTODIN autodina

AWS aws

BSC3270 bsc3270b

BSC2780/3780 bsc3780a

DDCMP ddcmp

FMP fmp

ADCCP NRM nrm

Protocol Toolkit sps

Server-resident Application srac

STD1200A s12

TACMIL mild

X.25/HDLC x25e

2: Software Installation

DC 900-1511B 21

The following files are in the FREEWAY directory:

• README.ppp provides general information about the protocol software

• RELNOTES.ppp provides specific information about the current release of the pro-

tocol software

• RELHIST.ppp provides information about previous releases of the protocol soft-

ware

For software releases prior to June 1, 1998, the executable object for the protocol soft-

ware, ppp_FW_2432.MEM, was distributed in the [FREEWAY.ICPCODE.ICPXXXX.PROTOCOLS]

directory. For releases after June 1, 1998, this file is in the [FREEWAY.BOOT] directory.

For software releases prior to June 1, 1998, the executable object for the system-services

module, XIO_2432.MEM, was distributed in the [FREEWAY.ICPCODE.ICPXXXX.OSIMPACT]

directory. For releases after June 1, 1998, this file is in the [FREEWAY.BOOT] directory. The

load files provided with protocols with a release date prior to June 1, 1998 contain a

fully qualified path for the protocol and XIO image files. Such files should be modified

to remove the path to the XIO image. This allows your system to boot the local copy of

the XIO image provided in the [FREEWAY.BOOT] directory.

Step 1:

Insert the protocol installation tape into your VMS computer.

Step 2:

To install the protocol software from the distribution media onto your VMS computer,

use the VMSINSTAL utility as described in Section 2.1 on page 15.

Caution
Remember that installing new software overwrites the previous

software.

22 DC 900-1511B

ICP2432 User’s Guide for OpenVMS Alpha

2.3 Loading the ICP2432 Driver and Protocol Software

Step 1:

After you have installed the ICP2432 software, load the ICP2432 driver as follows:

$ SSSSEEEETTTT DDDDEEEEFFFF DDDDDDDDCCCCUUUU::::[[[[FFFFRRRREEEEEEEEWWWWAAAAYYYY....CCCCLLLLIIIIEEEENNNNTTTT....VVVVMMMMSSSS____EEEEMMMMBBBB....BBBBIIIINNNN]]]]

Step 2:

Execute the configuration program:

$ @@@@ZZZZJJJJCCCCOOOONNNNFFFFIIIIGGGGUUUURRRREEEE

Step 3:

Set the SIMPACT_ prefix using the SYSMAN utility. First display the current prefix list:

$ MMMMCCCCRRRR SSSSYYYYSSSSMMMMAAAANNNN

SYSMAN> IIIIOOOO SSSSHHHHOOOOWWWW PPPPRRRREEEEFFFFIIIIXXXX

SYSMAN-I-OUTPUT, command execution on node GABIN

SYSMAN-I-IOPREFIX, the current prefix list is: SYS$,DECW$

The current prefix list is SYS$,DECW$. The empty string equates to the prefix SYS$.

Next set the SIMPACT_ prefix:

SYSMAN> IIIIOOOO SSSSEEEETTTT PPPPRRRREEEEFFFFIIIIXXXX====""""SSSSYYYYSSSS$$$$,,,,DDDDEEEECCCCWWWW$$$$,,,,SSSSIIIIMMMMPPPPAAAACCCCTTTT____""""

Step 4:

Configure the ICP cards in the system:

$ MMMMCCCCRRRR SSSSYYYYSSSSMMMMAAAANNNN

SYSMAN> IIIIOOOO AAAAUUUUTTTTOOOOCCCCOOOONNNNFFFFIIIIGGGGUUUURRRREEEE ////SSSSEEEELLLLEEEECCCCTTTT====ZZZZJJJJ****

2: Software Installation

DC 900-1511B 23

Step 5:

Edit the SYS$MANAGER:SYSCONFIG.COM file. If you want autoconfigure to execute as part

of the system startup, add the following line as the last line of the SYS$MANAGER:

SYSCONFIG.COM file.

@@@@[[[[FFFFRRRREEEEEEEEWWWWAAAAYYYY....CCCCLLLLIIIIEEEENNNNTTTT....VVVVMMMMSSSS____EEEEMMMMBBBB....BBBBIIIINNNN]]]]SSSSIIIIMMMMPPPPAAAACCCCTTTT____IIIICCCCBBBBMMMM____IIIINNNNSSSSTTTTAAAALLLLLLLL....CCCCOOOOMMMM

Step 6:

The SIMPACT_STARTUP.COM file contains commands to download the protocol software.

If you did not install the software in the default directory, edit the SIMPACT_STARTUP.COM

file to modify the necessary pathnames. The following example is for X25 protocol soft-

ware.

$! Download Protocol Software
$!
$! $ICPLOAD device-name [/reset] -
$! [/file=filename] -
$! [/address=addr] -
$! [/startup=addr]
$!
$!! set verify
$!! ICPLOAD ZJA0 /reset
$!! ICPLOAD ZJA0 -
$!! /file=SYS$SYSDEVICE:[FREEWAY.BOOT]XIO_2432.MEM -
$!! /address=%x801200
$!! ICPLOAD ZJA0 -
$!! /file=SYS$SYSDEVICE:[FREEWAY.BOOT]X25_FW_2432.MEM -
$!! /address=%x818000
$!! ICPLOAD ZJA0 /startup=%x818000
$!! set noverify

Step 7:

Execute SIMPACT_STARTUP.COM to download the protocol software into the ICP2432.

$ @@@@SSSSIIIIMMMMPPPPAAAACCCCTTTT____SSSSTTTTAAAARRRRTTTTUUUUPPPP

SIMPACT_STARTUP.COM Procedure starting
Resetting zja0. This will take about 5 seconds...
Loading Firmware....
$

I decreased
the space
above steps 6
and 7 from 18
to 14 to get
the last line
on this page.

24 DC 900-1511B

ICP2432 User’s Guide for OpenVMS Alpha

DC 900-1511B 25

Chapter

3 Application Interface

Application programs running on VMS systems communicate with Simpact protocol

software by sending and receiving formatted packets to the ICP2432 device. This is

done by issuing VMS queued I/O (QIO) requests to the device driver (ZJDRIVER)

supplied by Simpact. This chapter describes the use of the VMS system services as they

apply to the Simpact device driver.

3.1 Device Driver Interface

The Simpact VMS device driver provides the interface between one or more VMS appli-

cation programs and the protocol software on the ICP2432. The VMS program builds

formatted buffers in user space which consist of one or more headers and a data area.

The headers contain information such as commands and response codes that both the

program and the protocol software use to determine the type and purpose of each

packet. The Simpact VMS device driver has no knowledge of which protocol the

ICP2432 is using. It simply provides a logical path to move buffers between AXP and

ICP physical memory. The VMS program must do all the interpretation of data within

the buffer.

The flow of information between the AXP and ICP generally follows a com-

mand/response sequence. For each command sent by the VMS program to the ICP, the

program receives a response from the protocol software. There are, however, exceptions

to the command/response rule due to the asynchronous nature of communications. For

instance, once a link is started, data packets from the remote end of the communication

line can be received at any time. These packets are read by the VMS program through

26 DC 900-1511B

ICP2432 User’s Guide for OpenVMS Alpha

the QIO read path and are not associated with any command sent by the program.

Asynchronous line events such as sudden changes in modem control signals are

reported in the same way. For this reason, the VMS program should always keep a

no-wait read posted to each active link in order to handle any unexpected packets.

Simpact’s standard VMS device driver (ZJDRIVER) provides an interface to the ICP2432

that is used by several Simpact protocols. Although this driver follows the general

design of most other Digital device drivers, there are some functions that may be differ-

ent from other drivers. The following is a list of important facts about the standard Sim-

pact driver:

• The driver assigns one device name (for example, ZJA0) for each ICP2432 board.

The user program accesses different ICP links through this one device name by

using node numbers (described later in this section). Multiple programs can

access the same device name.

• Except for download commands, all reads and writes are directed to a node num-

ber. Multiple programs can write to the same node number on the same ICP.

However, each program accessing the same ICP should read from a different node

number.

• Successful completion of a QIO write call simply means that the client buffer

(header and data) has been copied from AXP memory to ICP memory. The VMS

program must post a separate read to receive confirmation of the command or

data.

• If the VMS program is not able to post a QIO read for an incoming message

immediately, the message is not lost; if the ICP has available memory, it holds the

packet until the read is posted.

• VMS error codes found in the IOSB of the QIO calls are different from protocol

error codes found in the protocol header.

• The Simpact driver does not support timer functions such as timed reads.

3: Application Interface

DC 900-1511B 27

Your VMS system must have available PCIbus slots in order to use the ICP2432 boards.

After the device driver is installed in the VMS system, ICP boards appear as the device

names ZJAO, ZJBO. ZJCO, and so on.

The device driver supports the following VMS system service calls for normal program

applications:

• SYS$ASSIGN - Assign a channel

• SYS$QIO (IO$READxBLK, IO$WRITExBLK) - Read and write data

• SYS$DASSGN - Close a channel

• SYS$CANCEL - Cancel pending I/O

 The device driver supports the following VMS system service calls for ICP download

applications:

• SYS$QIO (IO$INITIALIZE) - Reset an ICP

• SYS$QIO (IO$LOADMCODE) - Download an ICP

• SYS$QIO (IO$STARTMPROC) - Start the ICP protocol software

These system services can be accessed from programs written in MACRO-32 assembly

language or any high-level language supported by Digital such as C, FORTRAN,

PASCAL, ADA, BASIC, and COBOL. The following sections describe the system

services that are normally used by a VMS application programmer who is interfacing to

an ICP. More detailed information on these system service calls are described in more

detail in Section 3.2 on page 31.

3.1.1 Channel Assignment

The VMS application program must assign a channel to the device driver before any I/O

can take place. To do this, the program uses the SYS$ASSIGN system service. The format

of this system service is shown in Section 3.2.1 on page 31. Once a VMS program

28 DC 900-1511B

ICP2432 User’s Guide for OpenVMS Alpha

assigns a channel to an ICP, it has access to all communication ports on that ICP. A

program can access more than one ICP by assigning a separate channel for each board.

Multiple VMS programs can access the same ICP board by assigning channels to the

same device name. Read and write operations for each of the programs are kept sepa-

rate through the use of node numbers (described later in this chapter).

3.1.2 $QIO Interface

On VMS systems, application programs communicate with the ICP protocol software

through the use of the $QIO system service. The format of the SYS$QIO call as it relates

to the ICP device is shown in Section 3.2.4 on page 34. More detailed information on

the QIO call and parameters can be found in the VMS System Services Reference Man-

ual. The following sections describe parameters that have specific use with ICP protocol

applications.

3.1.2.1 I/O Function Code

The I/O function code determines whether the QIO operation is a read or a write. Use

IO$WRITEVBLK (write virtual block) when writing a buffer to the ICP and IO$READVBLK

(read virtual block) when reading a buffer from the ICP. No other modifiers are

required. The function codes for logical block (IO$WRITELBLK, IO$READLBLK) and physi-

cal block (IO$WRITEPBLK, IO$READPBLK) are also supported, but are normally not used by

ICP programmers.

3.1.2.2 I/O Status Block (IOSB)

The programmer should always check the status field (first word) of the IOSB after each

QIO completion. This field returns a VMS completion code or error code that indicates

the success of the call or reason for failure. The return codes used by the ICP device

driver are described in Section 3.2.4.4 on page 39. Note that these error codes indicate

VMS errors only and are different than the protocol error codes that are returned in the

data portion of the QIO read. Protocol-specific errors are described in the Simpact pro-

grammer’s guide for the specific protocol you are using.

3: Application Interface

DC 900-1511B 29

The fourth word of the IOSB contains the actual number of bytes transferred for READ

operations.

3.1.2.3 Buffer Address and Size (P1 and P2)

The P1 parameter contains the address of the buffer to be transferred to the ICP for

WRITE operations or the address of a buffer to receive data from the ICP for READ

operations. The address can be an array name or pointer to a data area. The buffer con-

sists of the protocol header(s) followed by an optional data area. If a data area exists, it

must immediately follow the protocol header.

For WRITE operations, the P2 parameter equals the total size (in bytes) of the protocol

header(s) plus any data that follows the header. The size of the data area must not

exceed the maximum buffer size specified by the protocol software or a VMS buffer

overflow error occurs. For example, if the maximum ICP buffer size is set to 1024 bytes,

the maximum value of the P2 parameter would be the size of the protocol header(s)

plus 1024.

For READ operations, the P2 parameter equals the size of the program's read buffer.

This buffer must be large enough to accept the protocol header(s) plus largest data area

expected from the ICP. Using the above example, the read buffer size would always be

header size plus 1024 bytes. When the read completes, the program can obtain the

actual number of bytes transferred from the IOSB. Since all ICP data transfers include

at least a protocol header, each buffer read from the ICP contains at least the size of that

header.

3.1.2.4 Node Numbers (P4)

Once a channel is assigned to the ICP device name, data is directed to individual ports

(links) on that ICP through the use of a node number in the P4 parameter of the QIO

call. A node number represents a logical full-duplex path to the protocol software on

the ICP. The legal values for node numbers in the ICP driver are 1 to 126. Note that this

range of numbers starts over again for each ICP device name. For example, node 1 on

30 DC 900-1511B

ICP2432 User’s Guide for OpenVMS Alpha

ZJA0 is different from node 1 on ZJB0. The P4 parameter is a 32-bit word that contains

the read node number in the low byte and the write node number in the next byte, as

shown in Figure 3–1. As a general rule, application programs should place the desired

node number in both low bytes of the parameter (for example, 0101 hex, 0202 hex, and

so on) for all QIO transfers, read or write. The device driver uses the appropriate byte

and ignore the other.

Note
Read and write node numbers should not be confused with

PCIbus node numbers.

The protocol software on the ICP determines how the device driver node numbers are

used. Most of Simpact’s current protocol software uses node numbers to form “session”

connections through the device driver. Using this method, all writes to the ICP use

nodes 1 and 2. All reads from the ICP use nodes 3 to 126. Some Simpact protocols have

the ability to revert to an earlier node number scheme used by Simpact’s ICP3222 and

Digital’s Commserver products. This scheme connects a single node number to each

ICP port. Whatever node number scheme or protocol you use, it is transparent to the

VMS device driver. More information about protocol specifics can be found in

Chapter 4.

Figure 3–1: P4 Parameter Format

031

read node numberunused unused write node number

23 15 7

3: Application Interface

DC 900-1511B 31

3.2 Supported VMS System Services

The ICP2432 device driver supports the VMS system services described in the following

sections.

3.2.1 SYS$ASSIGN

Before issuing VMS QIO calls, the application must first assign a channel to an ICP with

the VMS SYS$ASSIGN call. This call sets up an association between this channel and the

ICP on subsequent QIO calls. See the VMS system services manual for a detailed

description of SYS$ASSIGN.

Synopsis

SYS$ASSIGN (device_name, &channel [,acmode] [,mbxnam])

Parameters

device_name ICP device name (for example, ZJA0)

channel The address of the communication channel that is assigned

Note
Access mode (acmode) and mailbox (mbxnam) are not supported by

the ICP2432 device driver.

32 DC 900-1511B

ICP2432 User’s Guide for OpenVMS Alpha

3.2.2 SYS$CANCEL

To cancel all active or pending read or write requests associated with an I/O channel, the

application issues the VMS SYS$CANCEL call. See the VMS system services manual for a

detailed description.

Synopsis

SYS$CANCEL (channel)

Parameters

channel Communication channel

3: Application Interface

DC 900-1511B 33

3.2.3 SYS$DASSGN

To terminate its association with an ICP device, the application issues the VMS

SYS$DASSGN call for the channel associated with the ICP. See the VMS system services

manual for a detailed description of SYS$DASSGN.

Synopsis

SYS$DASSGN (channel)

Parameters

channel Communication channel

34 DC 900-1511B

ICP2432 User’s Guide for OpenVMS Alpha

3.2.4 SYS$QIO(W)

To issue VMS read or write I/O calls, the client application issues the VMS SYS$QIOW or

SYS$QIO calls (for I/O with, or without wait). See the VMS system services manual for a

detailed description of SYS$QIOW and SYS$QIO.

Synopsis

SYS$QIO(W) ([efn], channel, function [,&iosb] [,&astadr] [,astprm],
[,p1] [,p2] [,p3] [,p4] [,p5] [,p6])

Parameters

efn Event flag to be set on completion of I/O

channel Communication channel associated with a device

function Supported functions are described in Section 3.2.4.1 through

Section 3.2.4.5

iosb Address of the I/O Status Block fields to receive the I/O completion

status

astadr Address of an Asynchronous System Trap (AST) routine to be exe-

cuted on I/O completion

astprm AST parameter passed to the AST routine on I/O completion

P1—P6 Optional device- and function-specific I/O request parameters

The ICP2432 device driver supports these function codes, described in the following

sections:

1. IO$_INITIALIZE[|IO$M_NOWAIT]

2. IO$_LOADMCODE

3. IO$_STARTMPROC

3: Application Interface

DC 900-1511B 35

4. IO$_READVBLK, IO$_READLBLK, IO$_READPBLK

5. IO$_WRITEVBLK, IO$_WRITELBLK, IO$_WRITEPBLK

All functions are handled as direct I/O using DMA transfer.

36 DC 900-1511B

ICP2432 User’s Guide for OpenVMS Alpha

3.2.4.1 IO$_INITIALIZE[|IO$M_NOWAIT]

The IO$_INITIALIZE function initializes the ICP2432.

Condition Values Returned

SS$_NORMAL Initialization completed successfully

SS$_CANCEL Request canceled

SS$_CTRLERR Request not completed; a fatal error occurred

SS$_TIMEOUT Request timed out; no response from ICP

The transfer count and the device-specific information of IOSB are not used.

Parameters

None.

Description

If the SS$M_NOWAIT modifier is used, the driver resets the device and returns immedi-

ately; it does not wait for initialization to complete.

If the SS$M_NOWAIT modifier is not used, the driver resets the device and initializes the

ICP2432 to prepare for downloading the software.

3: Application Interface

DC 900-1511B 37

3.2.4.2 IO$_LOADMCODE

The IO$_LOADMCODE function loads a software block onto the ICP2432.

Condition Values Returned

SS$_NORMAL Request completed successfully

SS$_BADPARAM Parameter is incorrect

SS$_CANCEL Request canceled

SS$_ILLBLKNUM ICP load address is incorrect

SS$_INSFMAPREG DMA error occurred

SS$_TIMEOUT Request timed out; no response from ICP

The transfer count and the device-specific information of IOSB are not used.

Parameters

P1 Packet address (must be on a longword boundary)

P2 Packet size (less than 1 megabyte)

P3 0

P4 ICP load address

P5 0

P6 0

Description

The driver accesses user virtual address space (specified by the P1 parameter) to access

the packet. The packet must be set on a longword boundary. For details of the ICP load

address, see the ICP2432 Hardware Description and Theory of Operation.

Decreased
size above
Condition,
Parameters,
and
Description
to get
Description
on this page.

Scott hasn’t
finished the
ICP2432
Hardware
document.

38 DC 900-1511B

ICP2432 User’s Guide for OpenVMS Alpha

3.2.4.3 IO$_STARTMPROC

The IO$_STARTMPROC function starts the ICP2432 software.

Condition Values Returned

SS$_NORMAL Request completed successfully

SS$_BADPARAM Parameter is incorrect

SS$_CANCEL Request canceled

SS$_IVMODE Software was not downloaded

SS$_TIMEOUT Request timed out; no response from ICP

The transfer count and the device-specific information of IOSB are not used.

Parameters

P1 0

P2 0

P3 0

P4 ICP starting address

P5 0

P6 0

Description

For details of the ICP starting address, see the ICP2432 Hardware Description and The-

ory of Operation.

Scott hasn’t
finished the
ICP2432
Hardware
document.

3: Application Interface

DC 900-1511B 39

3.2.4.4 IO$_READVBLK, IO$_READLBLK, and IO$_READVPLK

The IO$_READxBLK function reads a packet to the ICP2432 firmware.

Condition Values Returned

SS$_NORMAL Request completed successfully

SS$_ACCVIO Buffer does not allow write access

SS$_BADPARAM Parameter is incorrect

SS$_BUFFEROVF Received data is larger than specified buffer

SS$_CANCEL Request canceled

SS$_IVMODE Software was not downloaded

SS$_INSFMAPREG DMA error occurred

SS$_NOSUCHNODE Node number is incorrect

SS$_TIMEOUT Request timed out; no response from ICP

The transfer count of IOSB is set, but the device-specific information of IOSB is not

used.

Parameters

P1 Packet address (must be on a longword boundary)

P2 Packet size

P3 0

P4 Read and write node numbers

P5 0

P6 0

Decreased
size above
Condition
and
Parameters to
get P6 on this
page.

40 DC 900-1511B

ICP2432 User’s Guide for OpenVMS Alpha

Description

The driver accesses user virtual address space (specified by the P1 parameter) to access

the packet. The packet must be set on a longword boundary.

The read and write node numbers are used for communication between the driver and

the ICP2432. The node numbers decide the source and destination of messages. Allow-

able values are 1 through 126. The read node number of P4 is bit 0 through bit 7. The

write node number of P4 is bit 8 through bit 15. See Section 3.1.2.4 on page 29 for more

information about node numbers.

3: Application Interface

DC 900-1511B 41

3.2.4.5 IO$_WRITEVBLK, IO$_WRITELBLK, and IO$_WRITEPBLK

The IO$_WRITExBLK function writes a packet to the ICP2432 firmware.

Condition Values Returned

SS$_NORMAL Request completed successfully

SS$_ACCVIO Buffer does not allow write access

SS$_BADPARAM Parameter is incorrect

SS$_CANCEL Request canceled

SS$_IVMODE Software was not downloaded

SS$_INSFMAPREG DMA error occurred

SS$_NOSUCHNODE Node number is incorrect

SS$_TIMEOUT Request timed out; no response from ICP

The transfer count of IOSB is set, but the device-specific information of IOSB is not

used.

Parameters

P1 Packet address (must be on a longword boundary)

P2 Packet size

P3 0

P4 Read and write node numbers

P5 0

P6 0

42 DC 900-1511B

ICP2432 User’s Guide for OpenVMS Alpha

Description

The driver accesses user virtual address space (specified by the P1 parameter) to access

the packet. The packet must be set on a longword boundary.

The read and write node numbers are used for communication between the driver and

the ICP2432. The node numbers decide the source and destination of messages. Allow-

able values are 1 through 126. The read node number of P4 is bit 0 through bit 7. The

write node number of P4 is bit 8 through bit 15. See Section 3.1.2.4 on page 29 for more

information about node numbers.

3: Application Interface

DC 900-1511B 43

3.3 DLI Session Interface

Simpact protocols designed for use on ICP2432 boards use a session-based method of

communicating between the client application program and the protocol software on

the ICP. This method of communication allows greater flexibility in connecting TCP/IP

sockets to individual ICP ports for the Freeway line of servers. Simpact’s Data Link

Interface (DLI) library uses this session-based interface on both the Freeway server and

embedded ICP boards. If you have previously used Simpact protocols on older ICP

boards, you will find that the session-based interface differs somewhat from the older

interface. As a rule, Simpact protocol image files that begin with fw use the DLI session

interface.

Inside a Freeway server, a program called msgmux manages protocol sessions for all

applications. When you use Simpact’s standard device driver with a session-based pro-

tocol image, your VMS program must take over these session management functions as

described in the following subsections.

3.3.1 DLI Session Basics

A session is made up of a logical connection to an ICP protocol. A session simply

defines a single connection or “service” to an ICP protocol. A session is started by

“attaching” to an ICP port number using a specific access mode. Sessions have different

access modes depending on the protocol. Consult your protocol programmer’s guide

for details.

3.3.2 Use Of Node Numbers (DLI)

When using DLI sessions, all writes to the ICP are performed on nodes 1 and 2. All

reads are performed on nodes 3 to 126. When using multiple programs to access the

same ICP, different read nodes are used to direct packets to the correct program. The

following subsections describe the node numbers in more detail.

44 DC 900-1511B

ICP2432 User’s Guide for OpenVMS Alpha

3.3.2.1 Node 1

Node 1 is the primary node number to which all data is written. The VMS driver allows

multiple programs to write to the same node number. The P4 parameter in the QIO call

should be 0x0101 for all writes.

3.3.2.2 Node 2

Node 2 is the alternate write node. Its use varies per protocol. In some documents,

node 2 is referred to as the “express node” for sending priority packets to the ICP. How-

ever, for most protocols this node is treated the same as node 1. Unless your protocol

programmer’s guide says otherwise, you should not use node 2 to write data packets to

the ICP. You should use node 2 to send the TERMINATE command described in

Section 3.3.3.3 on page 46.

3.3.2.3 Nodes 3 through 126

Nodes 3 through 126 are used as “read only” nodes and are assigned for use by the

ATTACH command. Although most Simpact protocols allow multiple sessions per node

number, it is easier if your programs assign a separate node number per session. The

Freeway server assigns the next lowest available read node number for each new con-

nection it receives. Again, your program does not have to follow this scheme. It would

be easier to assign a fixed node number for each ICP port (or service). For example, a

session to port 0 would always use node 3, port 1 would use node 4, and so on.

3.3.3 DLI Session Commands

The following commands are used to establish and terminate sessions with Simpact

protocols on the ICP. The command codes described here are placed in the command

field of the ICP header (see Chapter 4).

3: Application Interface

DC 900-1511B 45

3.3.3.1 ATTACH Command

The ATTACH command creates a session between your program and the protocol soft-

ware on the ICP.

The following values must be placed in the ICP header of the ATTACH command:

Command field = DLI_ICP_CMD_ATTACH

Status field = hex 4000 (this tells the ICP to swap bytes for VMS systems)

Params[0] = read node number

Some protocols may require you to fill in fields in the protocol header portion of the

ATTACH command with such things as access mode and protocol type. Consult your pro-

tocol programmer’s guide for details.

Your program can read the ATTACH response by posting a QIO read to the node number

you supplied in the ATTACH command. The two most important values to read from the

ATTACH response are the status field of the ICP header and the session ID field of the

protocol header. The status field contains 0 if the ATTACH command was successful and

an error code if it was unsuccessful. If the ATTACH was successful, the session ID field

contains a number associated with this session. This number must be placed in the ses-

sion ID field of all subsequent writes to this session.

3.3.3.2 DETACH Command

The DETACH command closes an individual session between your program and the

protocol software on the ICP. The following values must be placed in the ICP header of

the ATTACH command:

ICP Header:

Command field = DLI_ICP_CMD_DETACH

Status field = hex 4000 (this tells the ICP to swap bytes for VMS systems)

46 DC 900-1511B

ICP2432 User’s Guide for OpenVMS Alpha

Protocol Header:

Session ID field = session ID from ATTACH command

The DETACH command disassociates the protocol session ID from the session, freeing it

for use by another program. Your program can read the DETACH response from the read

node number specified in the ATTACH command for the session.

3.3.3.3 TERMINATE Command

The TERMINATE command closes all sessions that use a particular read node number.

The following values must be placed in the ICP header of the ATTACH command:

Command field = DLI_ICP_CMD_TERM

Status field = hex 4000 (this tells the ICP to swap bytes for VMS systems)

Params[0] = read node number

If there are one or more sessions using a single read node number, the TERMINATE

command forces the protocol software to do implied DETACH commands to each open

session. The ICP sends a TERMINATE response to the supplied read node.

3.3.4 ICP Discarded Packets

When the protocol software on the ICP receives a packet that has an invalid protocol

session ID, it writes the packet back through node 1. For this reason, you may want to

have a separate program which reads packets from node 1 and displays the contents.

3.4 Compatibility with older ICP Protocols

Simpact’s BSC and FMP protocol software for the ICP2432 now has the capability of

emulating the interface used by older ICP products such as the ICP1622, ICP3222, and

DEC Commserver. If you already have a VMS program using BSC or FMP on one of

these devices, your interface does not have to change. When you send the Set Buffer

Size command to node 1 (port 0), the BSC or FMP software automatically detects

3: Application Interface

DC 900-1511B 47

(from the size of the packet) that you are using the older style of interface. The protocol

software then posts reads on all nodes associated with port numbers in addition to the

data ack, control, and trace nodes.

When using this method of interface, each read or write must contain the 8-byte proto-

col header and commands as described in your original BSC or FMP programmer’s

guide.

3.5 Protocol Toolkit

If you have purchased Simpact’s Protocol Toolkit for the ICP2432, the Sample Protocol

Software (SPS) example uses the DLI session interface. The toolkit allows you to change

this to whatever style of interface you want to use, however, Simpact recommends that

you use the DLI session interface so that you can also use the protocol image in a

Freeway environment.

48 DC 900-1511B

ICP2432 User’s Guide for OpenVMS Alpha

DC 900-1511B 49

Chapter

4 ICP Packet Formats

This chapter describes the packet formats used by Simpact protocols. The packet

formats that are written to the ICP2432 are the same whether the ICP is attached to a

Freeway server or a PCI bus in your VMS system. Because most Simpact protocol pro-

grammer’s guides mention commands and responses as they apply to the Freeway

server, this chapter covers both Freeway and device driver use of packets.

4.1 DLI Packet Format

The OpenVMS ICP driver QIO interface provides a block-transfer interface between a

client application and the protocol software resident on the embedded ICP. From the

application’s perspective, these packets consist of message blocks composed of an ICP

header structure followed by a protocol header structure followed by an optional data

array. Figure 4–1 shows the “C” definition of this ICP packet structure.

When preparing a packet to write to the ICP, the application must initialize the

usICPCount field with the size in bytes of the PROT_HDR structure (16) plus the size of the

data array that follows it. After reading a packet from the driver, the application may

compute the size of the data array that follows the PROT_HDR structure by subtracting 16

from the value of the usICPCount field in the ICP_HDR structure.

Note that the ICP_HDR structure must be in network byte-order (Big Endian). This

means that the VMS program must swap bytes in the ICP header before writing packets

to the ICP. The VMS program must also swap bytes in the ICP header after reading each

packet from the ICP. The PROT_HDR structure remains in the client computer’s natural

byte order, which is Little Endian for AXP systems.

50 DC 900-1511B

ICP2432 User’s Guide for OpenVMS Alpha

typedef struct _ICP_PACKET
{

ICP_HDR icp_hdr; /* Network-ordered header */
PROT_HDR prot_hdr; /* Host-ordered header */
char *data; /* Variable length data array */

} ICP_PACKET;

typedef struct _ICP_HDR
{

unsigned short usICPClientID; /* Old su_id */
unsigned short usICPServerID; /* Old sp_id */
unsigned short usICPCount; /* Size of PROT_HDR plus data */
unsigned short usICPCommand; /* ICP's command */

short iICPStatus; /* ICP's command status */
unsigned short usICPParms[3]; /* ICP's extra parameters */

} ICP_HDR;

typedef struct _PROT_HDR
{

unsigned short usProtCommand; /* Protocol command */
short iProtModifier; /* Protocol command's modifier */

unsigned short usProtLinkID; /* Protocol link ID */
unsigned short usProtCircuitID; /* Protocol circuit ID */
unsigned short usProtSessionID; /* Protocol session ID */
unsigned short usProtSequence; /* Protocol sequence */
unsigned short usProtXParms[2]; /* Protocol extra parameters */

} PROT_HDR;

Figure 4–1: “C” Definition of ICP Packet Structure

4: ICP Packet Formats

DC 900-1511B 51

4.2 DLI Optional Arguments

A program using the full DLI library interface to an ICP on a Freeway server is not

allowed to write information directly to the ICP and Protocol headers. Instead, Freeway

users place the desired values in a DLI_OPT_ARGS structure and the DLI write call moves

these values into the proper places in the ICP and Protocol headers. The same applies to

DLI read calls. Information from received packets is taken from the ICP and protocol

headers and placed in the DLI_OPT_ARGS structure where the program can read it.

Although the DLI library is not used by programs accessing Simpact’s standard device

driver, it is mentioned here to allow embedded ICP users to see the similarity in packet

format when reading Freeway documents. Figure 4–2 shows the DLI_OPT_ARGS struc-

ture as it is used in a Freeway environment. Note that the ICP_PACKET structure differs

only slightly from the DLI_OPT_ARGS structure. The ICP_PACKET structure omits the

three Freeway server header fields (usFWPacketType, usFWCommand, and usFWStatus) and

adds one new field (usICPCount). See Table 4–1 for a comparison between the header

fields in the DLI_OPT_ARGS and ICP_PACKET structures.

typedef struct _DLI_OPT_ARGS
{

unsigned short usFWPacketType; /* Server's packet type */
unsigned short usFWCommand; /* Server's command sent or received */
unsigned short usFWStatus; /* Server's status of I/O operations */
unsigned short usICPClientID; /* Old su_id */
unsigned short usICPServerID; /* Old sp_id */
unsigned short usICPCommand; /* ICP's command */

short iICPStatus; /* ICP's command status */
unsigned short usICPParms[3]; /* ICP's extra parameters */
unsigned short usProtCommand; /* Protocol command */

short iProtModifier; /* Protocol command's modifier */
unsigned short usProtLinkID; /* Protocol link ID */
unsigned short usProtCircuitID; /* Protocol circuit ID */
unsigned short usProtSessionID; /* Protocol session ID */
unsigned short usProtSequence; /* Protocol sequence */
unsigned short usProtXParms[2]; /* Protocol extra parameters */

} DLI_OPT_ARGS;

Figure 4–2: “C” Definition of DLI Optional Arguments Structure

52 DC 900-1511B

ICP2432 User’s Guide for OpenVMS Alpha

a For writes to the driver, iICPStatus should be 0x4000 because an AXP system is a Little Endian processor.
b An application using Simpact’s DLI specifies data separately from the DLI_OPT_ARGS structure.

Table 4–1: Comparison of DLI_OPT_ARGS and ICP_PACKET Structures

DLI_OPT_ARGS
field name

ICP_PACKET
field name Field Description

usFWPacketType omitted Server’s packet type

usFWCommand omitted Server’s command sent or received

usFWStatus omitted Server’s status of I/O operations

usICPClientID icp_hdr.usICPClientID Old su_id

usICPServerID icp_hdr.usICPServerID Old sp_id

omitted icp_hdr.usICPCount Size of PROT_HDR plus data

usICPCommand icp_hdr.usICPCommand ICP’s command

iICPStatus icp_hdr.iICPStatus ICP’s command statusa

usICPParms[0] icp_hdr.usICPParms[0] ICP’s extra parameter

usICPParms[1] icp_hdr.usICPParms[1] ICP’s extra parameter

usICPParms[2] icp_hdr.usICPParms[2] ICP’s extra parameter

usProtCommand prot_hdr.usProtCommand Protocol command

iProtModifier prot_hdr.iProtModifier Protocol command’s modifier

usProtLinkID prot_hdr.usProtLinkID Protocol link ID

usProtCircuitID prot_hdr.usProtCircuitID Protocol circuit ID

usProtSessionID prot_hdr.usProtSessionID Protocol session ID

usProtSequence prot_hdr.usProtSequence Protocol sequence

usProtXParms[0] prot_hdr.usProtXParms[0] Protocol extra parameter

usProtXParms[1] prot_hdr.usProtXParms[1] Protocol extra parameter

omittedb data Data array

DC 900-1511B 53

Chapter

5 ICP Utility

This chapter describes how to use the ICPLOAD program to download the ICP-resident

application to the ICP and get or set the driver’s timeout value for the SingleStep debug-

ger.

ICPLOAD may be used in several different ways:

• As an ordinary VMS executable image, invoked via the DCL RUN command; in this

mode, ICPLOAD prompts the user for commands

• As a DCL foreign command; in this mode, qualifiers on the foreign command line

dictate the operations to be performed

• As routines called from a user-written program; this allows user-written applica-

tions to perform the reset and download operations on an ICP without having to

code the special $QIO calls that are required

5.1 ICPLOAD Components

The following files comprise the ICPLOAD program:

ICPLOAD.EXE The program in executable form

ICPLOAD.HLB A help library that may be accessed via the ICPLOAD command

HELP

ICPLOAD.OLB An object library which includes the object modules (see

Section 5.5 on page 64)

54 DC 900-1511B

ICP2432 User’s Guide for OpenVMS Alpha

5.2 OS/Impact and Downloaded Files

Software on the ICP2432 executes under control of Simpact’s OS/Impact operating sys-

tem. The OS/Impact system generation procedure typically creates several different

files, each of which must be downloaded to the ICP. A load address is specified for each

file; this defines the address at which each file is to be placed within the ICP’s memory.

In addition, an execution address is specified for the ICP. After all the component files

have been downloaded to the ICP, the ICP is informed of the execution address and it

transfers control to that location.

If you are using an integrated hardware/software product, the necessary files, load

addresses for each, and execution address are described in the product-specific docu-

mentation.

A download operation will only succeed if the ICP device is in the proper state to receive

it. This is normally ensured by first issuing a reset command to the ICP. If a debugging

console is connected to the ICP, there will be a brief delay before the ICP will accept the

download.

5.3 Get or Set the Timeout Value

The ICPLOAD program can be used to get the driver’s current timeout value for the

SingleStep debugger or to set a new value. When the timeout value is 0, there is no tim-

eout. We highly recommend that you do not change the default timeout value unless

you are using for SingleStep debugger.

5: ICP Utility

DC 900-1511B 55

5.4 Using ICPLOAD.EXE

5.4.1 Invoking ICPLOAD via the RUN Command

ICPLOAD.EXE may be invoked via a RUN command from VMS’s DCL prompt. It will then

prompt for its first command, as follows:

$ RRRRUUUUNNNN IIIICCCCPPPPLLLLOOOOAAAADDDD
ICPLOAD>

ICPLOAD may be executed from a command procedure, in which case it reads commands

from the lines in the command procedure immediately following the DCL RUN com-

mand.

5.4.2 Invoking ICPLOAD as a Foreign Command

ICPLOAD may be invoked as a foreign command as follows:

1. Define a DCL symbol that equates to the complete file specification of

ICPLOAD.EXE, with a leading currency symbol (“$”), as follows:

$ LLLLDDDDIIIICCCCPPPP ======== """"$$$$ddddddddccccuuuu::::[[[[ddddiiiirrrreeee]]]]IIIICCCCPPPPLLLLOOOOAAAADDDD""""

where ddcu:[dire] represents sufficiently qualified device and directory specifi-

cations to find the directory in which ICPLOAD.EXE resides.

2. Invoke ICPLOAD as follows:

$ LLLLDDDDIIIICCCCPPPP iiiiccccpppp____ddddeeeevvvviiiicccceeee [[[[////RRRREEEESSSSEEEETTTT]]]] [[[[////TTTTIIIIMMMMEEEEOOOOUUUUTTTT====[[[[ttttiiiimmmmeeee____vvvvaaaalllluuuueeee]]]]]]]] ----
[[[[////FFFFIIIILLLLEEEE====ffffiiiilllleeeennnnaaaammmmeeee]]]] [[[[////AAAADDDDDDDDRRRREEEESSSSSSSS====aaaaddddddddrrrr]]]] ----
[[[[////SSSSTTTTAAAARRRRTTTTUUUUPPPP====aaaaddddddddrrrr]]]]

Each qualifier on the foreign command line corresponds to a command verb accepted

by ICPLOAD when it is in command mode. If multiple qualifiers are present, they will be

interpreted in the order shown above. Refer to the descriptions of the ICPLOAD com-

mands in Section 5.4.3 for the meanings of the various qualifiers.

56 DC 900-1511B

ICP2432 User’s Guide for OpenVMS Alpha

In the preceding examples, the symbol LDICP was chosen arbitrarily; you can replace

this with any symbol you like.

If ICPLOAD is invoked as a foreign command without specifying any parameters or qual-

ifiers, the ICPLOAD> prompt will be given and the utility will operate as if it had been

invoked via a RUN command.

5.4.3 ICPLOAD Commands

The general syntax of ICPLOAD commands is similar to that of DCL commands. Each

command begins with a verb, followed by a device name parameter (except for the HELP

and EXIT commands).

Most commands allow one or more optional qualifiers. All qualifiers are global (that is,

their position within the command line is not significant). All command verbs and

qualifier names may be abbreviated to the shortest string that is unique in context; four

characters are sufficient in all cases.

Table 5–1 briefly lists the commands that are available at the ICPLOAD> prompt.

Table 5–1: ICPLOAD Command Summary

Command Action

HELP Request help on ICPLOAD commands

RESET device Reset the ICP

LOAD device Download a file to the ICP

START device Start execution of downloaded code

GET device Get the driver’s current timeout value (in seconds)

SET device Set a new timeout value (in seconds)

EXIT End ICPLOAD execution, return to DCL prompt

5: ICP Utility

DC 900-1511B 57

The usual sequence of commands for downloading an ICP is:

• RESET the device

• LOAD the files to the ICP; the ICP-resident software is usually provided in several

different files, and a separate LOAD command is required for each file

• START execution of the ICP-resident software

The following sections describe the RESET, LOAD, START, and HELP commands in detail.

The Format paragraph shows the command with all of its parameters and required

qualifiers. All command arguments (values which must be supplied by the operator) are

represented by descriptive words in italics. These same words are used in the subsequent

descriptions of the individual parameters and qualifiers.

The Parameters paragraph gives a detailed description of each parameter. Parameters

must be typed in the order shown in the Format paragraph.

The Qualifiers paragraph gives a detailed description of each qualifier that may be spec-

ified on the command. You must include all the qualifiers shown in the Format para-

graph; the other qualifiers are optional. Qualifiers may be typed in any order.

The Description paragraph provides, where necessary, a more elaborate explanation of

the function of the command.

The Example paragraph gives one or more examples of the command’s use. Each exam-

ple is followed by a description of the exact function performed by the illustrated com-

mand.

The Foreign Command paragraph shows how to request the same operation when

ICPLOAD is invoked as a foreign command. These examples assume that the symbol used

to invoke ICPLOAD is LDICP.

58 DC 900-1511B

ICP2432 User’s Guide for OpenVMS Alpha

5.4.3.1 HELP

This command provides help at the ICPLOAD command prompt.

Format HELP

Parameters None

Qualifiers None

Description The HELP command provides access to the help library

ICPLOAD.HLB at the ICPLOAD command prompt. Operation is

similar to that for DCL’s HELP.

The logical name SIMPACT_HELPFILE must exist and must

provide a full file specification (including device and directory

name) for ICPLOAD.HLB. SIMPACT_HELPFILE is defined in

simpact_startup.com.

Foreign Command None

5: ICP Utility

DC 900-1511B 59

5.4.3.2 RESET

This command performs a hardware reset of the ICP.

Format RESET device_name

Parameters device_name

This parameter specifies the ICP device to be reset.

Qualifiers None

Description The RESET command enables the ICP to be downloaded via a

subsequent LOAD command.

Your process must have the OPER privilege to use this command.

Example ICPLOAD> RRRREEEESSSSEEEETTTT ZZZZJJJJBBBB0000

This command resets the second ICP2432 in the system.

Foreign Command $ LLLLDDDDIIIICCCCPPPP ddddeeeevvvviiiicccceeee____nnnnaaaammmmeeee ////RRRREEEESSSSEEEETTTT

60 DC 900-1511B

ICP2432 User’s Guide for OpenVMS Alpha

5.4.3.3 LOAD

This command transfers the ICP-resident software from a file on the client system to

the ICP.

Format LOAD device_name

Parameters device_name

This parameter specifies the ICP device to be downloaded.

Qualifiers /FILE=file_name

This qualifier specifies the name of an OS/Impact file.

/ADDRESS=address

This qualifier specifies the ICP address at which the file is to be

loaded. (If desired, you can use the DCL %X prefix to denote a

hexadecimal value.)

Description The LOAD command causes the file(s) named in the qualifiers to

be transferred to the ICP.

Your process must have the OPER privilege to use this command.

The ICP-resident software is supplied in several files. Each must

be transferred to the ICP in turn, with the appropriate

/ADDRESS qualifier.

Example ICPLOAD> LLLLOOOOAAAADDDD ZZZZJJJJAAAA0000////FFFFIIIILLLLEEEE====XXXX22225555....MMMMEEEEMMMM////AAAADDDDDDDDRRRR====%%%%XXXX44440000000000000000

This command downloads the software from the X25.MEM file to

the ICP known as ZJA0.

Foreign Command $ LLLLDDDDIIIICCCCPPPP ddddeeeevvvviiiicccceeee____nnnnaaaammmmeeee ////FFFFIIIILLLLEEEE====ffffiiiilllleeeennnnaaaammmmeeee////AAAADDDDDDDDRRRREEEESSSSSSSS====aaaaddddddddrrrreeeessssssss

5: ICP Utility

DC 900-1511B 61

5.4.3.4 START

This command causes the ICP to begin execution of the downloaded software.

Format START device_name /STARTUP=address

Parameters device_name

This parameter specifies the ICP device to be started.

Qualifiers /STARTUP=address

This qualifier specifies the starting execution address.

(If desired, you can use the DCL %X prefix to denote a hexadec-

imal value.)

Description The START command causes the ICP to begin execution of the

ICP-resident software at the specified address.

The ICP2432 can receive multiple download images, so an

explicit start request is required.

Example ICPLOAD> SSSSTTTTAAAARRRRTTTT ZZZZJJJJAAAA0000////SSSSTTTTAAAARRRRTTTTUUUUPPPP====%%%%XXXX888800002222000000000000

This command causes the ICP known as ZJA0 to begin execu-

tion at address 802000 (hex).

Foreign Command $ LLLLDDDDIIIICCCCPPPP ddddeeeevvvviiiicccceeee____nnnnaaaammmmeeee ////SSSSTTTTAAAARRRRTTTT====aaaaddddddddrrrreeeessssssss

62 DC 900-1511B

ICP2432 User’s Guide for OpenVMS Alpha

5.4.3.5 GET

This command gets the driver’s timeout value (in seconds) for the SingleStep debugger.

Format GET device_name /TIMEOUT

Parameters device_name

This parameter specifies the ICP device to get.

Qualifiers /TIMEOUT

This qualifier specifies the timeout value in seconds.

Description The GET command shows the driver’s timeout value for the

SingleStep debugger.

Example ICPLOAD> GGGGEEEETTTT ZZZZJJJJAAAA0000 ////TTTTIIIIMMMMEEEEOOOOUUUUTTTT

 3

The example command above shows the timeout value to be 3

seconds.

Foreign Command $ LLLLDDDDIIIICCCCPPPP ddddeeeevvvviiiicccceeee____nnnnaaaammmmeeee ////TTTTIIIIMMMMEEEEOOOOUUUUTTTT

5: ICP Utility

DC 900-1511B 63

5.4.3.6 SET

This command sets the driver’s timeout value (in seconds) for the SingleStep debugger.

Format SET device_name /TIMEOUT=timeout_value

Parameters device_name

This parameter specifies the ICP device to set.

Qualifiers /TIMEOUT

This qualifier specifies the timeout value in seconds.

Description The SET command sets the driver’s timeout value for the

SingleStep debugger.

Example ICPLOAD> SSSSEEEETTTT ZZZZJJJJAAAA0000 ////TTTTIIIIMMMMEEEEOOOOUUUUTTTT====5555

The example command above sets the timeout value at 5

seconds.

Foreign Command $ LLLLDDDDIIIICCCCPPPP ddddeeeevvvviiiicccceeee____nnnnaaaammmmeeee ////TTTTIIIIMMMMEEEEOOOOUUUUTTTT====5555

64 DC 900-1511B

ICP2432 User’s Guide for OpenVMS Alpha

5.5 ICPLOAD Callable Routines

The ICPLOAD.OLB file includes several routines that may be called by a user-written VMS

application to affect downloading of an ICP. This section describes how to use these

routines.

5.5.1 Conventions

The ICPLOAD callable routines are written in C. They may be called from any VMS

language that conforms to the Alpha Procedure Calling Standard.

Each of these routines returns either a VMS or RMS system service status code. Integer

arguments are passed by value. Character string arguments are passed by reference and

must have a terminating null byte (ASCIZ). Unused optional arguments should be zero

(passed by value) or zero-length strings (passed by reference).

When linking against ICPLOAD.OLB, the DEC C Run Time Library must be included in

the link.

5: ICP Utility

DC 900-1511B 65

5.5.1.1 icpreset

This routine causes an ICP to be reset and prepared for a download operation.

Format long icpreset (char *device);

Returns The completion status of the operation (normally SS$_NORMAL).

Arguments device: the VMS device name of the ICP.

66 DC 900-1511B

ICP2432 User’s Guide for OpenVMS Alpha

5.5.1.2 icpload

This routine causes a file to be downloaded to the ICP. This routine is typically used

more than once per download sequence (once for each OS/Impact component file).

Format long icpload (char *device,

char *file,

long address);

Returns The completion status of the operation; normally SS$_NORMAL.

Refer to Chapter 3 for descriptions of status codes returned by

the ICP device driver. If icpload() returns an RMS status code,

a problem was encountered when opening one of the files spec-

ified in the argument list.

Arguments device: the VMS device name of the ICP.

file: name of the OS/Impact file.

address: starting address within ICP memory to which the file

is to be loaded.

5: ICP Utility

DC 900-1511B 67

5.5.1.3 icpstart

This routine is used to cause an ICP to begin execution of the downloaded code.

Format long icpstart (char *device,

long address);

Returns The completion status of the operation; normally SS$_NORMAL.

Refer to Chapter 3 for descriptions of status codes returned by

the ICP device driver.

Arguments device: the VMS device name of the ICP.

address: starting address for execution.

68 DC 900-1511B

ICP2432 User’s Guide for OpenVMS Alpha

DC 900-1511B 69

Index

Symbols

IO$_INITIALIZE 36

A

Application interface 25
Assign a channel 31
ATTACH command 45
Audience 11

C

Callable routines
ICPLOAD 64

Cancel reads and writes 32
Commands

HELP 58
ICPLOAD 56
LOAD 60
RESET 59
START 61

Configuration
typical system 14

Customer support 12

D

Deassign ICP 33
DETACH command 45
Device driver 13
Device driver interface 25
Discarded packets 46
DLI optional arguments 51
DLI packet formats 49
DLI session commands

ATTACH 45
DETACH 45

TERMINATE 46
DLI session interface 43
Downloaded files 54
Driver installation 15

E

Executable object
for system services 21

F

freeway directory 21

H

HELP command 58
History of revisions 12

I

ICP discarded packets 46
ICP packet formats 49
ICP packet structure 50
ICP utility 53
ICP2432 installation 15
ICPLOAD

callable routines 64
ICPLOAD commands 56
ICPLOAD components 53
icpload routine 66
ICPLOAD.EXE 55
icpreset routine 65
icpstart routine 67
Initialize ICP 36
Installation

ICP2432 15
protocol 20

70 DC 900-1511B

ICP2432 User’s Guide for OpenVMS Alpha

Interface, device driver 25
IO$_LOADMCODE 37
IO$_READxBLK 39
IO$_STARTMPROC 38
IO$_WRITExBLK 41

L

Load
driver 22
protocol software 22

LOAD command 60
Load software block to ICP 37

N

Node numbers
node 1 44
node 2 44
node 3–126 44

O

OS/Impact 54
Overview of product 13

P

PCIbus 13
Product

overview 13
support 12

Protocol installation 20
Protocol toolkit 47

R

Read I/O calls 34
Read packet to ICP 39
README.X25 21
RELHIST.X25 21
RELNOTES.X25 21
RESET command 59
Revision history 12
Routines

ICPLOAD 64
icpload 66
icpreset 65
icpstart 67

S

Session commands, DLI 44
Session interface, DLI 43
Software installation procedure

ICP2432 15
protocol 20

START command 61
Start ICP software 38
Support, product 12
SYS$ASSIGN 31
SYS$CANCEL 32
SYS$DASSGN 33
SYS$QIO(W) 34

T

Technical support 12
TERMINATE command 46

W

Write I/O calls 34
Write packet to ICP 41

X–Z

XIO_2432.MEM 21

ICP2432 User’s Guide for
OpenVMS Alpha

DC 900-1511B

Customer Report Form

We are constantly improving our products. If you have suggestions or problems you would

like to report regarding the hardware, software or documentation, please complete this form

and mail it to Simpact at 9210 Sky Park Court, San Diego, CA 92123, or fax it to

(619)560-2838.

If you are reporting errors in the documentation, please enter the section and page number.

Your Name:

Company:

Address:

Phone Number:

Product:

Problem or

Suggestion:

Simpact, Inc.
Customer Service

9210 Sky Park Court
San Diego, CA 92123

	ICP2432 User’s Guide for OpenVMS� Alpha
	Contents
	List of Figures
	List of Tables
	Preface
	Purpose of Document
	Intended Audience
	Organization of Document
	Document Conventions
	Document Revision History
	Customer Support
	1 Product Overview
	Figure 1–1:� Typical Data Communications System Co...
	2 Software Installation
	2.1� Device Driver Installation Procedure
	2.2� Protocol Software Installation Procedure
	Table 2–1:� Protocol Identifiers
	2.3� Loading the ICP2432 Driver and Protocol Softw...
	3 Application Interface
	3.1� Device Driver Interface
	3.1.1� Channel Assignment
	3.1.2� $QIO Interface
	3.1.2.1� I/O Function Code
	3.1.2.2� I/O Status Block (IOSB)
	3.1.2.3� Buffer Address and Size (P1 and P2)
	3.1.2.4� Node Numbers (P4)
	Figure 3–1:� P4 Parameter Format
	3.2� Supported VMS System Services
	3.2.1� SYS$ASSIGN
	3.2.2� SYS$CANCEL
	3.2.3� SYS$DASSGN
	3.2.4� SYS$QIO(W)
	3.2.4.1� IO$_INITIALIZE[|IO$M_NOWAIT]
	3.2.4.2� IO$_LOADMCODE
	3.2.4.3� IO$_STARTMPROC
	3.2.4.4� IO$_READVBLK, IO$_READLBLK, and IO$_READV...
	3.2.4.5� IO$_WRITEVBLK, IO$_WRITELBLK, and IO$_WRI...
	3.3� DLI Session Interface
	3.3.1� DLI Session Basics
	3.3.2� Use Of Node Numbers (DLI)
	3.3.2.1� Node 1
	3.3.2.2� Node 2
	3.3.2.3� Nodes 3 through 126
	3.3.3� DLI Session Commands
	3.3.3.1� ATTACH Command
	3.3.3.2� DETACH Command
	3.3.3.3� TERMINATE Command
	3.3.4� ICP Discarded Packets
	3.4� Compatibility with older ICP Protocols
	3.5� Protocol Toolkit
	4 ICP Packet Formats
	4.1� DLI Packet Format
	Figure 4–1:� “C” Definition of ICP Packet Structur...
	4.2� DLI Optional Arguments
	Figure 4–2:� “C” Definition of DLI Optional Argume...
	Table 4–1:� Comparison of DLI_OPT_ARGS and ICP_PAC...
	5 ICP Utility
	5.1� ICPLOAD Components
	5.2� OS/Impact and Downloaded Files
	5.3� Get or Set the Timeout Value
	5.4� Using ICPLOAD.EXE
	5.4.1� Invoking ICPLOAD via the RUN Command
	5.4.2� Invoking ICPLOAD as a Foreign Command
	5.4.3� ICPLOAD Commands
	Table 5–1:� ICPLOAD Command Summary
	5.4.3.1� HELP
	5.4.3.2� RESET
	5.4.3.3� LOAD
	5.4.3.4� START
	5.4.3.5� GET
	5.4.3.6� SET
	5.5� ICPLOAD Callable Routines
	5.5.1� Conventions
	5.5.1.1� icpreset
	5.5.1.2� icpload
	5.5.1.3� icpstart
	Index

