
Protogate, Inc
12225 World T
San Diego, CA
March 2002
.
rade Drive, Suite R
 92128

ICP2432 User’s Guide
for Solaris® STREAMS

DC 900-1512C

Protogate, Inc.
12225 World Trade Drive, Suite R
San Diego, CA 92128
(858) 451-0865

ICP2432 User’s Guide for Solaris STREAMS
© 2002 Protogate, Inc. All rights reserved
Printed in the United States of America

This document can change without notice. Protogate, Inc. accepts no liability for any errors this
document might contain.

Freeway is a registered trademark of Simpact, Inc.
SPARC is a registered trademark of SPARC International, Incorporated.
All other trademarks and trade names are the properties of their respective holders.

Contents
List of Figures 7

List of Tables 9

Preface 11

1 Product Overview 17

2 Software Installation 19

2.1 ICP2432 Software Installation Procedure. 19

2.2 Loading the ICP2432 STREAMS Driver . 20

2.3 Protocol or Toolkit Software Installation Procedure 21

3 Programming Using the DLITE Embedded Interface 25

3.1 Overview . 25

3.2 Embedded Interface Description . 27

3.2.1 Comparison of Freeway Server and Embedded Interfaces 27

3.2.2 Embedded Interface Objectives . 28

3.3 DLITE Interface . 29

3.3.1 DLITE Enhancements . 29

3.3.1.1 Multithread Support . 29

3.3.2 DLITE Limitations and Caveats . 31

3.3.2.1 Raw Operation Only . 31

3.3.2.2 No LocalAck Processing Support . 31

3.3.2.3 AlwaysQIO Support . 32

3.3.2.4 Changes in Global Variable Support. 32

3.3.2.5 dlInit Function No Longer Implied 32
DC 900-1512C 3

ICP2432 User’s Guide for Solaris STREAMS
3.3.2.6 Unsupported Functions . 33

3.3.3 The Application Program’s Interface to DLITE 33

3.3.3.1 Building a DLITE Application . 33

3.3.3.2 Blocking and Non-blocking I/O . 34

3.3.3.3 Changes in DLI/TSI . 35

3.3.3.4 Changes in DLI Functions . 35

3.3.3.5 Callbacks . 41

3.3.3.6 DLITE Error Codes . 43

3.3.4 Configuration Files . 44

3.3.4.1 General Application Error File . 45

4 Programming Using the Solaris STREAMS Interface 47

4.1 General STREAMS Information . 47

4.1.1 Byte-Stream vs. Message-Based Operation 48

4.1.2 Error Notification. 48

4.1.3 System Performance . 49

4.1.4 Message Cancellation . 50

4.1.5 Synchronous Polling and Signal Delivery 50

4.2 Function Mappings. 51

4.2.1 Opening the ICP . 51

4.2.2 Closing a File Descriptor . 54

4.2.3 Reading Data . 54

4.2.3.1 Byte-Stream Operation . 54

4.2.3.2 Message-Based Operation . 55

4.2.4 Writing Data . 57

4.2.4.1 Normal Operation . 57

4.2.4.2 Preserving Message Boundaries . 58

4.2.4.3 Expedited Write Requests. 59

4.2.5 I/O Control Functions . 62

4.2.5.1 Setting the Read-Side DMA Buffer Size 63

4.2.5.2 Getting Driver Information . 65

4.2.5.3 Support for ICP Initialization . 68

4.3 Driver Features and Capabilities . 68

4.3.1 Download Support . 69

4.3.2 Communication With ICP-Resident Tasks 69

4.3.3 Multiplexed I/O . 69
4 DC 900-1512C

Contents
4.3.4 Error Logging . 70

4.4 Error Codes . 70

A Debug Support for ICP-resident Software 75

B Multithreaded Sample Programs 77

B.1 Overview of the Test Program . 78

B.2 Hardware Setup for the Test Programs . 79

B.3 Running the Test Program. 79

B.4 Sample Output from Test Program . 80

C ICP Initialization 83

C.1 The icpdnld Utility. 83

C.1.1 Command Line Invocation . 83

C.1.2 Programmatic Invocation . 84

C.1.3 Load Files . 86

C.2 The libicpdnld.so Shareable Library . 86

C.2.1 Library Components . 87

C.2.1.1 Function GetDownloadVersion . 87

C.2.1.2 Function DownloadICP . 87

C.2.2 Compiling and Linking With libicpdnld.so 89

Index 91
DC 900-1512C 5

ICP2432 User’s Guide for Solaris STREAMS
6 DC 900-1512C

List of Figures
Figure 1–1: Typical Data Communications System Configuration 18

Figure 3–1: DLI/TSI Interface in the Freeway Server Environment 27

Figure 3–2: DLITE Interface in an Embedded ICP2432 Environment. 28

Figure 3–3: DLI_ICP_DRV_INFO “C” Structure. 38

Figure 4–1: ICP_Driver_Info Structure Format. 66

Figure 4–2: ICP Device State Definitions . 67

Figure B–1: Sample Output from DDCMP Blocking Multithreaded Program 81

Figure B–2: Sample Output from DDCMP Non-Blocking Multithreaded Program . . 82

Figure C–1: Using fork(2) to Invoke icpdnld Without Blocking 85

Figure C–2: Example Load File Contents . 86
DC 900-1512C 7

ICP2432 User’s Guide for Solaris STREAMS
8 DC 900-1512C

List of Tables
Table 2–1: Protocol Identifiers. 21

Table 3–1: DLITE Error Codes . 43

Table 3–2: Solaris Errors Mapped to dlerrno . 44

Table 4–1: ICP2432 Device Driver Control Codes . 63

Table 4–2: ICP_Driver_Info Field Descriptions . 67

Table B–1: Sample Program File Names. 77
DC 900-1512C 9

ICP2432 User’s Guide for Solaris STREAMS
10 DC 900-1512C

Preface
Purpose of Document

This document describes how to use Protogate’s embedded ICP2432 intelligent com-

munications processor (ICP) in a peripheral component interconnect (PCI) bus com-

puter running in a Solaris STREAMS environment.

Intended Audience

This document is intended primarily for Solaris system managers and applications pro-

grammers. Application programmers can use Protogate’s data link interface (DLI) to

communicate with the ICP2432 device driver. The embedded version of the DLI is

called DLITE. It provides dlInit, dlOpen, dlClose, dlWrite, dlRead, and related functions

for accessing the ICP2432. Refer to Chapter 3 for details.

Programmers who wish to interface directly to Protogate’s Solaris STREAMS driver

(described in Chapter 4) should also be familiar with the information contained in

Part I of the STREAMS Programming Guide included in the Solaris documentation set.

Organization of Document

Chapter 1 is an overview of the product.

Chapter 2 describes how to install the ICP2432 software in a Solaris system. This chap-

ter is of interest primarily to system managers.
DC 900-1512C 11

ICP2432 User’s Guide for Solaris STREAMS

Techpubs —
Don’t delete
the extra
reference
table at end
with the
Solaris
reference
docs.

4/5/99 Leslie:
Add DC-900-
1512, Solaris
STREAMS
Chapter 3 describes the embedded DLITE interface for Solaris. This chapter supple-

ments the Freeway Data Link Interface Reference Guide and is of interest primarily to

programmers who are either porting an existing DLI application (currently operational

in the Freeway server environment) to the embedded DLITE environment, or who are

developing an initial DLITE application for the embedded ICP2432.

Chapter 4 describes the Solaris STREAMS interface to the ICP2432 device driver.

Appendix A describes debug support.

Appendix B describes the multithreaded sample programs.

Appendix C describes ICP initialization using the icpdnld utility.

Protogate References

The following general product documentation list is to familiarize you with the avail-

able Protogate Freeway and embedded ICP products. The applicable product-specific

reference documents are mentioned throughout each document (also refer to the

“readme” file shipped with each product). Most documents are available on-line at Pro-

togate’s web site, www.protogate.com.

General Product Overviews

• Freeway 1100 Technical Overview 25-000-0419

• Freeway 2000/4000/8800 Technical Overview 25-000-0374

• ICP2432 Technical Overview 25-000-0420

• ICP6000X Technical Overview 25-000-0522

Hardware Support

• Freeway 1100/1150 Hardware Installation Guide DC 900-1370

• Freeway 1200 Hardware Installation Guide DC 900-1537

• Freeway 1300 Hardware Installation Guide DC 900-1539

• Freeway 2000/4000 Hardware Installation Guide DC 900-1331

• Freeway 3100 Hardware Installation Guide DC 900-2002

12 DC 900-1512C

Preface
• Freeway 3200 Hardware Installation Guide DC 900-2003

• Freeway 3400 Hardware Installation Guide DC 900-2004

• Freeway 3600 Hardware Installation Guide DC 900-2005

• Freeway 8800 Hardware Installation Guide DC 900-1553

• Freeway ICP6000R/ICP6000X Hardware Description DC 900-1020

• ICP6000(X)/ICP9000(X) Hardware Description and Theory of
Operation

DC 900-0408

• ICP2424 Hardware Description and Theory of Operation DC 900-1328

• ICP2432 Hardware Description and Theory of Operation DC 900-1501

• ICP2432 Hardware Installation Guide DC 900-1502

Freeway Software Installation Support

• Freeway Release Addendum: Client Platforms DC 900-1555

• Freeway User’s Guide DC 900-1333

• Getting Started with Freeway 1100/1150 DC 900-1369

• Getting Started with Freeway 1200 DC 900-1536

• Getting Started with Freeway 1300 DC 900-1538

• Getting Started with Freeway 2000/4000 DC 900-1330

• Getting Started with Freeway 8800 DC 900-1552

• Loopback Test Procedures DC 900-1533

Embedded ICP Installation and Programming Support

• ICP2432 User’s Guide for Digital UNIX DC 900-1513

• ICP2432 User’s Guide for OpenVMS Alpha DC 900-1511

• ICP2432 User’s Guide for OpenVMS Alpha (DLITE Interface) DC 900-1516

• ICP2432 User’s Guide for Solaris STREAMS DC 900-1512

• ICP2432 User’s Guide for Windows NT DC 900-1510

• ICP2432 User’s Guide for Windows NT (DLITE Interface) DC 900-1514

Application Program Interface (API) Programming Support

• Freeway Data Link Interface Reference Guide DC 900-1385

• Freeway Transport Subsystem Interface Reference Guide DC 900-1386

• QIO/SQIO API Reference Guide DC 900-1355
DC 900-1512C 13

ICP2432 User’s Guide for Solaris STREAMS
Socket Interface Programming Support

• Freeway Client-Server Interface Control Document DC 900-1303

Toolkit Programming Support

• Freeway Server-Resident Application and Server Toolkit
Programmer’s Guide

DC 900-1325

• OS/Impact Programmer’s Guide DC 900-1030

• Protocol Software Toolkit Programmer’s Guide DC 900-1338

Protocol Support

• ADCCP NRM Programmer’s Guide DC 900-1317

• Asynchronous Wire Service (AWS) Programmer’s Guide DC 900-1324

• Addendum: Embedded ICP2432 AWS Programmer’s Guide DC 900-1557

• AUTODIN Programmer’s Guide DC 908-1558

• Bit-Stream Protocol Programmer’s Guide DC 900-1574

• BSC Programmer’s Guide DC 900-1340

• BSCDEMO User’s Guide DC 900-1349

• BSCTRAN Programmer’s Guide DC 900-1406

• DDCMP Programmer’s Guide DC 900-1343

• FMP Programmer’s Guide DC 900-1339

• Military/Government Protocols Programmer’s Guide DC 900-1602

• N/SP-STD-1200B Programmer’s Guide DC 908-1359

• SIO STD-1300 Programmer’s Guide DC 908-1559

• X.25 Call Service API Guide DC 900-1392

• X.25/HDLC Configuration Guide DC 900-1345

• X.25 Low-Level Interface DC 900-1307

Solaris Documentation

Linker and Libraries Guide Part #805-3050-10, October 1998

Reference Manual Section 2, “System Calls”
Part #805-3176-10, October 1998, Rev. A

STREAMS Programming Guide Part #805-4038-10, October 1998
14 DC 900-1512C

Preface
Document Conventions

The term “ICP,” as used in this document, refers to the physical ICP2432, whereas the

term “device” refers to all of the Solaris software constructs (device driver, I/O database,

and so on) that define the device to the system, in addition to the ICP2432 itself.

Physical “ports” on the ICPs are logically referred to as “links.” However, since port and

link numbers are always identical (that is, port 0 is the same as link 0), this document

uses the term “link.”

Program code samples are written in the “C” programming language.

Document Revision History

The revision history of the ICP2432 User’s Guide for Solaris STREAMS, Protogate docu-

ment DC 900-1512C, is recorded below:

Customer Support

If you are having trouble with any Protogate product, call us at (858) 451-0865 Monday

through Friday between 8 a.m. and 5 p.m. Pacific time.

You can also fax your questions to us at (877) 473-0190 any time. Please include a cover

sheet addressed to “Customer Service.”

We are always interested in suggestions for improving our products. You can use the

report form in the back of this manual to send us your recommendations.

Revision Release Date Description

DC 900-1512A May 1999 Original release

DC 900-1512B February 2002 Update document for Protogate, Inc.

DC 900-1512C March 2002 Correct format errors in Step procedures.
Add references to new freeway models.
DC 900-1512C 15

ICP2432 User’s Guide for Solaris STREAMS
16 DC 900-1512C

Chapter
1 Product Overview
The Protogate ICP2432 data communications product allows PCIbus computers run-

ning the Solaris operating system to transfer data to other computers or terminals over

standard communications circuits. The remote site need not have identical equipment.

The protocols used comply with various corporate, national, and international stan-

dards.

The ICP2432 product consists of the software and hardware required for user applica-

tions to communicate with remote sites. Figure 1–1 is a block diagram of a typical sys-

tem configuration. Application software in the Solaris system communicates with the

ICP2432 by means of the Protogate-supplied device driver.

The icpdnld program (described in Appendix C) is supplied with the product to down-

load the ICP-resident software to the ICP2432.

The ICP controls the communications links for the user applications. The user applica-

tion program can use the embedded DLITE interface to communicate with the ICP.

The DLITE interface allows the user application to read and write data to the ICP2432

for transmission to or receipt from the communications links, and can change the link

configuration parameters. See Chapter 3.

The user application also has the option of interfacing directly to the Solaris STREAMS

driver, as explained in Chapter 4.
DC 900-1512C 17

ICP2432 User’s Guide for Solaris STREAMS
Figure 1–1: Typical Data Communications System Configuration

User
Application

Process

icpdnld
Program

Host
Driver

(icp2432sd) ICP

Communication
link

Communication
link

P
C
I
b
u
s

•
•
•

Data links to
remote computer
or data network

3574

•
•
•

DLITE
18 DC 900-1512C

Chapter
2 Software Installation
This chapter describes Protogate’s ICP2432 software installation procedure for

Solaris 7.

2.1 ICP2432 Software Installation Procedure

Step 1: Verify that you have installed one or more ICP2432 boards in your computer,

as described in the ICP2432 Hardware Installation Guide.

Step 2: Insert the CD-ROM into your system. You may use a web browser to access the

“/cdrom/cdrom0/index.html” file for information about the CD-ROM contents.

Step 3: Use the tar x command to retrieve the files. Use the v option if you wish to dis-

play the file names as they are extracted. Some systems require that you use the f option

to identify the peripheral device being used. For example:

tar xvf /cdrom/cdrom0/parts/PF-100/PF-100-0001.tar

Note that the actual tar file name may be different for your system. The files are copied

from the distribution media into the freeway directory.
DC 900-1512C 19

ICP2432 User’s Guide for Solaris STREAMS
2.2 Loading the ICP2432 STREAMS Driver

After retrieving the files, the Solaris STREAMS driver must be installed in the system

using the icpsetup script file located in the freeway/client/sol_emb/bin directory.

Step 1: Log in as root.

Step 2: Change to the freeway/client/sol_emb/bin directory and run the icpsetup script

as follows:

#cd freeway/client/sol_emb/bin
#icpsetup

Step 3: The computer displays the following prompt:

Will you load the debug mode driver [n]?

The default is to load the non-debug version of the driver. To select the debug mode

driver, enter y. See Appendix A for information on “Debug Support for ICP-resident

Software.”

After you select the driver mode, the driver is loaded in the system. The following con-

firmation is displayed (for the non-debug mode, 64-bit driver):

ICP2432 64bits Stream Driver (icp2432sd) has been loaded

Note
To change the driver mode, use the same icpsetup sequence as

above. The icpsetup script removes the currently installed driver

and loads the new driver selected in Step 3 above.
20 DC 900-1512C

2: Software Installation

e the file
pptable”: to
d
formation as
pendices are
ded.
2.3 Protocol or Toolkit Software Installation Procedure

The ppp variables mentioned throughout this section specify the particular protocol

you are using. Refer to Table 2–1.

The following files are in the freeway directory:

• readme.ppp provides general information about the protocol software

• relnotes.ppp provides specific information about the current release of the proto-

col software

• relhist.ppp provides information about previous releases of the protocol software

The load file, pppload, is in the freeway/boot directory.

Table 2–1: Protocol Identifiers

Protocol or Toolkit Protocol Identifier (ppp)

ADCCP NRM nrm

AWS aws

BSC3270 bsc32701

1 Except for the readme, release notes, release history, and load configuration
files where ppp is bsc. For example, bscload is used for BSC3270 and
BSC2780/3780.

BSC2780/3780 bsc3780a

DDCMP ddcmp2

2 Except for the readme, release notes, and release history configuration files
where ppp is ddc.

FMP fmp

Military/Government mil3

3 Some Military/Government files use the identifier “mgn” where n is a Proto-
gate-supplied product designator.

Protocol Toolkit sps

STD1200B s12

X.25/HDLC x254

4 Except for the test directory where ppp is x25mgr.

Se
“p
ad
in
ap
ad
DC 900-1512C 21

ICP2432 User’s Guide for Solaris STREAMS
The executable object for protocol software is in the freeway/boot directory.

The executable object for the system-services module for protocol software other than

protocol toolkit (xio_2432.mem) is in the freeway/boot directory. The executable object

for the system-services module for the protocol toolkit (xio_2432.mem) is in the free-

way/icpcode/os_sds/icp2432 directory.

Source code for the loopback tests is in the freeway/client/sol_dlite/ppp1 directory.

Step 1: Insert the protocol installation diskette or CD-ROM into your Solaris 7 com-

puter.

Step 2: Start the installation by running the setup program on the installation diskette

or CD-ROM. Follow the prompts on the screen to install the protocol software.

Step 3: Using any text editor, edit the load file (freeway/boot/pppload) for your proto-

col. Uncomment the lines associated with ICP2432. Do not change the memory loca-

tions (such as 40001200) for the LOAD commands.

Note
If you are installing the X.25 protocol, you must build the CS API
files. A make file is included that performs this operation.

From the freeway/lib/cs_api directory, enter the following com-
mand. The newly created file will be placed in the freeway/
client/sol_emb/lib directory.

nmake -f makefile.eso

Continue the installation at Step 4 below.

1. The Military/Government protocols use the freeway/client/test/mil directory.
22 DC 900-1512C

2: Software Installation
Step 4: From the freeway/client/sol_dlite/ppp1 directory, enter the following command:

make

The newly created files are placed in the freeway/client/sol_emb/bin directory.

Step 5: Go to the freeway/client/sol_emb/bin directory. Run the loopback test as

described in Appendix B.

1. The Military/Government protocols use the freeway/client/test/mil directory.
DC 900-1512C 23

ICP2432 User’s Guide for Solaris STREAMS
24 DC 900-1512C

Chapter

Techpubs —
Terminology
Cautions: 1)
use blocking
and non-
blocking I/O
(instead of
synchronous
and
asynchronou
s 2) use
“Raw
operation”
rather than
“Raw mode”
3 Programming Using the
DLITE Embedded Interface

3.1 Overview

This chapter primarily describes the differences between the data link interface (DLI) to

Freeway (as described in the Freeway Data Link Interface Reference Guide) and the

DLITE embedded interface in a Solaris STREAMS system, referred to as “DLITE.”

Changes to the scope and nature of Freeway DLI support are described.

This chapter should be read by application programmers who are doing one of the fol-

lowing:

• Porting an existing DLI application (currently operational in the Freeway envi-

ronment) to the embedded DLITE environment.

• Developing an initial DLITE application in the embedded environment. You

should first read the Freeway Data Link Interface Reference Guide and have it avail-

able as your primary reference.

In addition to the Freeway Data Link Interface Reference Guide, the following Protogate

documentation is of interest to application programmers:

• The applicable protocol-specific programmer’s guide for your application.

DLITE is a new, streamlined interface designed specifically for the embedded ICP2432

board. DLITE provides new capabilities while retaining the majority of the “Freeway

DLI” (henceforth referred to as DLI) capabilities. By using DLITE, developers can con-

centrate on the communication requirements of the ICP2432 rather than the details

required by the Solaris STREAMS interface and the ICP2432 Solaris STREAMS driver,
DC 900-1512C 25

ICP2432 User’s Guide for Solaris STREAMS
thereby reducing programming complexity and development time. DLITE can be

thought of as a communications pipe to the ICP2432. It is compatible with the existing

Freeway DLI (with caveats described in Section 3.3.2 on page 31). DLITE provides a

high-level open/close/read/write interface to the ICPs. It supports both blocking and

non-blocking I/O. The DLITE interface is thread-safe and supports multiple threads

requesting its services.

Refer to Chapter 4 for programming directly to the Solaris STREAMS interface.
26 DC 900-1512C

3: Programming Using the DLITE Embedded Interface
3.2 Embedded Interface Description

3.2.1 Comparison of Freeway Server and Embedded Interfaces

The traditional DLI and TSI interface supports client applications communicating with

the Freeway server on a local-area network (LAN). This type of interface is shown in

Figure 3–1. In an embedded environment, the application does not access a network in

communicating with the ICP.

Figure 3–1: DLI/TSI Interface in the Freeway Server Environment

Freeway

ICP0

ICP1

ICP2

ICP3

TCP/IP

192.52.107.99 192.52.107.100

DLI
Client

Application TSI
TSI

Msg
Mux

Ethernet

WAN
Protocols

TCP/IP
Socket Interface

Client

34
00

St
an

da
rd

 B
u

s
In

du
st

ry

SRA

Shared Memory
Interface

dlicfg

DLI Text
Configuration

File

DLI Binary
Configuration File

DLI
Configuration
Preprocessor

(off-line)

TSI Text
Configuration

File

tsicfg

TSI
Configuration
Preprocessor

(off-line)

TSI Binary
Configuration File
DC 900-1512C 27

ICP2432 User’s Guide for Solaris STREAMS
Instead, the embedded application using DLITE communicates directly with the Solaris

STREAMS ICP2432 driver (through the Solaris STREAMS interface), which accesses

the locally attached ICP. This interface is shown in Figure 3–2. In this environment no

Freeway-type communications take place; it is designed specifically for the embedded

system.

3.2.2 Embedded Interface Objectives

The DLITE interface was designed as a streamlined interface to the ICP2432 supporting

a multithreaded application. It supports only Raw operation protocols, which means

that the application is responsible for all communications with the ICP.

DLITE was designed to maximize portability between existing applications. The objec-

tive was an interface that would require “no changes” when porting from a Freeway

environment to an embedded environment. While this objective has been met (for Raw

operation), there are differences between these environments, as well as differences in

system behavior. These differences are addressed in the following sections.

Figure 3–2: DLITE Interface in an Embedded ICP2432 Environment

DLITE
Client

Application

dlicfg

DLITE Text
Configuration

File

DLITE Binary
Configuration File

DLI
Configuration
Preprocessor

(off-line)

Solaris
API

ICP0

ICP1

ICP2

ICP3

PCI
Driver

WAN
Protocols

35
76

P
C

Ib
u

s

Solaris 7
28 DC 900-1512C

3: Programming Using the DLITE Embedded Interface
3.3 DLITE Interface

The DLITE interface is described here in terms of enhanced capabilities, limitations and

caveats, the API itself, and configuration files. Within each context, necessary changes

and any behavior differences are noted.

3.3.1 DLITE Enhancements

3.3.1.1 Multithread Support

DLITE supports a multithread application interface which is thread-safe for both

blocking I/O and non-blocking I/O. Sample multithread programs are provided, as

described in Appendix B.

Caution
Users are not protected from the misuse of threads.

Multithread support is accomplished by serializing access to shared processing and

eliminating or otherwise guaranteeing integrity of global data.

Access is serialized to the following services so that only a single thread can be in the ser-

vice at any one time:

• dlInit

• dlOpen

• dlClose

• dlTerm
DC 900-1512C 29

ICP2432 User’s Guide for Solaris STREAMS
The following functions allow application threads concurrent access to the degree spec-

ified:

• dlRead — read requests block if another read for the same session is currently

being serviced

• dlWrite — write requests block if another write for the same session is currently

being serviced

• dlBufAlloc — multiple thread concurrent access

• dlBufFree — multiple thread concurrent access

• dlPoll — request dependent

• Read complete — blocks at session level

• Write complete — blocks at session level

• Read cancel — blocks at session level

• Write cancel — blocks at session level

• Session status — multiple thread concurrent access

• System configuration — multiple thread concurrent access

• Driver information — multiple thread concurrent access

• Trace control — multiple thread concurrent access
30 DC 900-1512C

3: Programming Using the DLITE Embedded Interface
3.3.2 DLITE Limitations and Caveats

3.3.2.1 Raw Operation Only

DLITE supports only Raw operation. As with DLI, Raw operation means that the API

sends nothing to the ICPs except that which is provided by the application for transmis-

sion; therefore, the client application must handle all the following:

• Configuration of the ICP/Protocol

• ICP and protocol control data (using the DLI OptArgs structure accompanying

each dlRead and dlWrite request)

• I/O details of the specific protocol

Raw operation especially impacts configuration of the ICP. Whereas Normal operation

performs ICP configuration for the application using information from the DLI config-

uration file, the application using Raw operation is totally responsible for configura-

tion. The DLI configuration file does not support “protocol” parameters (in fact, their

presence results in errors during configuration file processing because they are not

allowed in Raw operation).

3.3.2.2 No LocalAck Processing Support

Local acknowledgment (LocalAck) processing is not supported. When data is written to

an ICP, the user receives an acknowledgment that the ICP did in fact receive that data

(refer to your protocol-specific programmer’s guide for details). The Freeway DLI does

support a “LocalAck” capability that hides this from the application programmer (pre-

vious writes are not posted as complete until DLI receives this LocalAck, then the

LocalAck is thrown away). However, the DLITE user is responsible for receiving each

LocalAck and performing any necessary processing. The DLITE behavior is exactly the

same as when the DLI LocalAck configuration parameter is set to “no”. This generally

implies the client application should post a dlRead after each dlWrite to receive the

expected Local Ack.
DC 900-1512C 31

ICP2432 User’s Guide for Solaris STREAMS
3.3.2.3 AlwaysQIO Support

DLI optionally supported an “AlwaysQIO” feature (applicable only when using

non-blocking I/O), which restricted notification of completed I/O to callback invoca-

tions only. If an I/O completed immediately in the I/O request, the completion would

not be reported with the return of the dlRead or dlWrite request. Instead, notification

would be through the user-supplied callback.

DLITE always behaves as if the AlwaysQIO configuration parameter is set to “yes” (non-

blocking I/O only). Non-blocking I/O should always return with EWOULDBLOCK

while the I/O completes.

3.3.2.4 Changes in Global Variable Support

DLI maintained three global variables; dlerrno, iICPStatus, and cfgerrno. The global vari-

ables iICPStatus and cfgerrno are not supported for DLITE. The iICPStatus value simply

returned the value contained in the ICP status field, which is now available to the

DLITE application in the iICPStatus field from the OptArgs. The information in cfgerrno

is no longer available.

The dlerrno variable is still available, but has been redefined for DLITE as a function call

returning an integer (int _dlerrno()). Reference to dlerrno becomes a function call which

returns the last error for the thread making the call. Note that this definition precludes

using dlerrno as an “L-value” in a “C” expression.

3.3.2.5 dlInit Function No Longer Implied

DLI allowed users to perform dlOpen before calling dlInit (dlInit would be invoked if

required, not a recommended practice). This results in an error when using DLITE.

Processing must be initialized using dlInit before any other service is requested.
32 DC 900-1512C

3: Programming Using the DLITE Embedded Interface
3.3.2.6 Unsupported Functions

The following functions are not supported. Applications invoking these functions

return with the DLI_XX…XX_ERR_NEVER_INIT error.

• dlControl (see note below)

• dlListen

• dlPost

• dlSyncSelect

DLITE does not support the dynamic building of the DLI configuration file if the .bin

does not currently exist. This means that DLITE expects the binary configuration file to

exist at run time in order to function properly.

Note
Any previous application which used dlControl to perform a pro-

grammatic download to the ICP must use an alternate method.

Appendix C illustrates the DownloadICP() function. The applica-

tion must link with the libicpdnld.so library, which is found in the

lib directory, freeway/client/sol_emb/lib.

3.3.3 The Application Program’s Interface to DLITE

Except where described in the previous sections, the embedded DLITE interface does

not change the application’s interface to DLI. While the DLI interface has remained

intact, changes have been made in both the methods supporting DLI and in the under-

lying functionality.

3.3.3.1 Building a DLITE Application

The DLITE API library for Solaris STREAMS is libsolem.a, found in the

freeway/client/sol_emb/lib directory. The user must include the preprocessor definition
DC 900-1512C 33

ICP2432 User’s Guide for Solaris STREAMS
“SOLDLITE” when building the application using the Protogate-supplied library and

include header files. In addition the application must also link with the “–lpthreads” and

“–lposix4” system libraries.

3.3.3.2 Blocking and Non-blocking I/O

Implementation of non-blocking I/O has changed in some of the services. In summary,

the following functions use blocking I/O, regardless of the session’s definition of the

asyncIO parameter in the DLI configuration file. These functions do not return to the

application until all processing is completed for the service requested:

• dlInit

• dlOpen

• dlClose

• dlTerm

• dlPoll

• dlBufAlloc

• dlBufFree

The following functions use non-blocking I/O when requested by the application (that

is, when the asyncIO configuration parameter is set to “yes”). They return to the appli-

cation immediately after the operation is queued.

• dlRead

• dlWrite

Using non-blocking I/O, a successful operation returns OK, and dlerrno has the value of

EWOULDBLOCK. The application is notified of I/O completion through the I/O com-

pletion handler (IOCH). The completed I/O operation is retrieved using a dlPoll request
34 DC 900-1512C

3: Programming Using the DLITE Embedded Interface
for read/write complete. See Section 3.3.3.5 on page 41 for more information on call-

backs and I/O completion.

Using blocking I/O, the dlRead and dlWrite functions return ERROR if unsuccessful;

otherwise, they return the number of bytes transferred (not including the ICP and

Protocol Header inserted by DLITE).

3.3.3.3 Changes in DLI/TSI

The lack of a network connection has eliminated the need for some of the client/server

communications between the current DLI and TSI. While the user buffer is not

affected, some data previously in the DLI header (i.e. the Freeway header) and the TSI

header is no longer built by the API. These changes are transparent to the user but may

be noted when examining DLITE trace files.

3.3.3.4 Changes in DLI Functions

No changes are required in the user interface to DLI. Some DLI functions have changed

in their implementation, which might affect the user’s expected behavior of the func-

tion. Changes in the affected functions are described below.

dlBufAlloc

Implementation of buffer allocation has changed. Rather than allocating buffers from a

pre-allocated buffer pool managed by TSI, buffer allocation requests presented to

DLITE (using dlBufAlloc) invoke Solaris system memory services to allocate buffers

(using malloc calls). Do not assume any type of buffer initialization. Also, the size

requested in dlBufAlloc can be thought of as the size requested from the system (the

actual size is somewhat larger, which includes some DLITE overhead requirements). If

the application requests one byte for the data buffer size, it should assume only one byte

is returned.

User requests are verified against the MaxBufs and MaxBufSize DLITE configuration

parameters. Requests exceeding either of these return a buffer allocation error.
DC 900-1512C 35

ICP2432 User’s Guide for Solaris STREAMS
Buffers allocated using dlBufAlloc are allocated with room for the ICP and Protocol

header, and a small DLITE work area prefacing the user’s data area. This area is added

to the user’s request; users do not have to account for these requirements in their buffer

request. DLITE also “tags” each buffer, and verifies the buffer was allocated using

dlBufAlloc before it frees the buffer in dlBufFree. Users can not free a buffer they allo-

cated directly from the system using dlBufFree. Buffer alignment requirements for com-

munications with the Solaris STREAMS driver are performed by dlBufAlloc. The buffer

returned is correctly aligned.

Note
The user’s buffer allocation request should be only for the user’s

data; the space required for the ICP and Protocol headers are

“silently” added to the buffer request by dlBufAlloc. If the applica-

tion is not using the DLITE buffer allocation service, it must

account for the following:

• Sixteen (16) bytes for the protocol header immediately

prefacing the data buffer

• Sixteen (16) bytes for the ICP header immediately prefacing

the protocol header

• Alignment of the buffer address on the correct boundary

dlBufFree

This service has also changed its implementation. In concert with the change in buffer

allocation, a call to dlBufFree returns the requested buffer to the Solaris memory services

(using free). Where previously the user could use the buffer pointer returned with the

successful dlBufFree request (the buffer still existed in the TSI buffer pool), now that

buffer is indeed freed. Any further reference to the buffer results in unpredictable

results. Requests with a NULL buffer pointer and attempts to free a buffer not allocated

with dlBufAlloc return with a buffer deallocation error message.
36 DC 900-1512C

3: Programming Using the DLITE Embedded Interface
dlClose

A close request (dlClose) for a specific session blocks until all other threads have exited

that same session’s close (dlClose), read (dlRead), and write (dlWrite) request. This

might cause the close thread to block on a blocking I/O request (only for the same ses-

sion) which is blocked and waiting on its timeout. Users can circumvent this problem

by assuring all I/O is cancelled or completed prior to the close request.

dlInit

The user application must call dlInit before any other DLITE service. If dlInit does not

find the DLI configuration file, it returns the DLI_INIT_ERR_CFG_LOAD_FAILED

error. It does not try to find a DLI source configuration file and perform the configura-

tion processing in-line. The logging and tracing capabilities can fail initialization with-

out inhibiting DLITE from providing all its other services.

dlOpen

A session open (dlOpen) initiates communications with the Solaris STREAMS driver. In

both blocking and non-blocking I/O, dlOpen returns with the result of the operation: a

session ID if successful, an error otherwise. A successful open of a non-blocking opera-

tion returns a dlerrno of EWOULDBLOCK and generates a callback. This callback could

be delivered before the API returns from the open request and would contain the cor-

rect session ID. This callback can be ignored, since the application can use the comple-

tion of the open request to control the open operation.

dlPoll

A new poll request of DLI_P0LL_GET_DRV_INFO returns Solaris STREAMS driver

information. The information shown in Figure 3–3 is returned through the pStat

parameter provided by the application (the application provides a pointer to an allo-

cated area of type DLI_ICP_DRV_INFO). The area used to return this information must

have been allocated by the requesting application.
DC 900-1512C 37

ICP2432 User’s Guide for Solaris STREAMS
Note
The DLI_POLL_TRACE_STORE and DLI_POLL_TRACE_WRITE

poll requests are not supported by DLITE.

Cancel Processing using dlPoll (DLI_POLL_READ_CANCEL and

DLI_POLL_WRITE_CANCEL) is performed differently. The change should be transpar-

ent to existing applications. New applications can optionally take advantage of this

change.

• A request to cancel reads or writes (dlPoll request cancel read/write) cancels all

outstanding reads or writes for the session at the time the request is received. In

the Freeway DLI, these were cancelled individually, with the buffer pointer and

OptArgs pointer returned for each request.

• Cancelled I/O is considered as completed. If a user has five read requests queued

and performs a read cancel, a poll would show five reads completed.

• Cancelled I/O is returned as previously; each request is returned (with buffer

pointer and OptArgs pointer) with each poll requesting the cancel, until all are

returned. Returning the cancelled request reduces the number of I/O completions

by one.

typedef struct _DLI_ICP_DRV_INFO
{
 unsigned long Node; /* Node assigned */
 unsigned long DeviceNumber; /* Device Number (ICP) */
 unsigned long NumberOfPorts; /* Number of ports on ICP */

unsigned long NumberOfIcps; /* Number of ICPs installed */
 unsigned char Version[DLI_MAX_STRING + 1];
 /* Driver version string. */
} DLI_ICP_DRV_INFO;
typedef DLI_ICP_DRV_INFO *PDLI_ICP_DRV_INFO;
#define DLI_ICP_DRV_INFO_SIZE sizeof(DLI_ICP_DRV_INFO)

Figure 3–3: DLI_ICP_DRV_INFO “C” Structure
38 DC 900-1512C

3: Programming Using the DLITE Embedded Interface
• Because cancelled I/O is considered completed, cancelled requests are also

returned in response to requests for completed reads and writes (using dlPoll).

These requests are returned with the DLI_IO_ERR_IO_CANCELLED error code.

• This implementation of cancel processing supports those applications designed

for the Freeway DLI.

• The user application should ignore the buffer length and associated buffer data

when a cancelled I/O request is returned.

dlRead

There is no change to the dlRead function. However, because DLITE supports Raw

operation only, it does require an associated OptArgs with each I/O request. DLITE fills

in the supplied OptArgs structure with the appropriate data from the ICP and Protocol

headers associated with the read data received from the ICP. Read requests (dlRead) are

returned to the application with the supplied OptArgs structure built from the ICP and

Protocol header received with the data buffer. All the ICP and protocol information is

available in the OptArgs structure when the read buffer is returned.

Non-blocking I/O should expect an EWOULDBLOCK error upon return. A callback is

issued when the read is completed. A callback is invoked for each read completion.

If the read operation is returned with an error, the data in the OptArgs structure is not

valid. The application must verify the read operation before referencing OptArgs data.
DC 900-1512C 39

ICP2432 User’s Guide for Solaris STREAMS
Note
As with the DLI interface, read requests with a NULL buffer

pointer result in DLITE allocating and returning a read buffer. The

address of the buffer allocated is returned in the supplied buffer

pointer upon return from the call. This is true for both blocking

and non-blocking I/O. The user that wants a DLITE allocated

buffer should ensure the buffer pointer supplied with the dlRead

call is NULL.

dlTerm

Termination processing (dlTerm) releases resources and terminates DLITE. Any active

I/O is cancelled when dlTerm is called. Data buffers associated with the cancelled I/O are

deallocated if those buffers were allocated by DLITE (using dlBufAlloc). OptArgs buffers

are not deallocated. The application should cancel all I/O before terminating.

The dlTerm function sleeps for 1–2 seconds (not including any time required in the can-

celling of active I/O) to allow threads which might have been active previous to the ter-

mination request to exit.

dlWrite

As with dlRead, dlWrite requires an associated OptArgs structure with the write request.

DLITE builds the ICP and Protocol headers, which preface every application buffer (see

dlBufAlloc), from information supplied in this OptArgs structure. Specifically, DLITE

does the following for Raw operation writes:

1. ICP->usClientID = htons (OptArgs->usICPClientID);

2. ICP->usServerID = htons (OptArgs->usICPServerID);

3. ICP->usCommand = htons (OptArgs->usICPCommand);

4. ICP->usParms[0-2] = htons (OptArgs->usICPParms[0-2]);
40 DC 900-1512C

3: Programming Using the DLITE Embedded Interface
5. DLITE adds ICP->iStatus = LittleEndian ? htons (0x4000) : htons (0);

6. DLITE adds ICP->usDataBytes = htons (BufLen + DLI_PROT_HDR_SIZE);

7. If the ICP command is an Attach, or a Write Expedite, the node ID (previously

retrieved from the Solaris STREAMS driver) is stored in:

ICP->usParam[0] (ICP->usParms[0] = htons(Session->drvNodeID))

8. PROT->usCommand = OptArgs->usProtCommand;

9. PROT->iModifier = OptArgs->iProtModifier;

10. PROT->usLinkID = OptArgs->usProtLinkID;

11. PROT->usCircuitID = OptArgs->usProtCircuitID;

12. PROT->usSessionID = OptArgs->usProtSessionID;

13. PROT->usSequence = OptArgs->usProtSequence;

14. PROT->usXParms[0-1] = OptArgs-> usProtXParms [0-1]);

Non-blocking I/O should expect an EWOULDBLOCK error upon return. A callback is

issued when the write is completed. A callback is invoked for each write completion.

3.3.3.5 Callbacks

Callbacks occur only in those sessions configured for non-blocking I/O. They represent

the completion of an I/O activity; signaling the application to perform actions depen-

dent on that I/O completion. In the DLITE interface, this operation might be a dlPoll to

retrieve session status to ascertain the session’s I/O state, or to request read/write com-

pletes. Blocking I/O applications receive their I/O upon return from the dlRead or

dlWrite function.
DC 900-1512C 41

ICP2432 User’s Guide for Solaris STREAMS
Callbacks are issued in the context of their own thread. Only one callback thread exists

in each DLITE process. Callbacks are delivered sequentially; they are never reentered by

another callback.

Caution
As the callback operates in the context of its own thread, the appli-

cation must protect itself with data referenced by its callback pro-

cessing and processing of other, concurrent, threads.

There is no difference between the “main” callback and the “session” callback. They are

initiated sequentially by DLITE. For sake of efficiency, Protogate recommends the user

make use of only one.

To maintain conformity with the existing DLI, callbacks are delivered upon completion

of dlOpen processing. Although dlOpen processing does not generate a callback from the

system (i.e., an I/O completion port thread is not “kicked-off”) the API does, just prior

to exiting the dlOpen processing, emulate the event by placing a “callback” request in an

internal callback queue for delivery to the application.

In a similar manner, callbacks on dlClose requests are generated and delivered by the

API.

The callback thread runs at a higher priority. This ensures that callbacks do not backup

on the delivery queue. This backup would occur when the application processes more

than one I/O completion event in the callback routine (e.g., processing more than one

read/write compete in a single invocation of the application callback routine). At a

higher priority, the application callback processing can process as many (or as few) as

design dictates without regard to a queue backup.
42 DC 900-1512C

3: Programming Using the DLITE Embedded Interface
3.3.3.6 DLITE Error Codes

The error codes listed in Table 3–1 have been added to DLITE.

Table 3–1: DLITE Error Codes

Value DLITE Error Code Description and Recommended Action

–10211 DLI_OPEN_ERR_ICP_INVALID_S
TATUS

Returned by dlOpen(). The ICP has not been down-
loaded with a protocol or is in a non-operational state.

–10231 DLI_OPEN_ERR_NO_DRV_INFO An error occurred in the I/O interface while requesting
Solaris STREAMS driver information. Terminate the
interface, verify Solaris STREAMS driver installation.

–10232 DLI_OPEN_ERR_NO
CMPLT_PORT

An error occurred while requesting an I/O completion
port from the system. Terminate and try re-establishing
the application.

–10518 DLI_READ_ERR_NO_OPTARG The application failed to provide an OptArgs structure
with the read request. Modify the application to build
and supply an OptArgs structure with each read request.

–10721 DLI_POLL_ERR_INVALID_STATE A request for driver information was made for a session
not currently open. Open the session before requesting
Solaris STREAMS driver information.

–10902 DLI_BUFA_ERR_SIZE_EXCEEDE
D

An attempt was made to allocate more buffers, or a
buffer of greater size, than that defined in the DLI con-
figuration file. Modify the application to adhere to sizes
defined in the DLI configuration file.

–11003 DLI_BUFF_ERR_NONE_ALLOC An attempt was made to deallocate a buffer when none
were allocated. Modify application to account for used
buffers.

–11004 DLI_BUFF_ERR_ALREADY_FREE Returned by dlBufFree(). The buffer specified has
already been released.

–11918 DLI_WRIT_ERR_NO_OPTARG The application failed to provide an OptArgs structure
with the write request. Modify the application to build
and supply an OptArgs structure with each write
request.

–12003 DLI_IO_ERR_IO_CANCELLED The read or write request was cancelled at the request
of the user application.
DC 900-1512C 43

ICP2432 User’s Guide for Solaris STREAMS
All Solaris STREAMS system errors are mapped into existing DLI error codes (dlerrno)

so the application can recognize the error condition and react accordingly. The errors

are mapped to dlerrno as described in Table 3–2.

3.3.4 Configuration Files

DLITE uses only the DLI configuration files (TSI configuration files are not used and

are not required). The DLI configuration file must specify “protocol = raw” in the session

sections. With this specification, no parameters are allowed in the protocol section.

The DLI configuration file has been changed to include parameters previously specified

in the TSI configuration file (which is no longer used). These parameters are required

to maintain conformity with those applications porting from DLI to DLITE. This file

has been changed as follows:

MaxBuffers — This parameter has been added to the “main” section. It replaces the

MaxBuffers parameter previously defined in the TSI configuration file. This value

is returned in the usMaxBufs field of the configuration parameters returned in

response to a dlPoll for system configuration. Operationally, this value limits the

number of buffers the user can have outstanding using the dlBufAlloc function. If

Table 3–2: Solaris Errors Mapped to dlerrno

Solaris Value
Solaris Error

Code Applicable dlerrno Codes

5 EIO DLI_READ_ERR_IO_FATAL
DLI_WRIT_ERR_IO_FATAL
DLI_POLL_ERR_IO_FATAL

13 EACCES DLI_READ_ERR_UNBIND
DLI_WRIT_ERR_UNBIND

12
19
37

ENOMEM
ENODEV
ECHRNG

DLI_READ_ERR_INTERNAL_DLI_E
RROR
DLI_WRIT_ERR_INTERNAL_DLI_E
RROR
DLI_POLL_ERR_IO_FATAL
44 DC 900-1512C

3: Programming Using the DLITE Embedded Interface
not explicitly defined in the DLI configuration file, the MaxBuffers parameter

defaults to 1024.

MaxBufSize — This parameter has been added to the “main” section. It replaces the

MaxBufSize parameter previously defined in the TSI configuration file. This value

is returned in the iMaxBufSize field of the configuration parameters returned in

response to a dlPoll for system configuration. Operationally, this value represents

the greatest size an application can request using dlRead, and defines the buffer

size used when a dlRead request is made without specifying a buffer (the API allo-

cates and returns this buffer to the application). If not explicitly defined in the

DLI configuration file, the MaxBufSize parameter defaults to 1024.

MaxBufSize — This parameter has been defined in the “session” section of the DLI con-

figuration file. It replaces the MaxBufSize parameter previously defined in the TSI

configuration file (“connection” section). This value is returned in the

usMaxSessBufSize field of the session parameters returned in response to a dlPoll

for session status. Operationally, this value represents the greatest size an applica-

tion can request to be written using dlWrite. If not explicitly defined in the DLI

configuration file, the MaxBufSize parameter defaults to 1024.

TSICfgName — The TSI configuration file is no longer used.

3.3.4.1 General Application Error File

DLITE creates an application error file “_DLITERR.TXT” which contains descriptive

run-time errors. Regardless of log and trace levels defined in the DLITE configuration

file, the error file is created in the directory where the application is started. It is a circu-

lar file containing a maximum of 1000 entries.
DC 900-1512C 45

ICP2432 User’s Guide for Solaris STREAMS
46 DC 900-1512C

Chapter
4 Programming Using the
Solaris STREAMS Interface
Protogate’s API layers are designed to free developers from the often-difficult program-

ming details of an operating system and the interface details of the protocol software on

the ICP. Protogate’s API layers take care of tasks such as queuing I/O requests, buffer

allocation (with properly aligned I/O buffers), building protocol headers, endian trans-

lation, session management, and others. Using the DLITE interface described in

Chapter 3 allows developers to concentrate more on their specific applications rather

than the difficult communication and programming details associated with transfer-

ring data from one system to the next via a wide-area network. Protogate strongly

encourages users to implement their applications using the DLITE interface; however,

users who wish to bypass Protogate’s API layers and use the Solaris system services

directly may do so, although many of the functions provided by the DLITE will need to

be “reinvented” in the user application. This chapter provides the information neces-

sary to build Solaris STREAMS applications.

4.1 General STREAMS Information

Programmers who use Protogate’s ICP2432 embedded PCI product for Solaris

STREAMS should be familiar with the information contained in Part I of the STREAMS

Programming Guide included in the Solaris documentation set. The man pages for

streamio(7I) also contain information about programming in the STREAMS environ-

ment, and in particular the ioctl codes recognized by the stream head. There are a few

important issues that affect the applications developer when working with the ICP2432

under STREAMS. These are discussed below.
DC 900-1512C 47

ICP2432 User’s Guide for Solaris STREAMS
4.1.1 Byte-Stream vs. Message-Based Operation

The STREAMS framework does not recognize any message or record boundaries in the

data. Data is simply interpreted as a byte stream, and it is up to the application to

decompose the data into distinct records and/or messages. For example, if a user appli-

cation operating on a stream passes a 1KB buffer to the read(2) system call, the

STREAMS framework will return 1KB bytes of data to the application if it is available,

even if a record is only 64 bytes long. The application must then decompose the 1KB

data buffer into 16 individual records. This is an important consideration because the

interface between the ICP2432 and the host device driver is message-based; user appli-

cations communicate with the ICP2432 (through the device driver) via messages.

Fortunately, the STREAMS framework provides a way to use message-based communi-

cation on a stream. putmsg(2) and getmsg(2) can be used to send and receive messages,

respectively, between a user application and the stream head. Alternatively, the

I_SRDOPT ioctl command can be used to change the default operation of a stream from

byte-stream oriented to message oriented. See streamio(7I) for more information on this

ioctl function.

Note
Protogate’s DLITE API layer uses the I_SRDOPT ioctl function to

change the default operation of STREAMS to message based, using

the RMSGN flag.

4.1.2 Error Notification

Programmers in the UNIX environment are familiar with the concept of a “delayed

write” when writing data to a regular disk file. That is, when the write(2) system call

completes, it indicates that the user’s data has been successfully transferred to a block in

the Buffer Cache; but it does not necessarily imply that the user’s data has actually been

written to the corresponding block on the disk drive itself. A similar situation exists in

the STREAMS environment. Successful completion of a write(2) system call does not
48 DC 900-1512C

4: Programming Using the Solaris STREAMS Interface
imply that the user’s data was successfully transferred to the ICP. Rather, it means that

the user’s data was successfully copied into a STREAMS message block and is under

control of the kernel as it passes through the stream. If an error should occur before the

data is transferred to the ICP2432, the user application will have no way of determining

this. This is true for the read side of the stream as well. For example, if a buffer overflow

occurs (i.e. the ICP2432 has a message that is larger than the buffer size selected by the

user application), there is no way to convey this information to the user application,

other than to shut down the entire stream (which the device driver does not do). There-

fore, it is imperative that user applications have some sort of peer-to-peer error check-

ing implemented, and that they do not rely solely on the STREAMS framework for

reliable delivery.

Whenever an error is detected by the ICP2432 device driver, it is logged in /var/adm/mes-

sages using the cmn_err(9F) function. This file should be checked periodically for prob-

lem notifications. For some errors, such as the buffer overflow described above, the

error is simply logged and no further action is taken. Severe errors cause the ICP2432 to

be reset by the device driver, and an M_ERROR message is sent up each stream open to

the ICP, effectively rendering the streams useless (EBADFD is the error code returned in

this situation).

4.1.3 System Performance

As implied in Section 4.1.2, a write(2) request causes the stream head to copy the user’s

data from an I/O buffer in User Space into a STREAMS message buffer in Kernel Space.

When the STREAMS message containing the user’s data arrives at the device driver, the

driver must again copy the data from the STREAMS message into a suitable DMA

buffer. The inverse is true on the read side; received data is copied from a DMA buffer

into a STREAMS message, and then copied from the STREAMS message into a user I/O

buffer during the read(2) system call. Thus, two data copies are required for every I/O

request. This may hinder performance if unusually large I/O buffers are used by user

applications. The maximum I/O buffer allowed by the ICP2432 device driver is 8KB

(8192 bytes).
DC 900-1512C 49

ICP2432 User’s Guide for Solaris STREAMS
4.1.4 Message Cancellation

Because UNIX I/O is inherently synchronous in nature, UNIX does not provide a

mechanism for cancelling individual messages. In the STREAMS environment, how-

ever, an application may use the I_FLUSH ioctl function to cancel a set of messages in

the stream (see streamio(7I)).

Note
Protogate does not recommend using the I_FLUSH ioctl function

within applications except under catastrophic conditions.

Note
The ICP2432 device driver does not differentiate between

I_FLUSH and I_FLUSHBAND requests. Either one causes all mes-

sages of the indicated type (i.e. read and/or write) to be flushed

from the message queues. See streamio(7I) for more information on

these two requests.

4.1.5 Synchronous Polling and Signal Delivery

UNIX I/O is inherently synchronous in nature. That is, when an application makes an

I/O request, the requesting thread will block on the system call until the request is com-

plete. For applications controlling multiple file descriptors, the poll(2) system call may

be used to determine what actions may be performed on a set of file descriptors. Con-

sult the Solaris Reference Manual for information on the use of poll(2).

Alternatively, applications may use the I_SETSIG ioctl function to instruct the stream

head to send a SIGPOLL signal to the application whenever a pollable event occurs.

Consult the STREAMS Programming Guide, streamio(7I), and signal(5) for more infor-

mation on the I_SETSIG ioctl function and the SIGPOLL signal.
50 DC 900-1512C

4: Programming Using the Solaris STREAMS Interface
If a stream is opened using the O_NONBLOCK flag (see open(2)), I/O requests will never

block. If an I/O request is made that would cause a thread to block, –1 is returned to the

caller and errno is set to EWOULDBLOCK.

Applications may use a combination of the above three features to implement an asyn-

chronous I/O mechanism. For example, Protogate’s DLITE API layer attempts to

immediately perform a user I/O request (if no previous requests are still pending). If

EWOULDBLOCK is returned, the message is queued. When the request can be satisfied,

the stream head delivers a SIGPOLL signal to the process. The SIGPOLL signal handler

in DLITE then uses the poll(2) system call to determine on which streams I/O may be

performed. The appropriate request is then issued.

Another method of implementing asynchronous I/O is to create new threads that han-

dle the I/O. The threads might block on an I/O request, but the main thread that created

them is free to do other processing while the I/O requests are active.

4.2 Function Mappings

This section describes how a user application interfaces with the ICP2432 device driver

using the STREAMS framework. It is not intended to be a STREAMS programming

tutorial; users who bypass Protogate’s API layers are assumed to already know how to

write STREAMS applications. This section merely lists the functions used to communi-

cate with the ICP (via the device driver) and the actions performed. Consult the

STREAMS Programming Guide included with the Solaris documentation for informa-

tion on how to program in the STREAMS environment.

4.2.1 Opening the ICP

Before a user application can perform any I/O transactions with the ICP, a file descrip-

tor to the ICP must be obtained. This is done by opening the ICP using the open(2) sys-

tem call. A typical call to open(2) would look like the following:
DC 900-1512C 51

ICP2432 User’s Guide for Solaris STREAMS
int fd;
...
fd = open("/dev/icp1",
 O_RDWR | O_NONBLOCK,
 0);

One of the parameters to the open(2) function is the device path, which has the form

/dev/icpN, where ‘N’ represents the ICP number (0, 1, …, 15). The special character

device files are created by the device driver when it is installed. Note that these are

cloneable devices (see below).

The second parameter is a set of flags describing how the device should be opened. Note

that normal UNIX file access control is in effect when the device is opened. For exam-

ple, if the device is opened for read-only access and then an application attempts to

write to the device, the write request will fail. In the example above, the O_RDWR flag

opens the device with read/write access. The O_NONBLOCK flag specifies that I/O

requests are to be performed asynchronously (i.e. without blocking).

The third function parameter is unused.

If open(2) completes successfully, fd contains the file descriptor representing the opened

stream; otherwise –1 is returned and errno is set appropriately. The file descriptor is

used in subsequent system calls that access the stream.

The special character device files representing the ICP2432s (e.g. /dev/icp1) are created

when the device driver is installed. To communicate with a particular ICP, the associ-

ated device file must be opened as described above. However, these device files repre-

sent “cloneable” devices. During the open(2) request, a new stream is created to the

device. In addition, the minor device number passed to the driver’s open(9E) routine is

dynamically changed so that each stream represents a separate device. Thus, a unique

stream is created each time the device is opened. This means that individual streams to

an ICP cannot be shared between processes except under explicit program control (for

example, by forking a child process that inherits the file descriptors of its parent). How-

ever, threads within a process have access to the same set of file descriptors, so a stream
52 DC 900-1512C

4: Programming Using the Solaris STREAMS Interface
may be shared among different threads within a process at any time (provided the file

descriptors are global to all the threads).

The important thing to remember in the above paragraph is that each open(2) call on an

ICP’s device file produces a separate and distinct stream to the device. Once a stream is

created, it is possible to duplicate the file descriptor that references the stream (using

the dup(2) or fork(2) system calls), but attempting to open the ICP’s device file a second

time creates another unique stream to the device, with a different minor number

assigned to the new stream.

Note
No special device files are created for the streams as they are

assigned unique minor numbers. Only the “cloneable” device files

will be seen in the /dev directory hierarchy.

It should be mentioned that Solaris uses what Sun Microsystems calls “persistent”

device numbering, meaning that device numbers will not normally change when a sys-

tem is rebooted. For example, suppose a system has one ICP2432 installed in PCI slot 4.

This device shows up in the device hierarchy as /dev/icp0. Suppose a second board is

then installed in PCI slot 1. When the system is rebooted, the ICP2432 in slot 4 is still

recognized as /dev/icp0 while the new board in slot 1 is recognized as /dev/icp1. Consult

the Solaris documentation for more information on persistent device numbering. To

determine which boards are assigned which device numbers, the –l option may be used

with the ls command. The entries in the /dev directory hierarchy are symbolic links to

the actual device entries in the /devices directory hierarchy. The PCI slot number is

given in a special file’s entry in the /devices directory.
DC 900-1512C 53

ICP2432 User’s Guide for Solaris STREAMS
4.2.2 Closing a File Descriptor

User applications use the close(2) system call to close a file descriptor and terminate a

session with an ICP. If the closed file descriptor is the last reference to a stream, the

stream is also dismantled. A typical call to close(2) has the following format.

int fd;
int Status;
...
Status = close(fd);

The function takes one parameter, a file descriptor that was previously returned by

open(2). It returns an integer value of zero for successful completion, or –1 if the

descriptor could not be closed.

A stream is dismantled only when the last file descriptor that references it is closed. For

example, if a stream is opened, and then the dup(2) system call is invoked twice to dupli-

cate the file handle, then there are three file descriptors representing the stream. The

stream is dismantled only after all three file descriptors are closed.

4.2.3 Reading Data

The method used to read data from the stream head depends on whether the stream is

being used in byte-stream mode (the default) or if it is message-based. The following

paragraphs describe the various methods.

4.2.3.1 Byte-Stream Operation

The read(2) system call is used to read data from the stream head in byte-stream format.

A typical call looks like the following.

char Bfr[1024];
int Count;
int fd;
...
Count = read(fd,
 Bfr,
 sizeof(Bfr));
54 DC 900-1512C

4: Programming Using the Solaris STREAMS Interface
The first parameter is the file descriptor returned from open(2) when the stream was first

created. The second parameter is the address of the input buffer, and the third parame-

ter is the size of the input buffer.

When the call completes, Count contains the number of bytes that were read. Because

the stream is operating in byte-stream mode, the stream head will transfer a full 1024

bytes into the user buffer if that much data is available. If a full 1024 bytes are not avail-

able, the stream head transfers what it can and returns. If no data is available, the call

will either block (synchronous I/O) or –1 will be returned with errno set to

EWOULDBLOCK (asynchronous operation).

4.2.3.2 Message-Based Operation

There are two ways in which message data can be read from a stream. The most

straight-forward method is to use the getmsg(2) system call. A typical call has the follow-

ing format.

char Bfr[1024];
struct strbuf DataInfo;
int fd;
int Flags;
int Status;
...
DataInfo.buf = Bfr;
DataInfo.maxlen = sizeof(Bfr);
Flags = 0;
Status = getmsg(fd,
 NULL,
 &DataInfo,
 &Flags);

Once again, the first parameter is the file descriptor returned by open(2) when the

stream was created. The second and third parameters are pointers to a strbuf structure

for control information and data, respectively. The strbuf structure contains three fields.

The maxlen field is the size of the input buffer and the buf field is a pointer to the buffer.

The len field is set by the stream head before returning. The final parameter to getmsg(2)

is a pointer to a set of flags that can be used to modify the behavior of getmsg(2). The
DC 900-1512C 55

ICP2432 User’s Guide for Solaris STREAMS
stream head also sets the flags accordingly prior to returning. See the Solaris Reference

Manual for more information on how the flags are interpreted.

The second parameter in the above example is NULL because the ICP2432 device driver

does not generate any control information. However, other user-supplied STREAMS

modules that have been pushed onto the stream might do so.

On return, Status contains either zero for success, or –1 to indicate an error. The len field

of the DataInfo structure contains the number of bytes read from the stream (i.e. the size

of the message). This value will be less than or equal to the value in the maxlen field.

This first method of reading messages has the advantage that both read(2) and getmsg(2)

can be used interchangeably within an application to read data from the stream in

either byte-stream format or message format as desired. This method also has the

advantage that control information can be passed from the stream to the application

(via M_PROTO STREAMS messages). The ICP2432 device driver does not generate

M_PROTO messages, but other user-supplied modules pushed onto the stream are free

to do so.

The second method for reading message data involves the use of the I_SRDOPT ioctl

function (see streamio(7I)). After the stream is created (via open(2)), the I_SRDOPT ioctl

function is used to change the default operating characteristics of the stream head from

byte-stream oriented to message-based. Once this is done, the read(2) system call may be

used as normal (see Section 4.2.3.1). However, because the stream head is operating in

message-based mode, it does not unconditionally transfer 1024 bytes (using the exam-

ple of Section 4.2.3.1) to the user buffer if it is available, but terminates the transfer on

a STREAMS message boundary. This is the method used in Protogate’s DLITE API

layer. See the STREAMS Programming Guide for more information.

The maximum message length that can be read by the device driver is 8192 bytes. See

Section 4.2.5.1 for instructions on how to set the read buffer size used by the ICP2432

device driver.
56 DC 900-1512C

4: Programming Using the Solaris STREAMS Interface
4.2.4 Writing Data

Writing data to a stream is similar to reading data from the stream, except for the direc-

tion of transfer. The following paragraphs describe the methods available for writing

data to an ICP in the STREAMS environment.

4.2.4.1 Normal Operation

The write(2) system call is normally used to send data downstream to the ICP2432. Its

format is similar to the read(2) system call, as shown below, except for the direction of

the data transfer.

char Bfr[1024];
int BytesSent;
int fd;
int XferCount;
...
<Set up the output buffer here.>
XferCount = <Number of bytes to send>;
BytesSent = write(fd,
 Bfr,
 XferCount);

The first parameter is the file descriptor returned from open(2) when the stream was first

created. The second parameter is the address of the output buffer, and the third param-

eter is the number of bytes to send (which is less than or equal to the size of the entire

output buffer).

When the call completes, BytesSent contains the number of bytes that were copied into

the stream by the stream head (or –1 on error). If no kernel memory is available for the

user data, the call will either block until memory becomes available (synchronous I/O)

or –1 will be returned with errno set to EWOULDBLOCK (asynchronous operation).

In theory, the stream head might only copy part of the output data into the stream (less

than the value passed in XferCount), though this seldom occurs in practice. It is also pos-

sible in theory—though again unlikely—that the stream head will copy all the output

data, but break it up into multiple STREAMS M_DATA messages before sending the
DC 900-1512C 57

ICP2432 User’s Guide for Solaris STREAMS
data downstream. Either of these scenarios will cause problems since the interface

between the ICP2432 and host driver is message-based.

4.2.4.2 Preserving Message Boundaries

To absolutely guarantee that message boundaries are preserved when writing data to a

stream, the putmsg(2) system call may be used to send messages. The format is similar to

the getmsg(2) system call described earlier, as shown below, except for the direction of

data transfer.

char Bfr[1024];
struct strbuf DataInfo;
int fd;
int Status;
...
<Set up the output buffer here.>
DataInfo.buf = Bfr;
DataInfo.maxlen = sizeof(Bfr);
DataInfo.len = <Number of bytes to send>;
Status = putmsg(fd,
 NULL,
 &DataInfo,
 0);

The first parameter is the file descriptor returned by open(2) when the stream was cre-

ated. The second and third parameters are pointers to a strbuf structure for control

information and data, respectively. The strbuf structure contains three fields. The

maxlen field is unused during write requests, but the len field must be set to the number

of bytes to write. The buf field is a pointer to the output buffer. The final parameter to

putmsg(2) is a set of flags that can be used to modify the behavior of putmsg(2). See the

Solaris Reference Manual for more information on how the flags are interpreted and for

complete information on putmsg(2).

The second parameter in the above example is NULL because the ICP2432 device driver

does not recognize M_PROTO message types (the type of STREAMS message generated

by the stream head for control information). Any M_PROTO messages received by the

device driver are discarded.
58 DC 900-1512C

4: Programming Using the Solaris STREAMS Interface
When putmsg(2) returns, Status contains either zero for success or –1 for failure.

Caution
If the amount of kernel memory available is insufficient to contain

the entire message, the putmsg(2) system call will block regardless

of whether the stream was opened with the O_NONBLOCK flag set.

In this case, the stream head waits until sufficient memory

becomes available for the message. Partial data is never sent when

putmsg(2) is used.

4.2.4.3 Expedited Write Requests

User applications may occasionally need to send high-priority data. The putpmsg(2) sys-

tem call may be used to send priority-band data requests. This function has the exact

format as putmsg(2) (see Section 4.2.4.2) except for the addition of the priority band.

char Bfr[1024];
struct strbuf DataInfo;
int fd;
int Status;
...
<Set up the output buffer here.>
DataInfo.buf = Bfr;
DataInfo.maxlen = sizeof(Bfr);
DataInfo.len = <Number of bytes to send>;
Status = putpmsg(fd,
 NULL,
 &DataInfo,
 1, // Priority band one.
 MSG_BAND);

Normal STREAMS M_DATA messages have a priority of zero. However, streams pro-

vides 255 priority bands (numbered 1–255, with the greater number having the higher

priority). The STREAMS framework queues M_DATA messages by priority band, with

the higher-priority messages toward the head of the queue. Messages are also queued in

FIFO order within each priority band. See the STREAMS Programming Guide for

detailed information on the STREAMS queuing methods.
DC 900-1512C 59

ICP2432 User’s Guide for Solaris STREAMS
From the ICP2432 device driver’s point-of-view, the priority band is irrelevant. Any

M_DATA message received by the driver that has a priority greater than zero is treated

as an expedited write request. Because the device driver does its own internal queuing

of user requests, the last statement implies that it is possible—though extremely

unlikely—for a message with a priority of one to be transferred to the ICP before a mes-

sage with higher priority; it all depends on when the driver begins processing the mes-

sage. That is, if the driver begins processing the message with priority one before a

higher-priority message is placed on its queue, the message with priority band one will

be sent to the ICP first. However, the STREAMS framework will always queue messages

by priority, and the driver always sends expedited write requests to the ICP before any

normal messages.

Note
Expedited write requests are global to the driver, and not restricted

to the stream on which they are issued. If multiple streams are

opened to an ICP and an expedited write request is received by the

driver, the expedited write is transferred to the ICP before any

normal-priority messages that the driver has queued.

The method described above for sending priority-band data has one serious drawback.

Priority-band data messages are subject to the same STREAMS flow control as normal

data messages. To send a high-priority STREAMS message to the driver that is not sub-

ject to flow control, a control portion must be added to the putmsg(2) (or putpmsg(2))

function call, and the Flags parameter must be set accordingly. The following example

sends an out-of-band data message to the ICP.
60 DC 900-1512C

4: Programming Using the Solaris STREAMS Interface
char Bfr[1024];
struct strbuf CtrlInfo;
struct strbuf DataInfo;
int fd;
PCPROTO_Command PcCmd = PCPROTO_Write_Expedite;
int Status;
...
<Set up the output buffer here.>
CtrlInfo.buf = (char*) &PcCmd;
CtrlInfo.maxlen = sizeof(PcCmd);
CtrlInfo.len = sizeof(PcCmd);
DataInfo.buf = Bfr;
DataInfo.maxlen = sizeof(Bfr);
DataInfo.len = <Number of bytes to send>;
Status = putmsg(fd,
 &CtrlInfo,
 &DataInfo,
 RS_HIPRI);

The RS_HIPRI flag informs the stream head that a high-priority STREAMS message is

to be built. The stream head creates an M_PCPROTO message and copies the control

buffer—the contents of PcCmd in the above example—into the message block. The

stream head then attaches an M_DATA continuation block to the message, and copies

the data buffer into the M_DATA block. The entire message is then sent to the device

driver. Because M_PCPROTO is a high-priority STREAMS message type, it will be sent

immediately downstream without any flow control constraints.

The control portion for an expedited write request consists of only a

PCPROTO_Command type with the value PCPROTO_Write_Expedite. These are defined

in the icp2432sol.h header file included on the product distribution media.

Caution
Users should not use priority band 255 in their applications. When

an M_PCPROTO message is received by the driver that indicates an

expedited write request, the control portion is discarded, and the

priority band of the data portion is implicitly changed to 255 by

the device driver before the message is processed.
DC 900-1512C 61

ICP2432 User’s Guide for Solaris STREAMS
Caution
If the amount of kernel memory available is insufficient to contain

the entire message, the putmsg(2) and putpmsg(2) system calls will

block regardless of whether the stream was opened with the

O_NONBLOCK flag set. In this case, the stream head waits until

sufficient memory becomes available for the message. Partial data

is never sent when putmsg(2) or putpmsg(2) is used.

4.2.5 I/O Control Functions

User applications might sometimes need to communicate directly to the device driver

or other STREAMS modules to obtain information or perform control functions. The

ioctl(2) system call is used to make such requests. In particular, in the STREAMS envi-

ronment the I_STR ioctl function is used to send a special request to the ICP2432 device

driver (see streamio(7I) for information on the I_STR ioctl request). In addition to the

normal I_STR method of ioctl processing, the ICP2432 device driver also supports

transparent ioctl requests; however, Sun Microsystems recommends that transparent

ioctl requests not be used in user applications. Transparent ioctl requests are usually

easier to program within an application (because a strioctl structure does not need to be

filled in), but they are much less efficient in general. The STREAMS Programming Guide

explains the processing details of both transparent and non-transparent (i.e. via I_STR)

ioctl requests to the device driver.

The sections that follow describe the ioctl codes recognized by the driver. They are

defined in the icp2432sol.h header file that is included in the product distribution media.

Table 4–1 gives a general summary of the control codes.
62 DC 900-1512C

4: Programming Using the Solaris STREAMS Interface
Caution
The ioctl(2) system call always blocks in the STREAMS environ-

ment, regardless of whether the device file was opened with the

O_NONBLOCK flag set. The ic_timout field of the strioctl structure

may be used to set a timeout for the ioctl request, if desired (when

non-transparent ioctls are used); but Protogate recommends that

this field always be set to INFTIM (no timeout specified). See the

STREAMS Programming Guide for additional information.

4.2.5.1 Setting the Read-Side DMA Buffer Size

In the STREAMS environment, the device driver never sees a read request; read

requests are handled solely by the stream head. Therefore the device driver has no way

of knowing how large a user’s I/O buffers might be. The device driver uses a default

value of 4096 bytes for its read buffers, but this value may be modified on a per-stream

basis using the IOCTL_ICP_SET_BFR_SIZE ioctl request. This ioctl function informs

the device driver of the read buffer size to allocate for the stream. This request has the

following format.

Table 4–1: ICP2432 Device Driver Control Codes

IOCTL Code Description

IOCTL_ICP_DNLD_BLK Write a download block to the ICP

IOCTL_ICP_GET_DRV_INF
O

Get internal information from the driver

IOCTL_ICP_INIT Inform the ICP to execute its INIT procedure

IOCTL_ICP_RESET Reset the ICP (asserts the RESET# line on the ICP)

IOCTL_ICP_SET_BFR_SIZE Set the DMA buffer size for the stream’s read side
DC 900-1512C 63

ICP2432 User’s Guide for Solaris STREAMS
uint32_t BfrSize = 1024;
int fd;
struct strioctl StrIoctl;
...
StrIoctl.ic_cmd = IOCTL_ICP_SET_BFR_SIZE;
StrIoctl.ic_timout = INFTIM;
StrIoctl.ic_len = sizeof(uint32_t);
StrIoctl.ic_dp = (char*) &BfrSize;
BfrSize = ioctl(fd,
 I_STR,
 &StrIoctl);

The first parameter is the file descriptor returned from the open(2) call when the stream

was created, and represents the stream whose buffer size is to be modified. The second

parameter informs the stream head that this ioctl request should be passed down-

stream, while the last parameter points to the information block for the ioctl request.

When ioctl(2) is called, BfrSize should contain the desired buffer size in bytes (1024 in

the above example). The return value from the IOCTL_ICP_SET_BFR_SIZE ioctl

request will normally be the same as the buffer size value passed to the driver, but there

are certain situations when this is not the case (described below).

The buffer size should be in the range 32–8192. The default read buffer size used by the

device driver is 4096. If an out-of-range value is passed in the ioctl(2) call (i.e. in the

object pointed at by the ic_dp field of the strioctl structure), the device driver does not

fail the request. Instead, it uses the closest legal value for the buffer size. For example,

passing a value of 0 sets the buffer size to 32; passing a value of 16,384 sets the buffer size

to 8192. The value returned by the ioctl(2) call in those two examples is 32 and 8192,

respectively.

The read buffer size may be modified multiple times within a program, but once an

application makes a write(2) call (or putmsg(2)), the buffer size may not be changed

again. Upon receiving the output data, the device driver allocates a DMA buffer for the

read side of the stream, and that buffer is reused throughout the life of the stream. The

ioctl(2) function always returns the current setting of the buffer size.
64 DC 900-1512C

4: Programming Using the Solaris STREAMS Interface
Kernel memory is a scarce resource, and especially memory suitable for use as DMA

buffers. The IOCTL_ICP_SET_BFR_SIZE request provides a mechanism to reduce the

amount of DMA memory used. If there were no such mechanism, the device driver

would have to always allocate the maximum allowable buffer size for read requests

(8192 bytes). This would surely be a waste if the user application were using, say, 1KB

I/O buffers.

The format for the transparent ioctl that is equivalent to the above example is given

below.

uint32_t BfrSize;
int fd;
...
BfrSize = ioctl(fd,

IOCTL_ICP_SET_BFR_SIZE,
 1024);

Here the buffer size is being passed directly as the third parameter to ioctl(2).

Note
The ICP must be initialized before the IOCTL_ICP_SET_BFR_SIZE

ioctl request is used; otherwise errno is set to ENOTSUP, and –1 is

returned.

4.2.5.2 Getting Driver Information

The IOCTL_ICP_GET_DRV_INFO ioctl request is used to obtain internal information

from the driver. The format for the request is shown below.
DC 900-1512C 65

ICP2432 User’s Guide for Solaris STREAMS
ICP_Driver_Info DriverInfo;
int fd;
int Status;
struct strioctl StrIoctl;
...
StrIoctl.ic_cmd = IOCTL_ICP_GET_DRV_INFO;
StrIoctl.ic_timout = INFTIM;
StrIoctl.ic_len = sizeof(ICP_Driver_Info);
StrIoctl.ic_dp = (char*) &DriverInfo;
Status = ioctl(fd,
 I_STR,
 &StrIoctl);

The ic_dp field of the strioctl structure contains a pointer to an ICP_Driver_Info struc-

ture, and the ic_len field contains the size of the structure. When the ioctl(2) function

returns, DriverInfo will contain the information that was supplied by the device driver,

and Status will contain either zero for success or –1 for failure. The ICP_Driver_Info

structure is defined in the icp2432sol.h header file and has the format shown in

Figure 4–1. Table 4–2 describes the various fields in the structure. The possible ICP

states are also defined in icp2432sol.h and shown in Figure 4–2.

typedef struct _ICP_Driver_Info
{
 /* Stream-specific items. */
 uint32_t Node; // Node number corresponding to the stream.
 uint32_t BufferSize; // Buffer size used for internal read reqs.

 /* Items about the specific ICP to which the handle is opened. */
 uint32_t DeviceNumber; // Device number to which stream is open.
 uint32_t NumberOfPorts; // Number of ports on the ICP.
 ICP_State IcpState; // Current state of the ICP.
 uint32_t NumberOfOpenStreams; // Number of STREAMS open to this ICP.

 /* Device-independent global driver information. */
 uint32_t NumberOfIcps; // Number of ICPs attached to the driver.

 /* Driver-specific items. */
 char Version[MAX_VERSION_LENGTH]; // Driver Version number string.
} ICP_Driver_Info, *PICP_Driver_Info;

Figure 4–1: ICP_Driver_Info Structure Format
66 DC 900-1512C

4: Programming Using the Solaris STREAMS Interface
Table 4–2: ICP_Driver_Info Field Descriptions

Field Description

Node The driver’s internal node number corresponding to the file
descriptor used in the ioctl(2) request (Section 4.3.3 describes
node numbers)

BufferSize The size of the DMA read buffer being used on this stream

DeviceNumber The device number of the ICP to which the stream is opened
(0 = /dev/icp0, 1 = /dev/icp1, etc.)

NumberOfPorts The number of ports (links) on the ICP (2, 4, or 8)

IcpState The current device state of the ICP (see Figure 4–2)

NumberOfOpenStreams The number of streams currently opened to this ICP

NumberOfIcps The number of ICPs attached to the driver

Version A NULL-terminated string specifying the device driver’s version
number

typedef enum
{
 ICP_State_Unknown, // Unknown state. ICP is unusable.
 ICP_State_POST, // RESET# asserted. POSTs active.
 ICP_State_Reset, // POSTs complete. ICP is reset.
 ICP_State_Download, // ICP is in download mode.
 ICP_State_Init, // ICP is executing INIT procedure.
 ICP_State_Ready // Normal operation.
} ICP_State, *PICP_State;

Figure 4–2: ICP Device State Definitions
DC 900-1512C 67

ICP2432 User’s Guide for Solaris STREAMS
The format for the transparent ioctl that is equivalent to the above example is given

below.

ICP_Driver_Info DriverInfo;
int fd;
int Status;
...
Status = ioctl(fd,

IOCTL_ICP_GET_DRV_INFO,
 &DriverInfo);

Here the buffer address is being passed as the third parameter to ioctl(2).

4.2.5.3 Support for ICP Initialization

The remaining control codes—IOCTL_ICP_DNLD_BLK, IOCTL_ICP_INIT, and

IOCTL_ICP_RESET—are used to initialize the ICP and are beyond the scope of this doc-

ument. The icpdnld utility program provided by Protogate on the distribution media

should be used to initialize the ICP. Applications may also initialize an ICP program-

matically by using the libicpdnld.so shareable library that is also included with the distri-

bution media (see Appendix C for instructions on using this library).

4.3 Driver Features and Capabilities

The ICP2432 device driver provides the following capabilities:

• Support for downloading an application system to the ICP

• Communication with ICP-resident tasks

• Multiplexed I/O (multiple active requests per device)

• Error logging
68 DC 900-1512C

4: Programming Using the Solaris STREAMS Interface
4.3.1 Download Support

Before applications can use the ICP, it must be downloaded; that is, the ICP-resident

application system must be copied to the ICP’s memory, then executed. This procedure

must occur whenever the ICP is reset. The ICP2432 device driver provides the services

necessary to reset and download the ICPs.

Note
User applications normally do not have to worry about download-

ing the ICP. The icpdnld program supplied with the ICP2432 takes

care of downloading the ICP with the appropriate software. See

Appendix C.

4.3.2 Communication With ICP-Resident Tasks

A Solaris application controls the ICP by communicating with the protocol software

that is executing on the ICP. It accomplishes this by opening a “session” with the ICP.

In normal ICP operation (that is, after the download sequence has completed), user

applications communicate with the ICP software by making read and write requests.

Creating a stream opens a data path to the ICP and its software, and the first command

sent by the application to the ICP software is usually an “attach” command, which

opens a session to a particular link on the ICP. The commands and responses recog-

nized by the ICP software are described in the Programmer’s Guide for the particular

protocol executing on the ICP.

4.3.3 Multiplexed I/O

Whenever a stream is created via the open(2) system call, a new data path is made with

the ICP. Streams can be thought of as being associated with a logical channel to the ICP

(what is known as a node internally to the driver). All nodes share one physical interface

to the ICP. At any given moment, there is at most one command being sent to the ICP

(because there is only one physical channel), but there can be any number of pending
DC 900-1512C 69

ICP2432 User’s Guide for Solaris STREAMS
I/O requests active. Requests are queued on their associated node until such time when

the ICP completes the request.

I/O requests on a node normally complete sequentially; that is, all write requests com-

plete in the order given on a node (unless an expedited write request was inserted into

the stream), as do read requests. However, I/O requests complete randomly on a global

device-wide basis. If Process A issues a read request and Process B then issues a read

request, there is no guarantee that Process A’s request will complete before Process B’s

request (assuming the two processes are using distinct streams to the ICP).

4.3.4 Error Logging

When the ICP2432 device driver detects an error, it writes a log message into

/var/adm/messages using cmn_err(9F). This is a regular text file and may be examined with

any of the standard Solaris commands for viewing regular files (e.g. cat, tail, view, etc.).

As mentioned in Section 4.1.2, the ICP2432 device driver is not always capable of

directly informing the user application when an error occurs; however, a log message is

always written to /var/adm/messages. System administrators should examine this file

periodically for potential problems.

4.4 Error Codes

The following list describes the error codes returned by the ICP2432 device driver. Note

that this is a subset of all possible error codes because other components of the kernel,

such as the stream head, can fail an I/O request before the device driver ever sees it. As

mentioned in Section 4.1.2, the ICP2432 device driver is not always able to directly

return an error code to a user application, but the error code might appear in the log

message written to /var/adm/messages.

EAGAIN

A resource is temporarily unavailable. This error code is returned in two situa-

tions. The first is if no free nodes are available when an open(2) request is made.
70 DC 900-1512C

4: Programming Using the Solaris STREAMS Interface
The second is when a DMA handle cannot be allocated by the driver. The request

should be retried at a later time.

EALREADY

An IOCTL_ICP_RESET request is made while there is already one in progress.

EBADFD

The ICP has been reset. The stream is unusable and must be closed by the appli-

cation. The reset could have occurred explicitly via the IOCTL_ICP_RESET ioctl,

or implicitly if the driver detected a fatal error.

EBUSY

This error code is returned in two situations. The first is during the open(2) system

call. During ICP initialization, the device driver forces exclusive access to the ICP.

If an open(2) request is made while another “active” stream is open to the device

(i.e. one that will not return EBADFD as described above), EBUSY is returned to

the caller. The second situation is when an IOCTL_ICP_DNLD_BLK or

IOCTL_ICP_INIT request is received while one is already in progress. This second

scenario should never occur so long as the icpdnld utility (or shareable library) is

used to initialize an ICP. Requests for which EBUSY is returned should be retried

at a later time.

ECANCELED

If user requests (including ioctl(2) requests) are pending at the time when an ICP

is reset (or when a STREAM is closed abnormally), they are cancelled. Users will

only see this error code for an ioctl(2) request; cancelled write requests only cause

a log message to be generated (because the write(2) system call has already com-

pleted by the time the driver receives the corresponding M_DATA STREAMS

message).
DC 900-1512C 71

ICP2432 User’s Guide for Solaris STREAMS
EFAULT

If this error code is ever generated, it indicates a severe internal driver error. The

device driver associates a stream to a node by storing the stream’s read queue

address in the Node Control Block. The driver generates this error code if it

receives a request for which no matching node can be found.

EINVAL

An invalid parameter was passed to the device driver. This need not be an actual

parameter in a function call, but may also be an invalid input. For example,

attempting to write a download block to location zero generates this error. The

ioctl(2) system call may be perfectly legal, but setting the TargetAddress field of a

Dnld_Blk structure (see icp2432sol.h) to zero is illegal.

EIO

A device error occurred, or a DMA buffer could not be bound to a DMA handle.

EMSGSIZE

The application attempted to write a message greater than the maximum allowed

(8192 bytes). This error can only appear in log messages since the write(2) system

call will have completed successfully by the time the device driver detects this con-

dition.

ENOMEM

No system memory is available.

ENOSR

The device driver could not allocate a STREAMS message block.

ENOSYS

It should be impossible to receive this error code. The driver returns this error if

an attempt is made to reopen an existing stream... but individual streams do not
72 DC 900-1512C

4: Programming Using the Solaris STREAMS Interface
have an entry in the /dev directory. Only cloneable devices appear in /dev. This

error code indicates a severe internal driver error.

ENOTSUP

The ICP is in an invalid state for a given request. For example, trying to send data

before downloading the ICP is an invalid request.

ENOTTY

An ioctl(2) request was made with an unrecognized control code.

ENXIO

This most likely indicates an error in the Solaris kernel. It is returned by the driver

if an open(2) request is made on a device to which the driver is not currently

attached, or when the sflag parameter passed to the driver’s open(9E) routine is

non-zero.

ETIME

A watchdog timer expired (i.e. the board is not responding).
DC 900-1512C 73

ICP2432 User’s Guide for Solaris STREAMS
74 DC 900-1512C

Appendix
A Debug Support for
ICP-resident Software
Protogate’s Protocol Toolkit product allows users to develop ICP-resident protocol

software. During software development, application programmers will probably need

to set breakpoints to halt program execution while examining data structures and pro-

gram flow. However, the Solaris device driver for the ICP2432 uses a watchdog timer

when sending commands to the ICP, so hitting a breakpoint in the debugger can cause

the host driver to time out, resulting in the ICP being reset (and all pending I/O

requests on the host to be completed with an error code of ECANCELED).

To allow developers to set breakpoints without having the ICP reset by the host driver,

Protogate ships two versions of the driver. During product installation, a copy of each

version is placed in the /usr/kernel/drv directory—icp2432sd is the “production” version;

icp2432-dbg is the “debug” version. The difference between the two versions is that

watchdog timers are disabled in the debug version.

To substitute the debug version for the production version, the following procedure

must be performed on the host machine:

1. Log onto the system as ‘root’ (you must have superuser privilege in order to add

and remove drivers).

2. Uninstall the currently running device driver using the command:

rem_drv icp2432sd

3. Install the debug version of the driver using the following command (note that

the command is separated into two lines due to margin constraints, but should be

entered as one line by the user):
DC 900-1512C 75

ICP2432 User’s Guide for Solaris STREAMS
add_drv -i '"pci12a1,2" "pci12a1,4" "pci12a1,8" "pci12a1,12"
"pci12a1,14" "pci12a1,18"' -m '* 0666 root sys' icp2432sd-dbg

ICP-resident software may now be debugged without worry. Two things need to be

noted, however. First, icpdnld (see Appendix C) will appear as if it is hung when down-

loading a protocol to the ICP because it is waiting for the host driver to complete the last

request, and the driver in turn is waiting for a response from the ICP (which will have

hit an initial breakpoint in the debug module linked with the board-resident software).

When the breakpoint is exited and the ICP-resident software resumes execution,

icpdnld will complete normally.

The second item to note is that watchdog timers are disabled! Therefore, if the ICP soft-

ware crashes, hangs, or does anything abnormal so that it cannot respond to the host

driver, then the host driver is hung; it cannot be stopped, nor can it be used any further.

The host machine must be restarted when this occurs.

After development of the ICP-resident software has completed, the procedure given

above may be followed to reinstall the production version of the driver, except

icp2432sd and icp2432sd-dbg must be interchanged.
76 DC 900-1512C

Appendix
B Multithreaded Sample
Programs
This appendix describes the multithreaded sample programs for Solaris 7, including the

following:

• an overview of the programs

• a description of how to install the hardware needed for the programs

• instructions on how to run the programs

• sample screen displays from the programs

Table B–1 shows the sample program file names for each protocol.

Table B–1: Sample Program File Names

Protocol Blocking Program Non-blocking Program

ADCCP NRM nrmsync nrmasync

AWS awssync awsasync

BSC 3270 327sync 327async

BSC 2780/3780 378sync 378async

DDCMP ddcsync ddcasync

FMP fmpsync fmpasync

Military/Government Refer to the Military/Government Protocols Programmer’s Guide

Protocol Toolkit spssync spsasync

STD1200B s12sync s12async
DC 900-1512C 77

ICP2432 User’s Guide for Solaris STREAMS
B.1 Overview of the Test Program

The multithreaded sample programs are placed in the freeway/client/sol_emb/bin direc-

tory during the installation procedures.

Note
Earlier Simpact terminology used the term “synchronous” for

blocking I/O and “asynchronous” for non-blocking I/O. Some

parameter names reflect the previous terminology.

Two high-level test programs (shown in Table B–1) written in C are supplied with each

protocol. The programs are interactive; they prompt you for all the information needed

to run the test. The test communicates with the ICP through the embedded DLITE

interface (described in Chapter 3).

The multithreaded sample programs perform the following functions:

• Configure the link-level control parameters such as baud rates, clocking, and

protocol

• Enable and disable links

• Initiate the transmission and reception of data on the serial lines

You can use these programs to verify that the installed devices and cables are function-

ing correctly. You can also use them as templates for designing client applications that

use the embedded DLITE interface.
78 DC 900-1512C

B: Multithreaded Sample Programs
B.2 Hardware Setup for the Test Programs

Select a pair of adjacent ports to test. Ports are looped back in the following pairs: (0,1),

(2,3), (4,5), and so on. Install a two-headed loopback cable between each pair of ports

to be tested. You can test up to eight ports by using more cables; however, you must

start with ports 0 and 1. For example, in Step 2 below you are asked how many ports you

want to test. If you answer “6”, you must install cables between ports (0,1), (2,3), and

(4,5).

Note
The loopback cable is only used during testing, not during normal

operation.

B.3 Running the Test Program

Step 1: Change to the directory that contains the sample program: freeway/client/

sol_emb/bin. Enter one of the sample test commands shown in Table B–1 (for example,

ddcsync or awsasync) at the system prompt:

Step 2: The following prompts are displayed:

How many ports do you want to run on? (2 - 8):

Enter the number of ports on which to run the test.

How many messages do you want to send?:

Enter the number of messages to send.

What window size do you want?:

For the non-blocking (asynchronous) program only, enter the window size.

Verbose print? (Y/N):

If you want verbose print, which traces the program flow through debug mes-

sages, enter “y”.
DC 900-1512C 79

ICP2432 User’s Guide for Solaris STREAMS
Step 3: After you answer the last prompt, the test starts. It displays a spinner to indicate

that it is running or a series of debug messages which trace the program flow if you

selected verbose print in Step 2. If no errors are shown, your installation is verified.

Step 4: Remove the loopback cable and configure the cables for normal operation.

B.4 Sample Output from Test Program

Figure B–1 shows the screen display from a sample DDCMP blocking program

(ddcsync). Figure B–2 shows the screen display from a sample DDCMP non-blocking

program (ddcasync). The screen display for other protocols is similar. Output displayed

by the program is shown in typewriter type and your responses are shown in bold type.

Each entry is followed by a carriage return.
80 DC 900-1512C

B: Multithreaded Sample Programs
C:ddcsync
How many ports do you want to run on? (2 - 8) : 8
How many messages do you want to send? : 200
Verbose print? (Y/N) : n

starting threads and opening DLI sessions
writer for port0 started
reader for port1 started
writer for port2 started
reader for port3 started
writer for port4 started
reader for port5 started
writer for port6 started
reader for port7 started
5 seconds elapsed
 port0 sent 200 packets
 port2 sent 200 packets
 port4 sent 200 packets
 port6 sent 200 packets
-----WRITER FOR port0 COMPLETED
-----WRITER FOR port2 COMPLETED
-----WRITER FOR port4 COMPLETED
-----WRITER FOR port6 COMPLETED
 port1 received 200 packets
-----READER FOR port1 COMPLETED
 port3 received 200 packets
-----READER FOR port3 COMPLETED
 port5 received 200 packets
-----READER FOR port5 COMPLETED
 port7 received 200 packets
-----READER FOR port7 COMPLETED
Program Completed.

Figure B–1: Sample Output from DDCMP Blocking Multithreaded Program
DC 900-1512C 81

ICP2432 User’s Guide for Solaris STREAMS
C:ddcasync
How many ports do you want to run on? (2 - 8) : 8
How many messages do you want to send? : 200
What window size do you want? : 2
Verbose print? (Y/N) : n

starting threads and opening DLI sessions
writer for port0 started
reader for port1 started
writer for port2 started
reader for port3 started
writer for port4 started
reader for port5 started
writer for port6 started
reader for port7 started
5 seconds elapsed
 port3 received 200 packets
 port5 received 200 packets
 port7 received 200 packets
 port1 received 200 packets
 port2 sent 200 packets
 port4 sent 200 packets
 port6 sent 200 packets
 port0 sent 200 packets
-----WRITER FOR port2 COMPLETED
-----WRITER FOR port4 COMPLETED
-----WRITER FOR port6 COMPLETED
-----WRITER FOR port0 COMPLETED
-----READER FOR port3 COMPLETED
-----READER FOR port5 COMPLETED
-----READER FOR port7 COMPLETED
-----READER FOR port1 COMPLETED
Program Completed.

Figure B–2: Sample Output from DDCMP Non-Blocking Multithreaded Program
82 DC 900-1512C

Appendix
C ICP Initialization
An ICP2432 must be initialized before it can be used to transfer data over a WAN con-

nection. Initialization of an ICP occurs in three steps as follows.

• Reset the ICP

• Download the appropriate software

• Execute the INIT procedure in the newly downloaded software

Protogate’s embedded PCI product for Solaris includes both a standalone program and

a shareable library for initializing an ICP; user’s need not concern themselves with the

low-level details associated with initializing an ICP. This appendix describes how to use

the initialization tools.

C.1 The icpdnld Utility

The icpdnld utility is a standalone program that initializes an ICP. It may be invoked

from the command line (or via a script file) or from within an application. The icpdnld

program is found in the /freeway/client/sol_emb/bin directory (assuming the product was

installed in the default directory). Users may want to consider adding this directory to

their PATH environment variable.

C.1.1 Command Line Invocation

The syntax for invoking the icpdnld utility is shown below.

$ icpdnld device loadfile
DC 900-1512C 83

ICP2432 User’s Guide for Solaris STREAMS
The first argument is the device to download (e.g. /dev/icp0). The second argument is

the load file for the particular protocol. Load files are normally found in the

/freeway/boot directory, and contain a set of commands executed by icpdnld to download

the ICP (see Section C.1.3). The following example shows how to load Protogate’s BSC

software onto ICP0 (the bold print indicates the commands entered by the user).

$ cd /freeway/client/sol_emb/bin
$ icpdnld /dev/icp0 /freeway/boot/bscload
VI-100-0447: ICPUTLSOL 1.0-0 (IcpDnld utility for Solaris, 31 Mar 1999)

LOAD-> /freeway/boot/xio_2432.mem 0x801200
LOAD-> /freeway/icpcode/icp2432/protocols/bsc3270_fw_2432.mem 0x818000
LOAD-> /freeway/icpcode/icp2432/protocols/bsc3780_fw_2432.mem 0x849000
INIT-> 0x818000
/dev/icp0 downloaded successfully.
$

The output from the icpdnld utility consists of the version string followed by a list of the

commands executed. The list uses absolute pathnames, even though relative pathnames

are allowed in the load files, so there is no question as to which files were downloaded

onto the card. Had there been an error during initialization, a diagnostic message

would also appear.

C.1.2 Programmatic Invocation

The icpdnld utility may also be invoked from within an application program via the

system(3S) library routine, as shown in the following code segment.

char *CmdPath = “/freeway/client/sol_emb/bin/icpdnld”;
char *Device = “/dev/icp0”;
char *LoadFile = “/freeway/boot/bscload”;
int TermStatus;
...
TermStatus = system(CmdPath Device LoadFile);

The system(3S) function blocks until the given command is complete. Applications that

require asynchronous operation must explicitly fork a separate process in order to use

the icpdnld utility asynchronously (see fork(2)). The example in Figure C–1 shows one

method for invoking icpdnld asynchronously.
84 DC 900-1512C

C: ICP Initialization
Caution
The system(3S) function blocks until the indicated command has

completed execution.

int ChildPID;
char *CmdPath = "/freeway/client/sol_emb/bin/icpdnld";
char *Device = "/dev/icp0";
char *LoadFile = "/freeway/boot/bscload";
int TermStatus;
...
switch (ChildPID = fork())
{
 case –1: /* Error. */
 perror("fork error");
 exit(1);

case 0: /* Child process. */
execl(CmdPath,

CmdPath,
Device,
LoadFile,
NULL);

perror("child exec error");
exit(0x7F);

 default: /* Parent process. */
 break;
}

/* Only the parent process executes this code. */
while (waitpid(ChildPID,
 &TermStatus,
 WNOHANG) != ChildPID)
{
 /* Do other stuff here while the ICP is initializing. */
}

Figure C–1: Using fork(2) to Invoke icpdnld Without Blocking
DC 900-1512C 85

ICP2432 User’s Guide for Solaris STREAMS
A disadvantage of using the system function to download an ICP is that the version

string and command list is written to stderr by the icpdnld utility. This is one reason why

it may be more desirable to use the libicpdnld.so shareable library to initialize an ICP

from within an application (see Section C.2).

C.1.3 Load Files

Load files are regular text files that contain commands read and executed by the icpdnld

utility (and the shareable library function) in order to initialize an ICP. An example

load file is shown in Figure C–2.

Valid commands are LOAD and INIT. The LOAD command takes two parameters. The

first is the name of a file to download onto the card. Path names may be relative or abso-

lute, but shell metacharacters are not allowed. The second parameter is the hexadecimal

address on the ICP to where the file is written. The INIT command is used to start up

the protocol software after it is downloaded. The INIT command takes only one param-

eter, the starting hexadecimal address (on the ICP) of the protocol software’s initializa-

tion procedure.

Load files are found in the /freeway/boot directory, and are included in the protocol soft-

ware distribution media.

C.2 The libicpdnld.so Shareable Library

A second method of initializing an ICP is to use the libicpdnld.so shareable library. This

library may be found in the /freeway/client/sol_emb/lib directory.

LOAD xio_2432.mem 801200
LOAD bsc3270_fw_2432.mem 818000
LOAD bsc3780_fw_2432.mem 849000
INIT 818000

Figure C–2: Example Load File Contents
86 DC 900-1512C

C: ICP Initialization
C.2.1 Library Components

There are two externally visible library functions available for use in user applications.

The /freeway/include/icpdnld.h header file contains the function prototypes and defini-

tions for the error values returned.

C.2.1.1 Function GetDownloadVersion

Function GetDownloadVersion is used to read the version string from the library, and has

the following prototype.

const char *GetDownloadVersion(void);

The return value is a pointer to the NULL-terminated version string.

C.2.1.2 Function DownloadICP

Function DownloadICP is used to initialize an ICP, and has the following prototype.

DnldError_t DownloadICP(const char *Device,
 const char *LoadFile,
 char *pErrorMsg,
 unsigned ErrorMsgSize,
 char *pStatusMsg,
 unsigned StatusMsgSize);

The Device parameter is a pointer to a NULL-terminated character string representing

the device to download, and the LoadFile parameter is a pointer to a NULL-terminated

character string representing the load file. Neither of these parameters may be NULL,

and neither may point to a null string. These two parameters correspond to the two

command line arguments that are used with the icpdnld utility program (see

Section C.1.1).

The next two parameters are used to supply the calling application with supplemental

information in the event of an error. The pErrorMsg parameter is a pointer to a user

buffer where the error information is written by the function, and the ErrorMsgSize

parameter is the maximum size of the buffer. If pErrorMsg is not NULL, up to
DC 900-1512C 87

ICP2432 User’s Guide for Solaris STREAMS
ErrorMsgSize minus one bytes of information is placed in the buffer. The remaining

byte is used to NULL-terminate the string.

The final two parameters are used to supply the calling application with status informa-

tion about the ICP initialization (see the sample output in the example of

Section C.1.1). The pStatusMsg parameter is a pointer to a user buffer where the status

information is written by the function, and the StatusMsgSize parameter is the maxi-

mum size of the buffer. If pStatusMsg is not NULL, up to StatusMsgSize minus one bytes

of information is placed in the buffer. The remaining byte is used to NULL-terminate

the string.

The return value from DownloadICP is a status indication. The possible return values are

defined in icpdnld.h.

The DownloadICP function opens a file descriptor to both the indicated device and load

file. It then resets the device. After the device is reset, the streams that were opened to it

are no longer valid paths to the device; so DownloadICP closes the original file descriptor

and reopens a new one to the ICP. The ICP is then downloaded with the files indicated

in the load file, and finally the ICP is informed to jump to its INIT procedure. Upon suc-

cessful completion of the INIT procedure, the ICP is in normal operating mode.

DownloadICP then closes the open file descriptors and returns a successful status to the

calling application.

Caution
The DownloadICP function uses a series of ioctl(2) calls to down-

load the ICP. In the STREAMS environment, the ioctl(2) call

always blocks, regardless of whether the stream was opened with

the O_NONBLOCK flag set. If an application requires asynchro-

nous operation, a separate thread or process must be created to

perform the board initialization.
88 DC 900-1512C

C: ICP Initialization
Caution
File descriptors are owned by a process and not by an individual

thread. If a thread is created that calls DownloadICP, and that

thread is abnormally terminated, access to the ICP is denied until

the process containing the thread is also terminated. This is

because the driver forces exclusive access to the ICP during board

initialization. The file descriptor to the ICP that is opened by

DownloadICP remains open if the thread abnormally terminates; it

isn’t closed until the process itself is terminated. Note that other

ICPs in the system can still be used while access is denied to the

one that was being initialized.

If DownloadICP detects an error, it returns an error status to the calling application. The

buffers pointed at by the pErrorMsg and pStatusMsg parameters will contain amplifying

information, including the line number in the load file that caused the error (if applica-

ble).

C.2.2 Compiling and Linking With libicpdnld.so

In order to use the DownloadICP or GetDownloadVersion functions, a user application

must be compiled and linked with the shareable library. The following example shows

how to compile the application myprog with the libicpdnld.so shareable library.

$ cc -Bdynamic -o myprog -Xa -L/freeway/client/sol_emb/lib \
> -R/freeway/client/sol_emb/lib myprog.c -licpdnld

The important options in the above example are the –L and –R options. The –L option

informs the link-editor where the shareable library is located. The –R option informs

the run-time linker where the shareable library is located. Although they both reference

the same directory, both options are required on the command line in order for myprog

to execute correctly. Consult the Linker and Libraries Guide in the Solaris documenta-

tion set for complete information about linking with a shared library.
DC 900-1512C 89

ICP2432 User’s Guide for Solaris STREAMS
90 DC 900-1512C

Index
A

Always QIO support 32
Application

how to build for DLITE 33
Asynchronous sample output

ddcasync 82
Audience 11

B

Blocking I/O 34
Blocking sample output

ddcsync 81
Building a DLITE application 33

C

Callbacks 41
caution 42

Cancelling I/O 38
Caution

callback processing 42
misuse of threads 29

cfgerrno global variable 32
Configuration

typical system 18
Configuration files 44

raw operation 44
Configuration parameters

MaxBuffers 44
MaxBufSize 45
TSICfgName 45

CS API files 22
Customer support 15
DC 900-1512C
D

Data link interface, See DLI
ddcasync

sample output 82
ddcsync

sample output 81
Debug support 75

procedure 75
Device driver 17

error codes 70
features 68

download support 69
error logging 70
ICP-resident tasks 69
multiplexed I/O 69

functions 51
close ICP 54
I/O control 62

DMA buffer size 63

driver information 65

initialization 68
open ICP 51
read data 54

byte-stream 54

message-based 55
write data 57

expedited 59

normal 57

preserve message boundaries 58
general STREAMS information 47
icp2432-dbg debug version 75
icp2432sd production version 75
loading into system 20

dlBufAlloc 35
91

ICP2432 User’s Guide for Solaris STREAMS
dlBufFree 36
dlClose 37
dlerrno function 32
dlerrno global variable 32

mapped to Solaris errors 44
DLI

embedded environment 28
Freeway server environment 27

dlInit 32, 37
DLITE

application interface to 33
blocking and non-blocking I/O 34
callbacks 41
changes in DLI functions 35
DLI/TSI changes 35
error codes 43, 44

building DLITE application 33
configuration files 44
embedded versus Freeway 27
enhancements 29

multithread support 29
environment 28
function changes 35
functions 34
general error file 45
libraries 33
limitations and caveats 31

always QIO support 32
dlInit no longer implied 32
global variables 32
local ack processing 31
raw operation only 31
unsupported functions 33

objectives 28
overview 25

dlOpen 37
dlPoll 37

cancel processing 38
driver information 37

dlRead 39
dlTerm 40
dlWrite 40

raw operation processing 40
DMA buffer size 63
Documents
92
reference 12
Download software

DownloadICP function 87
icpdnld 76, 83

DownloadICP function 87
Driver

see Device driver

E

Embedded interface, See DLITE
Errors 45

cfgerrno 32
device driver error codes 70
dlerrno 32
DLITE error codes 43
global variables 32
iICPStatus 32
logging 70
Solaris errors mapped to dlerrno 44
STREAMS notification 48

F

Features
device driver 68

download support 69
error logging 70
ICP-resident tasks 69
multiplexed I/O 69

Files
CS API 22
general application errors 45
load file 21, 86
readme.ppp 21
relhist.ppp 21
relnotes.ppp 21

freeway directory 21
Functions

blocking I/O 34
callbacks 41
changes for DLITE 35
device driver 51

close ICP 54
I/O control 62

DMA buffer size 63

driver information 65
DC 900-1512C

Index
initialization 68
open ICP 51
read data 54

byte-stream 54

message-based 55
write data 57

expedited 59

normal 57

preserve message boundaries 58
dlBufAlloc 35
dlBufFree 36
dlClose 37
dlerrno 32
dlInit 37
dlOpen 37
dlPoll 37

cancel processing 38
driver information 37

dlRead 39
dlTerm 40
dlWrite 40

raw operation processing 40
DownloadICP 87
GetDownloadVersion 87
non-blocking I/O 34
unsupported by DLITE 33

G

GetDownloadVersion function 87
Global variable support 32

H

History of revisions 15

I

ICP initialization 68, 83
icpdnld utility 76, 83

command line invocation 83
programmatic invocation 84

iICPStatus global variable 32
Initialization of ICP 83
Installation of software

ICP2432 19
loading driver 20
DC 900-1512C
protocol 21
I/O

blocking and non-blocking 34
blocking sample output 81
cancelling 38
control functions 62
multiplexed 69
non-blocking sample output 82

L

libicpdnld.so library 86
compiling and linking 89

Libraries
libicpdnld.so 86

compiling and linking 89
libsolem.a 33
–lpthreads and -lposix4 34

libsolem.a 33
Load files 21, 86
Loading the ICP2432 STREAMS driver 20
Local ack processing 31
Logging

device driver error logging 70
general error file 45

Loopback test 77
hardware setup 79
overview 78
procedure 79
sample 80
source code 22

M

MaxBuffers configuration parameter 44
MaxBufSize configuration parameter 45
Message boundaries 58
Message cancellation 50
Military/Government protocols 21, 77
Multiplexed I/O 69
Multithread support 29

caution 29
sample programs 77

Multithread test program
hardware setup 79
overview 78
procedure 79
93

ICP2432 User’s Guide for Solaris STREAMS
sample 80

N

Non-blocking I/O 34
Non-blocking sample output

ddcasync 82

O

OptArgs 32, 38, 39, 40, 43
Optional arguments, See OptArgs
Overview

DLITE 25
multithread test 78
product 17

P

PCIbus 17
Polling

dlPoll function 37
STREAMS synchronous 50

Procedure
debug support 75
loading driver 20
multithread test 79
software installation 19
test program hardware setup 79

Product
overview 17
support 15

Programming
see also Device driver
using DLITE interface 25
using the Solaris STREAMS interface 47

Protocol software installation 21

R

Raw operation 31
configuration files 44

readme.ppp 21
Reference documents 12
relhist.ppp 21
relnotes.ppp 21
Revision history 15
94
S

Sample output
multithread test 80

Sample programs
multithread support 77

Sessions
closing ICP 37
opening ICP 37

Signal delivery
STREAMS 50

Software installation procedure
ICP2432 19
loading driver 20
protocol 21

Solaris
error codes 44

Solaris STREAMS interface 47
Source code for the loopback tests 22
STREAMS

byte-stream vs. message-based 48
error notification 48
general information 47
message cancellation 50
signal delivery 50
synchronous polling 50
system performance 49

Structures
dlPoll driver information 38

Support, product 15
Synchronous sample output

ddcsync 81
System performance

STREAMS 49

T

Technical support 15
Test program

hardware setup 79
multithreaded programs 77
overview 78
procedure 79
sample 80

Toolkit software installation 21
TSI in Freeway server environment 27
TSICfgName configuration parameter 45
DC 900-1512C

ICP2432 User’s Guide for Solaris STREAMS

DC 900-1512C
Customer Report Form

We are constantly improving our products. If you have suggestions or problems you would

like to report regarding the hardware, software or documentation, please complete this form

and mail it to Protogate at 12225 World Trade Drive, Suite R, San Diego, CA 92128, or fax it

to (877) 473-0190.

If you are reporting errors in the documentation, please enter the section and page number.

Your Name:

Company:

Address:

Phone Number:

Product:

Problem or

Suggestion:

Protogate, Inc.
Customer Service

12225 World Trade Drive, Suite R
San Diego, CA 92128

	ICP2432 User’s Guide for Solaris�® STREAMS
	Contents
	List of Figures
	List of Tables
	Preface
	Purpose of Document
	Intended Audience
	Organization of Document
	Protogate References
	Document Conventions
	Document Revision History
	Customer Support
	1 Product Overview
	Figure 1–1:� Typical Data Communications System Configuration
	2 Software Installation
	2.1� ICP2432 Software Installation Procedure
	2.2� Loading the ICP2432 STREAMS Driver
	2.3� Protocol or Toolkit Software Installation Procedure
	Table 2–1:� Protocol Identifiers
	3 Programming Using the DLITE Embedded Interface
	3.1� Overview
	3.2� Embedded Interface Description
	3.2.1� Comparison of Freeway Server and Embedded Interfaces
	Figure 3–1:� �DLI/TSI Interface in the Freeway Server Environment
	Figure 3–2:� DLITE Interface in an Embedded ICP2432 Environment
	3.2.2� Embedded Interface Objectives
	3.3� DLITE Interface
	3.3.1� DLITE Enhancements
	3.3.1.1� Multithread Support
	3.3.2� DLITE Limitations and Caveats
	3.3.2.1� Raw Operation Only
	3.3.2.2� No LocalAck Processing Support
	3.3.2.3� AlwaysQIO Support
	3.3.2.4� Changes in Global Variable Support
	3.3.2.5� dlInit Function No Longer Implied
	3.3.2.6� Unsupported Functions
	3.3.3� The Application Program’s Interface to DLITE
	3.3.3.1� Building a DLITE Application
	3.3.3.2� Blocking and Non-blocking I/O
	3.3.3.3� Changes in DLI/TSI
	3.3.3.4� Changes in DLI Functions
	Figure 3–3:� DLI_ICP_DRV_INFO “C” Structure
	3.3.3.5� Callbacks
	3.3.3.6� DLITE Error Codes
	Table 3–1:� DLITE Error Codes
	Table 3–2:� �Solaris Errors Mapped to dlerrno
	3.3.4� Configuration Files
	3.3.4.1� General Application Error File
	4 Programming Using the Solaris STREAMS Interface
	4.1� General STREAMS Information
	4.1.1� Byte-Stream vs. Message-Based Operation
	4.1.2� Error Notification
	4.1.3� System Performance
	4.1.4� Message Cancellation
	4.1.5� Synchronous Polling and Signal Delivery
	4.2� Function Mappings
	4.2.1� Opening the ICP
	4.2.2� Closing a File Descriptor
	4.2.3� Reading Data
	4.2.3.1� Byte-Stream Operation
	4.2.3.2� Message-Based Operation
	4.2.4� Writing Data
	4.2.4.1� Normal Operation
	4.2.4.2� Preserving Message Boundaries
	4.2.4.3� Expedited Write Requests
	4.2.5� I/O Control Functions
	Table 4–1:� ICP2432 Device Driver Control Codes
	4.2.5.1� Setting the Read-Side DMA Buffer Size
	4.2.5.2� Getting Driver Information
	Figure 4–1:� ICP_Driver_Info Structure Format
	Table 4–2:� ICP_Driver_Info Field Descriptions
	Figure 4–2:� ICP Device State Definitions
	4.2.5.3� Support for ICP Initialization
	4.3� Driver Features and Capabilities
	4.3.1� Download Support
	4.3.2� Communication With ICP-Resident Tasks
	4.3.3� Multiplexed I/O
	4.3.4� Error Logging
	4.4� Error Codes
	A Debug Support for ICP�resident Software
	B Multithreaded Sample Programs
	Table B–1:� Sample Program File Names
	B.1� Overview of the Test Program
	B.2� Hardware Setup for the Test Programs
	B.3� Running the Test Program
	B.4� Sample Output from Test Program
	Figure B–1:� Sample Output from DDCMP Blocking Multithreaded Program �
	Figure B–2:� Sample Output from DDCMP Non-Blocking Multithreaded Program �
	C ICP Initialization
	C.1� The icpdnld Utility
	C.1.1� Command Line Invocation
	C.1.2� Programmatic Invocation
	Figure C–1:� Using fork(2) to Invoke icpdnld Without Blocking
	C.1.3� Load Files
	Figure C–2:� Example Load File Contents
	C.2� The libicpdnld.so Shareable Library
	C.2.1� Library Components
	C.2.1.1� Function GetDownloadVersion
	C.2.1.2� Function DownloadICP
	C.2.2� Compiling and Linking With libicpdnld.so
	Index

