

Simpact, Inc.
9210 Sky Park
San Diego, CA

September 19
 Court
 92123

ICP2432 User’s Guide
for DIGITAL UNIX

DC 900-1513C

99

Simpact, Inc.
9210 Sky Park Court
San Diego, CA 92123
(858) 565-1865

ICP2432 User’s Guide for DIGITAL UNIX
© 1998–1999 Simpact, Inc. All rights reserved
Printed in the United States of America

This document can change without notice. Simpact, Inc. accepts no liability for any errors this
document might contain.

UNIX is a registered trademark of X/Open Company Limited.

Contents
Preface 9

1 Overview 11

2 Software Installation 15

2.1 ICP2432 Software Installation Procedure 15

2.2 ICP2432 STREAMS Driver Installation Procedure 16

2.2.1 Install the STREAMS Driver using the icpsetup Script 16

2.2.2 Rebuild the UNIX Kernel . 18

2.2.3 Reboot the Machine . 19

2.2.4 Create the Device Files . 20

2.2.5 How to Modify the Driver’s Parameters 21

2.2.6 ICP_Option Parameter. 23

3 ICP2432 STREAMS Driver Modes 25

3.1 Reset Mode. 25

3.2 Download Mode. 25

3.3 Exec Mode . 26

3.4 Downloading Software Images to the ICP 26

4 Programmer Interface 27

4.1 Naming Convention. 27

4.2 Open . 28

4.3 Close . 28

4.4 Data Transfer Functions. 29

4.4.1 Node Numbers . 29

4.4.2 I/O Types . 30
DC 900-1513C 3

ICP2432 User’s Guide for DIGITAL UNIX

4.4.3 Error Conditions . 31

4.4.4 Read . 31

4.4.5 Write . 33

4.4.6 Error Codes . 33

4.5 Ioctl Commands . 34

4.5.1 INIT_ICP . 35

4.5.2 ICPDL . 36

4.5.3 INIT_PROC . 37

4.5.4 Error Codes . 37

5 ICP Packet Formats 39

5.1 DLI Packet Format . 39

5.2 Packet Format . 40

5.3 DLI_OPT_ARGS and ICP_PACKET Structures Compared 42

6 Downloading the ICP 43

A Message Interface 47

A.1 Downstream . 47

A.2 Upstream . 48

Index 49
4 DC 900-1513C

List of Figures
Figure 1–1: ICP2432 STREAMS Configuration . 12

Figure 5–1: “C” Definition of DLI Optional Arguments Structure 40

Figure 5–2: “C” Definition of ICP Packet Structure 41
DC 900-1513C 5

ICP2432 User’s Guide for DIGITAL UNIX
6 DC 900-1513C

List of Tables
Table 5–1: Comparison of DLI_OPT_ARGS and ICP_PACKET Structures 42
DC 900-1513C 7

ICP2432 User’s Guide for DIGITAL UNIX
8 DC 900-1513C

Preface
Purpose of Document

This document describes how to use the ICP2432 intelligent communications proces-

sor in a peripheral component interconnect (PCI) bus computer running the DIGITAL

UNIX operating system.

Intended Audience

You should have a working knowledge of UNIX STREAMS and know how to configure

and build a UNIX kernel.

Required Equipment

You must have an ICP2432 and a host system with a PCIbus.

Organization of Document

Chapter 1 is an overview of the ICP2432 STREAMS driver.

Chapter 2 describes the software installation.

Chapter 3 describes the three ICP2432 STREAMS driver modes.

Chapter 4 describes the STREAMS programmer interface supported by the driver.

Chapter 5 describes the ICP packet formats.
DC 900-1513C 9

ICP2432 User’s Guide for DIGITAL UNIX

Chapter 6 describes the download utility program using the ICP2432 STREAMS driver.

Appendix A describes the message interface.

References

Programmer’s Guide: STREAMS in the DIGITAL UNIX Documentation Library

Revision History

The revision history of the ICP2432 User’s Guide for DIGITAL UNIX, Simpact docu-

ment DC 900-1513C, is recorded below:

Customer Support

If you are having trouble with any Simpact product, call us at 1-800-275-3889 Monday

through Friday between 8 a.m. and 5 p.m. Pacific time.

You can also fax your questions to us at (858)560-2838 or (858)560-2837 any time.

Please include a cover sheet addressed to “Customer Service.”

We are always interested in suggestions for improving our products. You can use the

report form in the back of this manual to send us your recommendations.

Document Revision Release Date Description

DC 900-1513A February 1998 Original release

DC 900-1513B June 1998 File name changes

DC 900-1513C September 1999 Added ICP_Option
10 DC 900-1513C

Chapter

1 Overview
The ICP2432 STREAMS driver has two interfaces. One interface transports data

between processes in user space and the driver in kernel space using the UNIX

STREAMS environment. The other interface transports data between the driver and the

ICP across the PCIbus.

STREAMS is a collection of system calls, kernel resources, and kernel utility routines

that can create, use, and dismantle a STREAM. A STREAM is made up of a Stream

Head, optional modules, and a driver (see Figure 1–1). The Stream Head is provided by

the UNIX STREAMS environment and is responsible for transferring data between user

space and kernel space. If necessary, the Stream Head creates a message or messages to

be sent downstream to initiate an action by the driver.

Communication between the host and the ICP2432 is accomplished by means of DMA

transfers across the PCIbus with the ICP as the PCIbus Master.

The user application interface is provided by the Stream Head. The interface consists of

the following set of system calls:

open open a STREAM

close close a STREAM

read read data from a STREAM

write write data to a STREAM

ioctl perform special I/O control functions
DC 900-1513C 11

ICP2432 User’s Guide for DIGITAL UNIX

Figure 1–1: ICP2432 STREAMS Configuration

User
Process

User Space

Kernel Space

upstreamdownstream

Stream Head

Module(s)
(optional)

ICP2432
STREAMS

Driver Kernel Space
External Interface

ICP2432
3430
12 DC 900-1513C

1: Overview

getmsg get a message from a STREAM

putmsg put a control message onto a STREAM (not supported)

poll poll a STREAM and notify an application of selected events

occurring on a STREAM

The ICP2432 STREAMS driver can be classified as a raw-mode driver. It does not

require any special header or data format for the messages it processes. It does not pro-

cess the data it finds in a STREAMS message in any way. Any processing of the data

found within a STREAMS message is performed by modules that may be pushed into

the STREAM between the Stream Head and the driver, or by software on the ICP.
DC 900-1513C 13

ICP2432 User’s Guide for DIGITAL UNIX
14 DC 900-1513C

Chapter

2 Software Installation
This chapter describes Simpact’s ICP2432 software installation procedure for DIGITAL

UNIX.

Caution
Remember that installing new software overwrites the previous

software.

2.1 ICP2432 Software Installation Procedure

Step 1:

Verify that you have installed one or more ICP2432 boards in your computer, as

described in the ICP2432 Hardware Installation Guide.

Step 2:

Insert the software distribution media into the appropriate drive.

Step 3:

Use the ttttaaaarrrr xxxx command as shown on the next page to retrieve the files. You might want

to include the vvvv option to display the file names as they are extracted. Some systems

require that you use the ffff option to identify the peripheral device being used.
DC 900-1513C 15

ICP2432 User’s Guide for DIGITAL UNIX

Here are two examples of the ttttaaaarrrr command (the device name on your system might be

different):

ttttaaaarrrr xxxxvvvv

ttttaaaarrrr xxxxvvvvffff ////ddddeeeevvvv////rrrrmmmmtttt0000hhhh

The files are copied from the distribution media into a directory called freeway.

2.2 ICP2432 STREAMS Driver Installation Procedure

The following subsections describe how to install the ICP2432 STREAMS driver using

the iiiiccccppppsssseeeettttuuuupppp script, rebuild the UNIX kernel, reboot the machine, and create the device

files.

2.2.1 Install the STREAMS Driver using the icpsetup Script

The iiiiccccppppsssseeeettttuuuupppp script uses the sssseeeettttlllldddd command to install the ICP2432 STREAMS driver.

Step 1:

Log in as root.

Step 2:

Change directory to freeway/client/axp_du_emb/bin and run the iiiiccccppppsssseeeettttuuuupppp script as

follows:

ccccdddd ffffrrrreeeeeeeewwwwaaaayyyy////cccclllliiiieeeennnntttt////aaaaxxxxpppp____dddduuuu____eeeemmmmbbbb////bbbbiiiinnnn
iiiiccccppppsssseeeettttuuuupppp

The computer displays:

*** Enter subset selections ***

The following subsets are mandatory and will be installed automatically
unless you choose to exit without installing any subsets:

 * Simpact PCI ICP2432 Driver Binary Kit
16 DC 900-1513C

2: Software Installation

You may choose one of the following options:

 1) ALL of the above
 2) CANCEL selections and redisplay menus
 3) EXIT without installing any subsets

Enter your choices or press RETURN to redisplay menus.

Choices (for example, 1 2 4-6): 1111

Step 3:

Enter 1111 to select all of the above.

The computer displays:

You are installing the following mandatory subsets:

 Simpact PCI ICP2432 Driver Binary Kit

You are installing the following optional subsets:

Is this correct? (y/n): yyyy

Step 4:

Enter yyyy to select the product kit. It is not necessary to install any optional subsets.

The computer displays:

1 subset(s) will be installed.

Loading 1 of 1 subset(s)....

Simpact PCI ICP2432 Driver Binary Kit
 Copying from ../kit (disk)
 Verifying

1 of 1 subset(s) installed successfully.

The SIMPACT PCI ICP2432 Driver has been successfully installed.
DC 900-1513C 17

ICP2432 User’s Guide for DIGITAL UNIX

Step 5:

The next step is to configure the product kit. When prompted, enter the number of

ICP2432 boards and the number of nodes in your system. (The valid range for the

number of nodes is 4 through 64.) These numbers are used to make the device file.

The computer displays:

...
Configuring "Simpact PCI ICP2432 Driver Binary Kit" (ICPPCIBASE110)

Please answer the following questions.
* How many ICP2432 cards are in your system?[1] 2222
* How many nodes do you use?[16] 8888

icpsetup done.
Please make the kernel using doconfig command.

2.2.2 Rebuild the UNIX Kernel

After the product kit is installed, you must rebuild the UNIX kernel so that it includes

the new device driver.

Step 1:

Enter the following at the prompt, where SYSNAME is the system name specified in

uppercase:

ddddooooccccoooonnnnffffiiiigggg ----cccc SSSSYYYYSSSSNNNNAAAAMMMMEEEE

Note
It is not necessary to modify the configuration file when prompted

by ddddooooccccoooonnnnffffiiiigggg.
18 DC 900-1513C

2: Software Installation
The computer displays:

*** KERNEL CONFIGURATION AND BUILD PROCEDURE ***

Saving /sys/conf/SYSNAME as /sys/conf/SYSNAME.bck

Do you want to edit the configuration file? (y/n) [n]: nnnn

*** PERFORMING KERNEL BUILD ***
 Working....Wed Feb 18 10:46:10 PST 1998
 Working....Wed Feb 18 10:48:12 PST 1998

The new kernel is /sys/SYSNAME/vmunix

Step 2:

The ddddooooccccoooonnnnffffiiiigggg command builds the new UNIX kernel, putting the new image in the file

/sys/SYSNAME/vmunix. Before making this file the new system image (using the ccccpppp com-

mand), it is a good idea to save the existing kernel image, which is what the first instruc-

tion shown on the next page does. After the copy is performed, the system is ready to be

rebooted with the new kernel image.

Enter the following at the prompt:

mmmmvvvv ////vvvvmmmmuuuunnnniiiixxxx ////vvvvmmmmuuuunnnniiiixxxx....ssssaaaavvvv
ccccpppp ////ssssyyyyssss////SSSSYYYYSSSSNNNNAAAAMMMMEEEE////vvvvmmmmuuuunnnniiiixxxx ////vvvvmmmmuuuunnnniiiixxxx

2.2.3 Reboot the Machine

Either the rrrreeeebbbbooooooootttt or sssshhhhuuuuttttddddoooowwwwnnnn command can be used to reboot the system. The rrrreeeebbbbooooooootttt

command causes the machine to be rebooted immediately, whereas sssshhhhuuuuttttddddoooowwwwnnnn is friend-

lier, giving any users that are logged on an opportunity to log out before the system

reboots. The following command waits five minutes before performing a controlled

shutdown and reboot:

sssshhhhuuuuttttddddoooowwwwnnnn ----rrrr ++++5555 """"RRRReeeebbbboooooooottttiiiinnnngggg ttttoooo iiiinnnnssssttttaaaallllllll IIIICCCCPPPP2222444433332222 ddddeeeevvvviiiicccceeee ddddrrrriiiivvvveeeerrrr""""

The ----rrrr option causes an automatic reboot after the shutdown.
DC 900-1513C 19

ICP2432 User’s Guide for DIGITAL UNIX
2.2.4 Create the Device Files

After the system is rebooted, you must create the device files in the /dev directory in

order to access the ICP2432. This is done by executing the mkdev script file found in the

freeway/client/axp_du_emb/bin directory. This script file requires one parameter, the

major device number for the ICP2432.

Step 1:

Log in as root.

Step 2:

Change directory to freeway/client/axp_du_emb/bin:

ccccdddd ffffrrrreeeeeeeewwwwaaaayyyy////cccclllliiiieeeennnntttt////aaaaxxxxpppp____dddduuuu____eeeemmmmbbbb////bbbbiiiinnnn

Step 3:

To create the device file, this script uses the strsetup command to get the device major

number.

Enter the following at the prompt:

mmmmkkkkddddeeeevvvv

For example:

mmmmkkkkddddeeeevvvv
ICP make device file utility VI-100-0483: ICPUTLDU 1.2-0
Icp device major number is 64.
/dev/icp0/0
/dev/icp0/1
/dev/icp0/2
/dev/icp0/3
/dev/icp1/0
/dev/icp1/1
/dev/icp1/2
/dev/icp1/3
20 DC 900-1513C

2: Software Installation
The number of ICPs and nodes are set in the freeway/client/axp_du_emb/bin/

sysconfigtab file as follows:

Icp_Num_Icp = 2
Icp_Num_Node = 4

For more information about Icp_Num_Icp and Icp_Num_Node, see Section 4.1 on

page 27.

When the script file completes, the new directory /dev/icp0 contains the device files.

2.2.5 How to Modify the Driver’s Parameters

After installation, the driver has the following parameters:

Icp_Num_Icp Maximum number of ICP boards the driver can use.

Icp_Num_Node Maximum number of nodes the driver can use for one ICP

board.

Icp_SingleStep When this value equals 1, the driver is in ICP SingleStep debug-

ger mode. The default value is 0.

ICP_Option Sets the device number (/dev/icp0, /dev/icp1, /dev/icp2, and

so on) for the specified bus number and slot number. For more

information, see Section 2.2.6 on page 23.

For more information about Icp_Num_Icp and Icp_Num_Node, see Section 4.1 on

page 27.

The following steps describe how to change the driver parameters (Icp_Num_Icp,

Icp_Num_Node, Icp_SingleStep, and ICP_Option).
DC 900-1513C 21

ICP2432 User’s Guide for DIGITAL UNIX
Step 1:

Change directory to freeway/client/axp_du_emb/bin:

ccccdddd ffffrrrreeeeeeeewwwwaaaayyyy////cccclllliiiieeeennnntttt////aaaaxxxxpppp____dddduuuu____eeeemmmmbbbb////bbbbiiiinnnn

Step 2:

Edit the sysconfigtab file and change the necessary parameter values (Icp_Num_Icp,

Icp_Num_Node, or Icp_SingleStep).

Step 3:

Run the sysconfigdb utility to configure the driver’s attributes:

ssssyyyyssssccccoooonnnnffffiiiiggggddddbbbb ----uuuu ----ffff ssssyyyyssssccccoooonnnnffffiiiiggggttttaaaabbbb iiiiccccpppp

Step 4:

Reboot the system. After reboot, the new parameters will be in effect:

rrrreeeebbbbooooooootttt

Step 5:

If you changed the Icp_Num_Icp or Icp_Num_Node parameter, run the mkdev utility. See

Section 2.2.4 on page 20 for an explanation of the major device number. If you changed

the Icp_SingleStep or ICP_Option parameter, you do not need to run mkdev.

mmmmkkkkddddeeeevvvv

If you wish, you can check the value of each parameter in the sysconfigdb utility.

ssssyyyyssssccccoooonnnnffffiiiiggggddddbbbb ----llll iiiiccccpppp
icp:
Module_Config_Name = icp
Icp_Num_Icp = 3
Icp_Num_Node = 5
Icp_SingleStep = 0
PCI_Option =
...........................
22 DC 900-1513C

2: Software Installation
2.2.6 ICP_Option Parameter

The driver matches the ICP device number (n of /dev/icpn) to ICP boards using the

ICP_Option parameter. When one ICP board is removed, the device numbers of the

other devices may be changed. The ICP_Option parameter prevents the system from

changing the device number as shown below for the sysconfigtab file.

ICP_Option = Icp - 1, Pci - 2000, Slot - 7

The ICP_Option has three factors of Icp, Pci, and Slot as described below:

Icp Defined device number (n of /dev/icpn)

Pci PCI bus number (this is the bus number multiplied by 1000)

Slot Slot number in the PCI bus.

In the example above, the device number is 1 for the ICP device installed in bus 2 and

slot 7.

You can display the bus and slot values on the console by using the following command.

The actual display will differ depending on your system. The following example is for

an AlphaServer2100A system.

P00>>>show config
Digital Equipment Corporation
AlphaServer 2100A 4/275

SRM Console V5.3-10 VMS PALcode V5.56-7, OSF PALcode V1.45-12

Component Status Module ID
CPU 0 P B2024-AA DECchip (tm) 21064A-2
Memory 0 P B2022-DA 128 MB
I/O 24283-01
dva0.0.0.1000.0 RX26/RX23

Slot Option Hose 0, Bus 0, PCI
2 Intel 82375 Bridge to Bus 1, EISA
3 DECchip 21050-AA Bridge to Bus 2, PCI
8 000412A1
9 S3 Trio64/Trio32
DC 900-1513C 23

ICP2432 User’s Guide for DIGITAL UNIX
Slot Option Hose 0, Bus 1, EISA

Slot Option Hose 0, Bus 2, PCI
1 NCR 53C810 pka0.7.0.2001.0 SCSI Bus ID 7
dka0.0.0.2001.0 RZ26L
dka100.1.0.2001.0 RZ26L
dka500.5.0.2001.0 RRD45
mka600.6.0.2001.0 TLZ07
6 DECchip 21040-AA ewa0.0.0.2006.0 00-00-F8-22-32-DF
7 000412A1

The ICP2432 has the value 00xx12A1 for the option (xx is 02, 04, 08, 12, 14, or 18). The

two ICP2432s are installed in the system. One is at bus 0, slot 8, and the other is at bus

2, slot 7.

You can also confirm your setting on the console. If your setting is correct, you will see

a message similar to the following:

Simpact ICP2432 Driver VI-100-0482:DRV2432DU 1.2-0 Aug 12 1999
icp1 at pci2000 slot 7.
icp1: Simpact ICP2432 4 port card. 4

Note
The Icp_Num_Icp parameter must be set to a larger number than

the device number Icp of ICP_Option. For example, when one ICP

device is installed in the system and the device number is set to 1,

Icp_Num_Icp must be set to 2 (even though one ICP device is in the

system).
24 DC 900-1513C

Chapter
3 ICP2432 STREAMS Driver
Modes
The ICP2432 STREAMS driver functions in one of three operating modes: reset,

download, and exec.

3.1 Reset Mode

The ICP enters reset mode upon the following events:

• The PCIbus reset signal is asserted (on power-up and system boot)

• The ICP receives a reset command from the ICP2432 STREAMS driver

In reset mode, the ICP executes code from the on-board ROM.

3.2 Download Mode

The ICP2432 STREAMS driver enters download mode when the ICP accepts the “ready

to download” command sent by the driver after issuing a reset command. In this

mode, the driver only accepts reset, download write, and init procedure requests. The

driver enters exec mode when it receives the response of the init procedure request

from the ICP2432.
DC 900-1513C 25

ICP2432 User’s Guide for DIGITAL UNIX
3.3 Exec Mode

In exec mode, the ICP2432 STREAMS driver provides a communication channel

between processes executing on the host and the ICP. This is the normal operating

mode of the driver after the ICP has been downloaded. The driver will not accept down-

load write and init procedure requests while in exec mode. It will, however, accept

reset requests that will place the driver into reset mode.

3.4 Downloading Software Images to the ICP

Downloading software images to the ICP2432 requires putting the ICP into reset

mode, then initiating the proper sequence of ioctl commands to go from reset mode

to exec mode. The host download program issues an INIT_ICP ioctl to reset the target

ICP and place it into download mode. When the INIT_ICP ioctl completes, the host

download program can begin to download software images to the ICP. The ICPDL ioctl

is provided to transfer each block of the file(s) to be downloaded from the host onto the

ICP at a specified address. A separate ICPDL ioctl call is required for each block to be

downloaded. When all software images have been written to the ICP2432, the host

download program issues an INIT_PROC ioctl to start the execution of the software on

the ICP. See Section 4.5 on page 34 for more information on ioctls.

The product kit includes the icpload program for the download utility. After the

icpload program completes, the ICP2432 is in exec mode. See Chapter 6 on page 43

for more information.
26 DC 900-1513C

Chapter
4 Programmer Interface
The ICP2432 STREAMS driver supports a standard interface that provides open, close,

read, write, getmsg, poll, and ioctl system calls through the Stream Head. The putmsg

system call is not supported because the device driver has no service interface protocol.

The driver is accessed from the application level using system calls to initiate action by

the Stream Head. The Stream Head then sends the proper control message to the driver.

A module within the STREAM can communicate with the device driver by creating the

proper STREAMS message and sending it downstream to the driver. See Appendix A

for more information on the message interface to the ICP2432 STREAMS driver.

4.1 Naming Convention

The naming convention for the /dev entries is as follows:

/dev/icpb/n

where b is the ICP board number and n is the node number minus 3. The communica-

tion nodes are described in Section 4.4.1 on page 29. The entries in /dev were created

during driver installation (refer to Step 5 on page 18 of Section 2.2.1).

The maximum number of boards in the system is defined by Icp_Num_Icp and the max-

imum number of communication nodes per ICP2432 is defined by Icp_Num_Node.

Icp_Num_Icp and Icp_Num_Node are defined in freeway/client/axp_du_emb/bin/

sysconfigtab. The valid range for Icp_Num_Node is 4 through 64. To modify

Icp_Num_Icp and Icp_Num_Node, see Section 2.2.5 on page 21.
DC 900-1513C 27

ICP2432 User’s Guide for DIGITAL UNIX
Each communication node is assigned a minor device number, beginning at zero and

incrementing continually. The communication node numbers for each ICP2432 are

defined beginning at 3.

For example, if Icp_Num_Icp = 2 and Icp_Num_Node = 17, the /dev directory contains

the following entries:

/dev/icp0/0 = ICP 0 node 3 minor device 0
/dev/icp0/1 = ICP 0 node 4 minor device 1
/dev/icp0/2 = ICP 0 node 5 minor device 2
 . . .
 . . .
/dev/icp0/16 = ICP 0 node 19 minor device 16
/dev/icp1/0 = ICP 0 node 3 minor device 17
/dev/icp1/1 = ICP 0 node 4 minor device 18
 . . .
 . . .
/dev/icp1/16 = ICP 0 node 19 minor device 33

4.2 Open

A user process must issue an open system call to the device representing the node num-

ber before performing any I/O requests. The format of the open system call is as follows:

fdev = open(”/dev/icpb/n”, O_RDWR);

where fdev is the returned file descriptor of the STREAM, b is the ICP board number,

and n is the node number minus 3.

4.3 Close

When an application has completed its I/O requests to a particular STREAM, it must

issue a close system call to dismantle the STREAM. The format of the close system call

is as follows:

close(fdev);

where fdev is the file descriptor for the STREAM (returned by open).
28 DC 900-1513C

4: Programmer Interface
4.4 Data Transfer Functions

The Stream Head is responsible for the user interface in a STREAMS environment. All

write requests come downstream to the driver as M_DATA messages from the Stream

Head. The ICP2432 STREAMS driver forwards the information needed to perform a

DMA transfer down to the ICP. Read requests do not travel downstream; instead they

are held at the Stream Head. When the ICP completes a read request from the device

driver (transfers the data from the ICP to host memory), the device driver sends the

message upstream. These messages are queued at the Stream Head until a read request

from the user is made on the stream. When a read request is made, the message at the

top of the queue is passed to the user.

4.4.1 Node Numbers

Communication between a host process and a task on the ICP2432 can be considered

interprocess communication and some method of determining the source and destina-

tion of a message is required. The concept of node numbers was designed for this pur-

pose. For each ICP2432, node numbers 1 through Icp_Num_Node plus 3 are used to

identify a path between a particular host process and a task on the ICP.

Node 1 is the standard node for writing most command and data packets to the

ICP2432. Since buffering limitations on the ICP2432 may cause delays in completion of

writes to the ICP2432, node 2 is typically reserved for writing command packets to ter-

minate application sessions with a port or to terminate an application’s use of node for

reading packets from the ICP2432. Only node 1 or 2 is used to write to the ICP2432.

The other nodes are used to read from the ICP2432.

In a STREAMS environment, a minor device is assigned to each of the node numbers

used for reading, so that each of these node numbers can be accessed through a separate

STREAM. Each ICP2432 minor device identifies a particular ICP device and a node

number used for reading from that device. Only nodes 1 and 2, used for writes, are

shared with all minor devices on the same ICP.
DC 900-1513C 29

ICP2432 User’s Guide for DIGITAL UNIX
When the ICP completes the request, it returns the node number to the device driver,

which uses the node number to determine which STREAM is associated with the

request.

A particular host process may open more than one minor device in order to communi-

cate simultaneously with multiple nodes on one or more ICP2432 devices. However, if

two or more host processes attempt to open the same minor device, they will share the

same STREAM (and node number). Data received from the ICP2432 on a particular

node number is sent upstream by the driver, but cannot be directed to a particular pro-

cess by the Stream Head. The driver cannot guarantee that a particular process will

receive the messages intended for it. To insure data integrity between host processes and

ICP tasks, no two host processes should ever use the same minor device (STREAM) at

the same time.

4.4.2 I/O Types

The ICP2432 STREAMS driver supports both blocking and non-blocking I/O. The

default is blocking I/O. With blocking I/O, the application blocks (sleeps) at the Stream

Head until its I/O request can be satisfied. To use non-blocking I/O, the application

must issue an fcntl request to set the O_NDELAY flag for the STREAM. This enables a

non-blocking I/O session with the Stream Head. Any I/O requests that cannot be satis-

fied return an error (-1) and set errno to EAGAIN. The request must be retried until it

completes successfully.

A good completion for a write request means that the Stream Head was able to send a

message downstream. It does not imply that the data was successfully sent to the

ICP2432, only that it was sent downstream by the Stream Head. A good completion for

a read request means that a message (or messages) previously sent upstream by the

driver was available at the Stream Head for return to the application.
30 DC 900-1513C

4: Programmer Interface
4.4.3 Error Conditions

Due to the asynchronous nature of STREAMS, a fatal error may occur when transfer-

ring data between the ICP2432 and the driver after the user request has completed suc-

cessfully. If such an error occurs, an M_ERROR message is sent upstream and the STREAM

is effectively shut down. Only poll and close system calls can then be made on the

STREAM. All others are rejected by the Stream Head and errno is set to indicate the

cause of the error. Any system calls in progress at the time of the error are subject to fail-

ure or hanging depending on the nature of the call.

Once a fatal error has been detected, the user must close the STREAM and then reopen

it with an open call to restart operations.

4.4.4 Read

In a STREAMS environment, the user must select the type of read desired. This typi-

cally depends on the software running on the ICP2432 and the programming style of

the application. There are three types of reads:

RNORM Byte-stream mode

RMSGN Read message, non-discard mode

RMSGD Read message, discard mode

The default is byte-stream mode (RNORM). This mode can be used when the size of

the buffer to be read is known. The read request does not complete until the number of

bytes requested have been read from the Stream Head. Non-discard mode (RMSGN) is

the most common form used with ICP communications because the size of the buffer

to be read is not always known. With this mode, the read request completes when the

user’s buffer is full or on a message boundary. Discard mode (RMSGD) should not be

used because it may cause a loss of data.
DC 900-1513C 31

ICP2432 User’s Guide for DIGITAL UNIX
To set the read options for a particular STREAM, an application can issue an I_SRDOPT

ioctl. This sets the read options for the STREAM on which the ioctl is made. The for-

mat of the I_SRDOPT ioctl is as follows:

result = ioctl(fdev, I_SRDOPT, read_option);

where fdev is the file descriptor of the STREAM and read_option is the type of read

(RNORM, RMSGN, or RMSGD).

I_SRDOPT, RNORM, RMSGN, and RMSGD are defined in the system include file stropts.h.

There are two system calls that can be made to read data from the Stream Head: read

and getmsg.

The format of the read system call is as follows:

result = read(fd, p_rbuf, count);

where fd is the stream file descriptor, p_rbuf is the pointer to the buffer where data will

be placed, and count is the number of bytes requested (RNORM) or the maximum number

of bytes that can be accepted (RMSGN).

Based upon the setting of the STREAMS read option discussed previously, the read

completes when the count has been satisfied (RNORM or RMSGN) or at a message boundary

(RMSGN). A read system call only returns data found in messages of type M_DATA at the

Stream Head.

The format of the getmsg system call is as follows:

&result = getmsg(fd, ctlptr, dataptr, flags);

where fd is the stream file descriptor, ctlptr is the pointer to the control part of mes-

sage (always NULL), dataptr is the pointer to the data part of message, and flags

should be set to 0 to specify normal and high-priority message reception.

 Getmsg receives a message from the Stream Head. The ctlptr parameter will be NULL

because the ICP2432 STREAMS driver defines no special control message interface.
32 DC 900-1513C

4: Programmer Interface
Data is returned in the buffer pointed to by the dataptr parameter. Flags should be set

to 0 to receive both normal and priority messages. Unlike a read system call, getmsg

retrieves all message types. The only message that the driver can send upstream other

than an M_DATA message is an M_ERROR message. This is sent upstream if an error occurs

during an I/O operation between the driver and the ICP. Setting flags to 0 allows recep-

tion of the priority M_ERROR message.

For more information, refer to the manual pages for read(2) and getmsg(2) in the

UNIX documentation.

4.4.5 Write

The write system call sends data downstream to the ICP2432 STREAMS driver for

transfer to the ICP. The format of the write system call is as follows:

result = write(fd, p_wbuf, count);

where fd is the stream file descriptor, p_wbuf is the pointer to data to be sent, and count

is the number of bytes of data to be sent.

The driver does not process any of the data found in the write buffer before sending it

to the ICP2432. The write buffer should have the format expected by the software on

the ICP.

4.4.6 Error Codes

A return code of -1 from a read, write, or getmsg call indicates that an error has

occurred. The system error code variable errno indicates the type of error. The follow-

ing error codes are returned by the ICP2432 STREAMS driver:

EFAIL The request is an invalid sequence. The target ICP must be

downloaded.

EINVAL An invalid parameter was found in the write system call.
DC 900-1513C 33

ICP2432 User’s Guide for DIGITAL UNIX
EIO An I/O error has occurred during a read or write system call.

ENOBUFFS No buffers are available to complete the requested operation.

EOPNOTSUPP The requested operation is not supported by the target ICP.

4.5 Ioctl Commands

The ICP2432 STREAMS driver supports three ioctl functions. All are used during

board initialization to reset and download the ICP2432. The icpload program included

in the product kit uses all of the functions described in the following subsections.

The most common form of an ioctl command comes from a system call made by an

application program. The format of an ioctl command from an application is as fol-

lows:

ret = ioctl(fdev, I_STR, p_strioctl)

where fdev is the file descriptor of the target ICP2432, I_STR indicates that the com-

mand is a STREAMS ioctl, and p_strioctl is a pointer to a strioctl structure. The

standard STREAMS strioctl structure is defined in <sys/stropts.h> as follows:

struct strioctl
{

int ic_cmd; /* Ioctl command */
int ic_timout; /* ACK/NAK timeout length */
int ic_len; /* Length of data included */
char *ic_dp; /* Pointer to ioctl data */

};

An ioctl command appears on the STREAM as an M_IOCTL message.

An M_IOCTL message can be generated by the Stream Head as a result of a user applica-

tion request or by an upstream module that wants to use the ioctl functions of the

ICP2432 STREAMS driver. The data portion of each M_IOCTL message received by the

driver must conform to the iocblk structure as defined by STREAMS in the file

<sys/stream.h>. If an ioctl request is made by a user application, the Stream Head

places the user’s data in the iocblk structure. Applications use the strioctl structure
34 DC 900-1513C

4: Programmer Interface
when making an ioctl request. M_IOCTL requests coming from upstream modules must

place their requests into the proper iocblk format before sending them downstream to

the driver. For more information on these structures, see the Programmer’s Guide:

STREAMS in the DIGITAL UNIX Documentation Library.

Each of the ioctl functions described in this section causes either an M_IOCACK (success-

ful) or M_IOCNAK (unsuccessful) message to be sent upstream from the driver. At the user

level, the result is a good (0) or an error (-1) return on the ioctl call. If an error is

returned, check the system error code variable errno for more information on the error.

The following subsections describe the ioctl functions performed by the driver. Each

description is followed by an example of a system call from a user application.

4.5.1 INIT_ICP

When the ICP2432 STREAMS driver receives the INIT_ICP ioctl command, it resets

the target ICP2432. This causes the ICP to perform its on-board self-test. If the self-test

is successful, the ICP is placed into download mode by the driver and an M_IOCACK mes-

sage is sent upstream. An unsuccessful self-test results in an M_IOCNAK message being

sent upstream with the error code found in the M_IOCNAK message set appropriately.

There is no data associated with this ioctl.

strioctl.ic_cmd = INIT_ICP;
strioctl.ic_timout = 0;
strioctl.ic_len = 0;
strioctl.ic_dp = (char *)NULL;
result = ioctl(fdev, I_STR, &strioctl);

The default timeout value of the ioctl is 15 seconds. Some ICP boards require more time

for initialization. If you get the System call timed out (ETIME) error, increase the value

of strioctl.ic_timeout to more than 15 seconds.
DC 900-1513C 35

ICP2432 User’s Guide for DIGITAL UNIX
4.5.2 ICPDL

The ICPDL ioctl command sends blocks of data to be downloaded to the target

ICP2432. The data portion of the message block should have the following structure:

typedef struct icp_download
 {
 bit32 io_dl_addr; /* ICP address to download
 this block */
 bit8 data[8192]; /* Data to download */
 } ICP_DOWNLOAD;

The data block is loaded onto the ICP2432 at the io_dl_addr specified. Note that the

maximum transfer size for this operation is 8192 bytes.

size_t count;
ICP_DOWNLOAD icpdl;

icpdl.io_dl_addr = 0x801200;
count = fread(icpdl, data, sizeof(char), 8192, fp); /* Read data from
 file */

strioctl.ic_cmd = ICPDL;
strioctl.ic_timout = 0;
strioctl.ic_len = count + 4; /* Size of data plus
 io_dl_addr field */
strioctl.ic_dp = (char *)&icpdl;

result = ioctl(fdev, I_STR, &strioctl);
36 DC 900-1513C

4: Programmer Interface
4.5.3 INIT_PROC

The INIT_PROC ioctl command specifies the ICP2432 address at which the code down-

loaded to the ICP should begin executing. The data portion is one longword (ic_len =

4) that must be set to the desired ICP2432 address. This command is sent to the target

ICP which begins executing code at the specified address.

int initaddr = 0x818000;

strioctl.ic_cmd = INIT_PROC;
strioctl.ic_timout = 0;
strioctl.ic_len = 4;
strioctl.ic_dp = (char *)&initaddr;

result = ioctl(fdev, I_STR, &strioctl);

4.5.4 Error Codes

A return code of -1 from an ioctl call indicates that an error has occurred. The system

error code variable indicates the type of error. Errno can be set by the ICP2432

STREAMS driver or by the UNIX system. The following error codes are returned by the

driver.

EFAIL The request is an invalid sequence. See Chapter 3 on page 25.

EINPROGRESS The requested operation is already in progress.

EINVAL An invalid parameter was found in the ioctl request.

EIO An error has occurred during an I/O operation between the

ICP and the driver.

EOPNOTSUPP The requested operation is not supported by the target ICP.

ETIME The ioctl function timed out. See Section 4.5.1 on page 35.

ETIMEDOUT The driver has timed out waiting for a response from the target

ICP.
DC 900-1513C 37

ICP2432 User’s Guide for DIGITAL UNIX
38 DC 900-1513C

Chapter
5 ICP Packet Formats
Simpact’s Intelligent Communications Processor (ICP) board is a general-purpose

serial data-link front-end processor. The ICP supports a variety of serial data-link pro-

tocols. Simpact packages each protocol in the form of downloadable ICP software with

a protocol programmer’s guide. The protocol programmer’s guide describes the format

of packets the application may write to or read from the ICP.

The ICP is used in Simpact’s Freeway communications servers, and may also be used as

an embedded front-end processor in compatible host computer equipment. The pro-

grammer’s guide for each protocol assumes that Simpact’s Freeway DLI application

program interface is to be used. Although Simpact’s DLI is available for use on

DIGITAL UNIX computers, it currently supports access to Freeway ICPs only. An appli-

cation on DIGITAL UNIX computers must instead use the ICP2432 STREAMS driver

interface to access embedded ICP boards.

The packet format defined for the driver interface differs slightly from that defined for

Simpact’s DLI. This section describes the differences between these two formats.

5.1 DLI Packet Format

The data link interface (DLI) provides a session-level interface between a client applica-

tion and the protocol software resident on the Freeway ICP. From the application’s per-

spective, these packets consist of data buffers supplemented with the DLI optional

arguments structure to provide the protocol-specific information required for Raw

operation. Figure 5–1 shows the “C” definition of the DLI optional arguments struc-

ture.
DC 900-1513C 39

ICP2432 User’s Guide for DIGITAL UNIX
5.2 Packet Format

The ICP2432 STREAMS driver interface provides a block-transfer interface between a

client application and the protocol software resident on the embedded ICP. From the

application’s perspective, these packets consist of message blocks composed of a header

structure followed by an optional data array. Figure 5–2 shows the “C” definition of this

ICP packet structure.

When preparing a packet to write to the ICP, the application must initialize the

usICPCount field with the size in bytes of the PROT_HDR structure (16) plus the size of the

data array that follows it. After reading a packet from the driver, the application may

compute the size of the data array that follows the PROT_HDR structure by subtracting 16

from the value of the usICPCount field in the ICP_HDR structure.

Note that the ICP_HDR structure is required to be in network byte-order (Big Endian).

The PROT_HDR structure may be in the host computer’s natural byte order, whether Big

typedef struct _DLI_OPT_ARGS
{

unsigned short usFWPacketType; /* Server’s packet type */
unsigned short usFWCommand; /* Server’s command sent or received */
unsigned short usFWStatus; /* Server’s status of I/O operations */
unsigned short usICPClientID; /* Old su_id */
unsigned short usICPServerID; /* Old sp_id */
unsigned short usICPCommand; /* ICP’s command */

short iICPStatus; /* ICP’s command status */
unsigned short usICPParms[3]; /* ICP’s extra parameters */
unsigned short usProtCommand; /* Protocol command */

short iProtModifier; /* Protocol command’s modifier */
unsigned short usProtLinkID; /* Protocol link ID */
unsigned short usProtCircuitID; /* Protocol circuit ID */
unsigned short usProtSessionID; /* Protocol session ID */
unsigned short usProtSequence; /* Protocol sequence */
unsigned short usProtXParms[2]; /* Protocol extra parameters */

} DLI_OPT_ARGS;

Figure 5–1: “C” Definition of DLI Optional Arguments Structure
40 DC 900-1513C

5: ICP Packet Formats
Endian or Little Endian. Each protocol programmer’s guide describes how the applica-

tion declares its natural byte order to the protocol software resident on the ICP.

typedef struct _ICP_PACKET
{

ICP_HDR icp_hdr; /* Network-ordered header */
PROT_HDR prot_hdr; /* Host-ordered header */
char *data; /* Variable length data array */

} ICP_PACKET;

typedef struct _ICP_HDR
{

unsigned short usICPClientID; /* Old su_id */
unsigned short usICPServerID; /* Old sp_id */
unsigned short usICPCount; /* Size of PROT_HDR plus data */
unsigned short usICPCommand; /* ICP’s command */

short iICPStatus; /* ICP’s command status */
unsigned short usICPParms[3]; /* ICP’s extra parameters */

} ICP_HDR;

typedef struct _PROT_HDR
{

unsigned short usProtCommand; /* Protocol command */
short iProtModifier; /* Protocol command’s modifier */

unsigned short usProtLinkID; /* Protocol link ID */
unsigned short usProtCircuitID; /* Protocol circuit ID */
unsigned short usProtSessionID; /* Protocol session ID */
unsigned short usProtSequence; /* Protocol sequence */
unsigned short usProtXParms[2]; /* Protocol extra parameters */

} PROT_HDR;

Figure 5–2: “C” Definition of ICP Packet Structure
DC 900-1513C 41

ICP2432 User’s Guide for DIGITAL UNIX
5.3 DLI_OPT_ARGS and ICP_PACKET Structures Compared

The careful reader will note that the ICP_PACKET structure differs only slightly from the

DLI_OPT_ARGS structure. The ICP_PACKET structure omits the three Freeway server

header fields (usFWPacketType, usFWCommand, and usFWStatus) and adds one new field

(usICPCount). See Table 5–1 for a comparison between the header fields in the

DLI_OPT_ARGS and ICP_PACKET structures.

a An application using Simpact’s DLI specifies data separately from the DLI_OPT_ARGS structure.

Table 5–1: Comparison of DLI_OPT_ARGS and ICP_PACKET Structures

DLI_OPT_ARGS
field name

ICP_PACKET
field name Field Description

usFWPacketType omitted Server’s packet type

usFWCommand omitted Server’s command sent or received

usFWStatus omitted Server’s status of I/O operations

usICPClientID icp_hdr.usICPClientID Old su_id

usICPServerID icp_hdr.usICPServerID Old sp_id

omitted icp_hdr.usICPCount Size of PROT_HDR plus data

usICPCommand icp_hdr.usICPCommand ICP’s command

iICPStatus icp_hdr.iICPStatus ICP’s command status

usICPParms[0] icp_hdr.usICPParms[0] ICP’s extra parameter

usICPParms[1] icp_hdr.usICPParms[1] ICP’s extra parameter

usICPParms[2] icp_hdr.usICPParms[2] ICP’s extra parameter

usProtCommand prot_hdr.usProtCommand Protocol command

iProtModifier prot_hdr.iProtModifier Protocol command’s modifier

usProtLinkID prot_hdr.usProtLinkID Protocol link ID

usProtCircuitID prot_hdr.usProtCircuitID Protocol circuit ID

usProtSessionID prot_hdr.usProtSessionID usProtSessionID

usProtSequence prot_hdr.usProtSequence usProtSequence

usProtXParms[0] prot_hdr.usProtXParms[0] Protocol extra parameter

usProtXParms[1] prot_hdr.usProtXParms[1] Protocol extra parameter

omitted a data Data array
42 DC 900-1513C

Chapter
6 Downloading the ICP
This chapter describes the ICP download program, icpload, that uses most of the ioctl

commands described in Chapter 4. The icpload utility is part of the product kit and is

in the freeway/client/axp_du_emb/bin directory.

NAME

icpload

SYNTAX

icpload device command_file

For example:

icpload /dev/icp0/3 /freeway/boot/awsload

DESCRIPTION

The program icpload is used to reset an ICP2432 and then download that ICP2432

with the specified memory images. Upon conclusion of the download, the on-board

initialization procedure is executed to start the run-time image.

icpload requires the ICP device name as the first parameter. The device parameter

specifies the name of the target ICP.

The second parameter is the command file used by icpload. This file specifies the mem-

ory images and associated load initialization and addresses. The command file consists
DC 900-1513C 43

ICP2432 User’s Guide for DIGITAL UNIX
of any number of lines, one command per line, with the following two possible com-

mand types:

A LOAD command line has the following format:

LOAD pathname load_address

LOAD identifies the command type, pathname is the pathname of the executable image to

be loaded, and load_address is the on-board starting load address in hexadecimal.

An INIT command line has the following format:

INIT execution_address

INIT identifies the command type and execution_address is the on-board execution

address in hexadecimal.

Parameters on a command line must be separated with one or more spaces or with tabs.

Upon successful completion, icpload returns a value of zero. Otherwise, a value is

returned that represents the error encountered.

The contents of a typical command file (for the AWS protocol) are:

LOAD /usr/local/freeway/icpcode/icp2432/osimpact/xio_2432.mem 801200
LOAD /usr/local/freeway/icpcode/icp2432/protocols/aws_fw_2432.mem 818000
INIT 818000

This loads the OS/Impact operating system (xio_2432.mem) and the AWS protocol soft-

ware (aws_fw_2432.mem) onto the ICP2432, and executes the protocol software’s INIT

procedure.

If the path name of the protocol software files (MEM files) is the same as the command

file, the pathname does not need to be set in the command file.
44 DC 900-1513C

6: Downloading the ICP
Note
Make sure that the pathnames of the download files are correct

within the load file. Also remember that pathnames are case-sensi-

tive.

DIAGNOSTICS

The diagnostics provide error messages for the following:

• Incorrect number of parameters supplied

• Could not open target device

• Could not open command file

• Command file format error

• Could not open executable image file
DC 900-1513C 45

ICP2432 User’s Guide for DIGITAL UNIX
46 DC 900-1513C

Appendix
A Message Interface
The ICP2432 STREAMS driver has a simple message interface consisting of three mes-

sages it can accept from upstream and four messages it can send upstream. An applica-

tion program does not create any of these messages. The Stream Head interprets the

user’s request and creates the appropriate message to be sent downstream, or disman-

tles a message coming upstream and sends the appropriate piece(s) to the user. For

modules in the STREAM above the driver, the messages can be created and passed to

the driver or received from the driver in the formats shown below.

A.1 Downstream

The messages that the ICP2432 STREAMS driver can accept at its downstream interface

(from upstream) are M_FLUSH, M_IOCTL, and M_DATA.

Any M_DATA message received by the driver will be sent to the ICP intact. An M_DATA mes-

sage should only be sent to the driver if it contains data intended for the ICP.

 M_IOCTL messages contain the ioctl command and data (if necessary) described in

Section 4.5 on page 34. The data must conform to the iocblk structure defined by

STREAMS.

If an M_FLUSH message is received, the driver flushes its queues in the algorithm

described by STREAMS. See the Programmer’s Guide: STREAMS in the DIGITAL

UNIX Documentation Library for more information.
DC 900-1513C 47

ICP2432 User’s Guide for DIGITAL UNIX
A.2 Upstream

The messages that the ICP2432 STREAMS driver can send upstream are M_IOCACK,

M_IOCNAK, M_DATA, and M_ERROR.

An M_DATA message contains data received from the ICP2432. The data is not altered in

any way by the driver.

 M_IOCACK and M_IOCNAK messages complete an ioctl request. M_IOCACK indicates a good

completion and M_IOCNAK indicates an error. For an M_IOCNAK message, the error code

can be found in the ioc_error field of the iocblk structure.

An M_ERROR message is sent upstream when a fatal error occurs during the direct mem-

ory access of data between the driver and the ICP. The error code is included in the

M_ERROR message as the first byte of the data portion.

Once the driver generates an M_ERROR message, the STREAM is effectively shut down,

allowing only poll and close calls to be made.
48 DC 900-1513C

Index
B

Blocking I/O 30

C

Close system call 11, 28
Commands

reboot 19
shutdown 19

Create device files 20
Customer support 10

D

Data transfer functions 29
error conditions 31
I/O types 30
node numbers 29
read 31

RMSGD 31
RMSGN 31
RNORM 31

write 33
Device files

create 20
DLI packet format 39
DLI_OPT_ARGS and ICP_PACKET structures

compared 42
doconfig 18
Documents, reference 10
Download mode 25
Download software images 26
Download utility program 43
Driver

installation 16
modes 25
modify parameters 21
DC 900-1513C
E

Equipment, required 9
Error codes

EFAIL 33, 37
EINPROGRESS 37
EINVAL 33, 37
EIO 34, 37
ENOBUFFS 34
EOPNOTSUPP 34, 37
ETIME 37
ETIMEDOUT 37

Error conditions 31
Exec mode 26

G

Getmsg system call 13, 32

H

History of revisions 10

I

I_SRDOPT ioctl 32
ICP packet format 39
Icp_Num_Icp 21
Icp_Num_Node 21
ICP_Option 21, 23
ICP_PACKET and DLI_OPT_ARGS structures

compared 42
Icp_SingleStep 21
ICPDL ioctl 26, 36
icpload 43
icpsetup 16
INIT_ICP ioctl 26, 35
INIT_PROC ioctl 26, 37
49

ICP2432 User’s Guide for DIGITAL UNIX
Installation
driver 16
software 15

I/O types 30
Ioctl commands 34

I_SRDOPT 32
ICPDL 26, 36
INIT_ICP 26, 35
INIT_PROC 26, 37

Ioctl system call 11

K

Kernel, rebuild 18

M

M_DATA message 29, 47, 48
M_ERROR message 48
M_FLUSH message 47
M_IOCACK message 35, 48
M_IOCNAK message 35, 48
M_IOCTL message 34, 47
Message interface

downstream 47
upstream 48

Message types
M_DATA 29, 47, 48
M_ERROR 48
M_FLUSH 47
M_IOCACK 35, 48
M_IOCNAK 35, 48
M_IOCTL 34, 47

N

Naming conventions 27
Node numbers 29
Non-blocking I/O 30

O

Open system call 11, 28

P

Packet format
DLI 39
ICP 39

Poll system call 13
50
Product support 10
Programmer interface 27
Putmsg system call 13

R

Read system call 11, 31, 32
Reboot command 19
Rebuild UNIX kernel 18
Reference documents 10
Reset mode 25
Revision history 10
RMSGD type of read 31
RMSGN type of read 31
RNORM type of read 31

S

setld 16
Shutdown command 19
Software installation 15
STREAMS

configuration diagram 12
definition 11
driver modes 25

download 25
exec 26
reset 25

interface 11, 27
naming convention 27

Support, product 10
System calls

close 11, 28
getmsg 13, 32
ioctl 11, 34
open 11, 28
poll 13
putmsg 13
read 11, 32
write 11, 33

T

tar command 15
Technical support 10

U

Utility programs
DC 900-1513C

Index
download 43
icpload 43

W

Write system call 11, 33
DC 900-1513C
 51

ICP2432 User’s Guide for DIGITAL UNIX
52
 DC 900-1513C

ICP2432 User’s Guide
for DIGITAL UNIX

DC 900-1513C
Customer Report Form

We are constantly improving our products. If you have suggestions or problems you would

like to report regarding the hardware, software or documentation, please complete this form

and mail it to Simpact at 9210 Sky Park Court, San Diego, CA 92123, or fax it to

(619) 560-2838.

If you are reporting errors in the documentation, please enter the section and page number.

Your Name:

Company:

Address:

Phone Number:

Product:

Problem or

Suggestion:

Simpact, Inc.
Customer Service

9210 Sky Park Court
San Diego, CA 92123

	ICP2432 User’s Guide for DIGITAL UNIX
	Contents
	List of Figures
	List of Tables
	Preface
	1 Overview
	Figure 1–1:� ICP2432 STREAMS Configuration
	2 Software Installation
	2.1� ICP2432 Software Installation Procedure
	2.2� ICP2432 STREAMS Driver Installation Procedure...
	2.2.1� Install the STREAMS Driver using the icpset...
	2.2.2� Rebuild the UNIX Kernel
	2.2.3� Reboot the Machine
	2.2.4� Create the Device Files
	2.2.5� How to Modify the Driver’s Parameters
	2.2.6� ICP_Option Parameter
	3 ICP2432 STREAMS Driver 3 Modes
	3.1� Reset Mode
	3.2� Download Mode
	3.3� Exec Mode
	3.4� Downloading Software Images to the ICP
	4 Programmer Interface
	4.1� Naming Convention
	4.2� Open
	4.3� Close
	4.4� Data Transfer Functions
	4.4.1� Node Numbers
	4.4.2� I/O Types
	4.4.3� Error Conditions
	4.4.4� Read
	4.4.5� Write
	4.4.6� Error Codes
	4.5� Ioctl Commands
	4.5.1� INIT_ICP
	4.5.2� ICPDL
	4.5.3� INIT_PROC
	4.5.4� Error Codes
	5 ICP Packet Formats
	5.1� DLI Packet Format
	Figure 5–1:� “C” Definition of DLI Optional Argume...
	5.2� Packet Format
	Figure 5–2:� “C” Definition of ICP Packet Structur...
	5.3� DLI_OPT_ARGS and ICP_PACKET Structures Compar...
	Table 5–1:� Comparison of DLI_OPT_ARGS and ICP_PAC...
	6 Downloading the ICP
	A Message Interface
	A.1� Downstream
	A.2� Upstream
	Index
	B
	C
	D
	E
	G
	H
	I
	K
	M
	N
	O
	P
	R
	S
	T
	U
	W

